Proof of Theorem onvf1odlem1
| Step | Hyp | Ref
| Expression |
| 1 | | nvel 5274 |
. . . . . 6
⊢ ¬ V
∈ 𝑉 |
| 2 | | eleq1 2817 |
. . . . . . 7
⊢ (V =
𝐴 → (V ∈ 𝑉 ↔ 𝐴 ∈ 𝑉)) |
| 3 | 2 | eqcoms 2738 |
. . . . . 6
⊢ (𝐴 = V → (V ∈ 𝑉 ↔ 𝐴 ∈ 𝑉)) |
| 4 | 1, 3 | mtbii 326 |
. . . . 5
⊢ (𝐴 = V → ¬ 𝐴 ∈ 𝑉) |
| 5 | 4 | con2i 139 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → ¬ 𝐴 = V) |
| 6 | | eqv 3460 |
. . . . . 6
⊢ (𝐴 = V ↔ ∀𝑦 𝑦 ∈ 𝐴) |
| 7 | | alex 1826 |
. . . . . 6
⊢
(∀𝑦 𝑦 ∈ 𝐴 ↔ ¬ ∃𝑦 ¬ 𝑦 ∈ 𝐴) |
| 8 | 6, 7 | bitri 275 |
. . . . 5
⊢ (𝐴 = V ↔ ¬ ∃𝑦 ¬ 𝑦 ∈ 𝐴) |
| 9 | 8 | con2bii 357 |
. . . 4
⊢
(∃𝑦 ¬
𝑦 ∈ 𝐴 ↔ ¬ 𝐴 = V) |
| 10 | 5, 9 | sylibr 234 |
. . 3
⊢ (𝐴 ∈ 𝑉 → ∃𝑦 ¬ 𝑦 ∈ 𝐴) |
| 11 | | ax-1 6 |
. . . . . 6
⊢ (¬
𝑦 ∈ 𝐴 → (𝑥 ∈ On → ¬ 𝑦 ∈ 𝐴)) |
| 12 | 11 | ralrimiv 3125 |
. . . . 5
⊢ (¬
𝑦 ∈ 𝐴 → ∀𝑥 ∈ On ¬ 𝑦 ∈ 𝐴) |
| 13 | 12 | eximi 1835 |
. . . 4
⊢
(∃𝑦 ¬
𝑦 ∈ 𝐴 → ∃𝑦∀𝑥 ∈ On ¬ 𝑦 ∈ 𝐴) |
| 14 | | rexv 3478 |
. . . 4
⊢
(∃𝑦 ∈ V
∀𝑥 ∈ On ¬
𝑦 ∈ 𝐴 ↔ ∃𝑦∀𝑥 ∈ On ¬ 𝑦 ∈ 𝐴) |
| 15 | 13, 14 | sylibr 234 |
. . 3
⊢
(∃𝑦 ¬
𝑦 ∈ 𝐴 → ∃𝑦 ∈ V ∀𝑥 ∈ On ¬ 𝑦 ∈ 𝐴) |
| 16 | | tz9.13g 9752 |
. . . . 5
⊢ (𝑦 ∈ V → ∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥)) |
| 17 | 16 | rgen 3047 |
. . . 4
⊢
∀𝑦 ∈ V
∃𝑥 ∈ On 𝑦 ∈
(𝑅1‘𝑥) |
| 18 | | r19.29r 3097 |
. . . . 5
⊢
((∃𝑦 ∈ V
∀𝑥 ∈ On ¬
𝑦 ∈ 𝐴 ∧ ∀𝑦 ∈ V ∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥)) → ∃𝑦 ∈ V (∀𝑥 ∈ On ¬ 𝑦 ∈ 𝐴 ∧ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥))) |
| 19 | | r19.29 3095 |
. . . . . 6
⊢
((∀𝑥 ∈
On ¬ 𝑦 ∈ 𝐴 ∧ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥)) → ∃𝑥 ∈ On (¬ 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ (𝑅1‘𝑥))) |
| 20 | 19 | reximi 3068 |
. . . . 5
⊢
(∃𝑦 ∈ V
(∀𝑥 ∈ On ¬
𝑦 ∈ 𝐴 ∧ ∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥)) → ∃𝑦 ∈ V ∃𝑥 ∈ On (¬ 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ (𝑅1‘𝑥))) |
| 21 | 18, 20 | syl 17 |
. . . 4
⊢
((∃𝑦 ∈ V
∀𝑥 ∈ On ¬
𝑦 ∈ 𝐴 ∧ ∀𝑦 ∈ V ∃𝑥 ∈ On 𝑦 ∈ (𝑅1‘𝑥)) → ∃𝑦 ∈ V ∃𝑥 ∈ On (¬ 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ (𝑅1‘𝑥))) |
| 22 | 17, 21 | mpan2 691 |
. . 3
⊢
(∃𝑦 ∈ V
∀𝑥 ∈ On ¬
𝑦 ∈ 𝐴 → ∃𝑦 ∈ V ∃𝑥 ∈ On (¬ 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ (𝑅1‘𝑥))) |
| 23 | 10, 15, 22 | 3syl 18 |
. 2
⊢ (𝐴 ∈ 𝑉 → ∃𝑦 ∈ V ∃𝑥 ∈ On (¬ 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ (𝑅1‘𝑥))) |
| 24 | | rexcom 3267 |
. . 3
⊢
(∃𝑦 ∈ V
∃𝑥 ∈ On (¬
𝑦 ∈ 𝐴 ∧ 𝑦 ∈ (𝑅1‘𝑥)) ↔ ∃𝑥 ∈ On ∃𝑦 ∈ V (¬ 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ (𝑅1‘𝑥))) |
| 25 | | exancom 1861 |
. . . . 5
⊢
(∃𝑦(¬
𝑦 ∈ 𝐴 ∧ 𝑦 ∈ (𝑅1‘𝑥)) ↔ ∃𝑦(𝑦 ∈ (𝑅1‘𝑥) ∧ ¬ 𝑦 ∈ 𝐴)) |
| 26 | | rexv 3478 |
. . . . 5
⊢
(∃𝑦 ∈ V
(¬ 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ (𝑅1‘𝑥)) ↔ ∃𝑦(¬ 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ (𝑅1‘𝑥))) |
| 27 | | df-rex 3055 |
. . . . 5
⊢
(∃𝑦 ∈
(𝑅1‘𝑥) ¬ 𝑦 ∈ 𝐴 ↔ ∃𝑦(𝑦 ∈ (𝑅1‘𝑥) ∧ ¬ 𝑦 ∈ 𝐴)) |
| 28 | 25, 26, 27 | 3bitr4i 303 |
. . . 4
⊢
(∃𝑦 ∈ V
(¬ 𝑦 ∈ 𝐴 ∧ 𝑦 ∈ (𝑅1‘𝑥)) ↔ ∃𝑦 ∈
(𝑅1‘𝑥) ¬ 𝑦 ∈ 𝐴) |
| 29 | 28 | rexbii 3077 |
. . 3
⊢
(∃𝑥 ∈ On
∃𝑦 ∈ V (¬
𝑦 ∈ 𝐴 ∧ 𝑦 ∈ (𝑅1‘𝑥)) ↔ ∃𝑥 ∈ On ∃𝑦 ∈
(𝑅1‘𝑥) ¬ 𝑦 ∈ 𝐴) |
| 30 | 24, 29 | bitri 275 |
. 2
⊢
(∃𝑦 ∈ V
∃𝑥 ∈ On (¬
𝑦 ∈ 𝐴 ∧ 𝑦 ∈ (𝑅1‘𝑥)) ↔ ∃𝑥 ∈ On ∃𝑦 ∈
(𝑅1‘𝑥) ¬ 𝑦 ∈ 𝐴) |
| 31 | 23, 30 | sylib 218 |
1
⊢ (𝐴 ∈ 𝑉 → ∃𝑥 ∈ On ∃𝑦 ∈ (𝑅1‘𝑥) ¬ 𝑦 ∈ 𝐴) |