MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  distrlem1pr Structured version   Visualization version   GIF version

Theorem distrlem1pr 11044
Description: Lemma for distributive law for positive reals. (Contributed by NM, 1-May-1996.) (Revised by Mario Carneiro, 13-Jun-2013.) (New usage is discouraged.)
Assertion
Ref Expression
distrlem1pr ((𝐴P𝐵P𝐶P) → (𝐴 ·P (𝐵 +P 𝐶)) ⊆ ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)))

Proof of Theorem distrlem1pr
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addclpr 11037 . . . . 5 ((𝐵P𝐶P) → (𝐵 +P 𝐶) ∈ P)
2 df-mp 11003 . . . . . 6 ·P = (𝑦P, 𝑧P ↦ {𝑓 ∣ ∃𝑔𝑦𝑧 𝑓 = (𝑔 ·Q )})
3 mulclnq 10966 . . . . . 6 ((𝑔QQ) → (𝑔 ·Q ) ∈ Q)
42, 3genpelv 11019 . . . . 5 ((𝐴P ∧ (𝐵 +P 𝐶) ∈ P) → (𝑤 ∈ (𝐴 ·P (𝐵 +P 𝐶)) ↔ ∃𝑥𝐴𝑣 ∈ (𝐵 +P 𝐶)𝑤 = (𝑥 ·Q 𝑣)))
51, 4sylan2 593 . . . 4 ((𝐴P ∧ (𝐵P𝐶P)) → (𝑤 ∈ (𝐴 ·P (𝐵 +P 𝐶)) ↔ ∃𝑥𝐴𝑣 ∈ (𝐵 +P 𝐶)𝑤 = (𝑥 ·Q 𝑣)))
653impb 1114 . . 3 ((𝐴P𝐵P𝐶P) → (𝑤 ∈ (𝐴 ·P (𝐵 +P 𝐶)) ↔ ∃𝑥𝐴𝑣 ∈ (𝐵 +P 𝐶)𝑤 = (𝑥 ·Q 𝑣)))
7 df-plp 11002 . . . . . . . . . . 11 +P = (𝑤P, 𝑥P ↦ {𝑓 ∣ ∃𝑔𝑤𝑥 𝑓 = (𝑔 +Q )})
8 addclnq 10964 . . . . . . . . . . 11 ((𝑔QQ) → (𝑔 +Q ) ∈ Q)
97, 8genpelv 11019 . . . . . . . . . 10 ((𝐵P𝐶P) → (𝑣 ∈ (𝐵 +P 𝐶) ↔ ∃𝑦𝐵𝑧𝐶 𝑣 = (𝑦 +Q 𝑧)))
1093adant1 1130 . . . . . . . . 9 ((𝐴P𝐵P𝐶P) → (𝑣 ∈ (𝐵 +P 𝐶) ↔ ∃𝑦𝐵𝑧𝐶 𝑣 = (𝑦 +Q 𝑧)))
1110adantr 480 . . . . . . . 8 (((𝐴P𝐵P𝐶P) ∧ (𝑥𝐴𝑤 = (𝑥 ·Q 𝑣))) → (𝑣 ∈ (𝐵 +P 𝐶) ↔ ∃𝑦𝐵𝑧𝐶 𝑣 = (𝑦 +Q 𝑧)))
12 simprr 772 . . . . . . . . . . . 12 (((𝐴P𝐵P𝐶P) ∧ (𝑥𝐴𝑤 = (𝑥 ·Q 𝑣))) → 𝑤 = (𝑥 ·Q 𝑣))
13 simpr 484 . . . . . . . . . . . 12 (((𝑦𝐵𝑧𝐶) ∧ 𝑣 = (𝑦 +Q 𝑧)) → 𝑣 = (𝑦 +Q 𝑧))
14 oveq2 7418 . . . . . . . . . . . . . . 15 (𝑣 = (𝑦 +Q 𝑧) → (𝑥 ·Q 𝑣) = (𝑥 ·Q (𝑦 +Q 𝑧)))
1514eqeq2d 2747 . . . . . . . . . . . . . 14 (𝑣 = (𝑦 +Q 𝑧) → (𝑤 = (𝑥 ·Q 𝑣) ↔ 𝑤 = (𝑥 ·Q (𝑦 +Q 𝑧))))
1615biimpac 478 . . . . . . . . . . . . 13 ((𝑤 = (𝑥 ·Q 𝑣) ∧ 𝑣 = (𝑦 +Q 𝑧)) → 𝑤 = (𝑥 ·Q (𝑦 +Q 𝑧)))
17 distrnq 10980 . . . . . . . . . . . . 13 (𝑥 ·Q (𝑦 +Q 𝑧)) = ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧))
1816, 17eqtrdi 2787 . . . . . . . . . . . 12 ((𝑤 = (𝑥 ·Q 𝑣) ∧ 𝑣 = (𝑦 +Q 𝑧)) → 𝑤 = ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧)))
1912, 13, 18syl2an 596 . . . . . . . . . . 11 ((((𝐴P𝐵P𝐶P) ∧ (𝑥𝐴𝑤 = (𝑥 ·Q 𝑣))) ∧ ((𝑦𝐵𝑧𝐶) ∧ 𝑣 = (𝑦 +Q 𝑧))) → 𝑤 = ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧)))
20 mulclpr 11039 . . . . . . . . . . . . . 14 ((𝐴P𝐵P) → (𝐴 ·P 𝐵) ∈ P)
21203adant3 1132 . . . . . . . . . . . . 13 ((𝐴P𝐵P𝐶P) → (𝐴 ·P 𝐵) ∈ P)
2221ad2antrr 726 . . . . . . . . . . . 12 ((((𝐴P𝐵P𝐶P) ∧ (𝑥𝐴𝑤 = (𝑥 ·Q 𝑣))) ∧ ((𝑦𝐵𝑧𝐶) ∧ 𝑣 = (𝑦 +Q 𝑧))) → (𝐴 ·P 𝐵) ∈ P)
23 mulclpr 11039 . . . . . . . . . . . . . 14 ((𝐴P𝐶P) → (𝐴 ·P 𝐶) ∈ P)
24233adant2 1131 . . . . . . . . . . . . 13 ((𝐴P𝐵P𝐶P) → (𝐴 ·P 𝐶) ∈ P)
2524ad2antrr 726 . . . . . . . . . . . 12 ((((𝐴P𝐵P𝐶P) ∧ (𝑥𝐴𝑤 = (𝑥 ·Q 𝑣))) ∧ ((𝑦𝐵𝑧𝐶) ∧ 𝑣 = (𝑦 +Q 𝑧))) → (𝐴 ·P 𝐶) ∈ P)
26 simpll 766 . . . . . . . . . . . . 13 (((𝑦𝐵𝑧𝐶) ∧ 𝑣 = (𝑦 +Q 𝑧)) → 𝑦𝐵)
272, 3genpprecl 11020 . . . . . . . . . . . . . . . 16 ((𝐴P𝐵P) → ((𝑥𝐴𝑦𝐵) → (𝑥 ·Q 𝑦) ∈ (𝐴 ·P 𝐵)))
28273adant3 1132 . . . . . . . . . . . . . . 15 ((𝐴P𝐵P𝐶P) → ((𝑥𝐴𝑦𝐵) → (𝑥 ·Q 𝑦) ∈ (𝐴 ·P 𝐵)))
2928impl 455 . . . . . . . . . . . . . 14 ((((𝐴P𝐵P𝐶P) ∧ 𝑥𝐴) ∧ 𝑦𝐵) → (𝑥 ·Q 𝑦) ∈ (𝐴 ·P 𝐵))
3029adantlrr 721 . . . . . . . . . . . . 13 ((((𝐴P𝐵P𝐶P) ∧ (𝑥𝐴𝑤 = (𝑥 ·Q 𝑣))) ∧ 𝑦𝐵) → (𝑥 ·Q 𝑦) ∈ (𝐴 ·P 𝐵))
3126, 30sylan2 593 . . . . . . . . . . . 12 ((((𝐴P𝐵P𝐶P) ∧ (𝑥𝐴𝑤 = (𝑥 ·Q 𝑣))) ∧ ((𝑦𝐵𝑧𝐶) ∧ 𝑣 = (𝑦 +Q 𝑧))) → (𝑥 ·Q 𝑦) ∈ (𝐴 ·P 𝐵))
32 simplr 768 . . . . . . . . . . . . 13 (((𝑦𝐵𝑧𝐶) ∧ 𝑣 = (𝑦 +Q 𝑧)) → 𝑧𝐶)
332, 3genpprecl 11020 . . . . . . . . . . . . . . . 16 ((𝐴P𝐶P) → ((𝑥𝐴𝑧𝐶) → (𝑥 ·Q 𝑧) ∈ (𝐴 ·P 𝐶)))
34333adant2 1131 . . . . . . . . . . . . . . 15 ((𝐴P𝐵P𝐶P) → ((𝑥𝐴𝑧𝐶) → (𝑥 ·Q 𝑧) ∈ (𝐴 ·P 𝐶)))
3534impl 455 . . . . . . . . . . . . . 14 ((((𝐴P𝐵P𝐶P) ∧ 𝑥𝐴) ∧ 𝑧𝐶) → (𝑥 ·Q 𝑧) ∈ (𝐴 ·P 𝐶))
3635adantlrr 721 . . . . . . . . . . . . 13 ((((𝐴P𝐵P𝐶P) ∧ (𝑥𝐴𝑤 = (𝑥 ·Q 𝑣))) ∧ 𝑧𝐶) → (𝑥 ·Q 𝑧) ∈ (𝐴 ·P 𝐶))
3732, 36sylan2 593 . . . . . . . . . . . 12 ((((𝐴P𝐵P𝐶P) ∧ (𝑥𝐴𝑤 = (𝑥 ·Q 𝑣))) ∧ ((𝑦𝐵𝑧𝐶) ∧ 𝑣 = (𝑦 +Q 𝑧))) → (𝑥 ·Q 𝑧) ∈ (𝐴 ·P 𝐶))
387, 8genpprecl 11020 . . . . . . . . . . . . 13 (((𝐴 ·P 𝐵) ∈ P ∧ (𝐴 ·P 𝐶) ∈ P) → (((𝑥 ·Q 𝑦) ∈ (𝐴 ·P 𝐵) ∧ (𝑥 ·Q 𝑧) ∈ (𝐴 ·P 𝐶)) → ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧)) ∈ ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))))
3938imp 406 . . . . . . . . . . . 12 ((((𝐴 ·P 𝐵) ∈ P ∧ (𝐴 ·P 𝐶) ∈ P) ∧ ((𝑥 ·Q 𝑦) ∈ (𝐴 ·P 𝐵) ∧ (𝑥 ·Q 𝑧) ∈ (𝐴 ·P 𝐶))) → ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧)) ∈ ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)))
4022, 25, 31, 37, 39syl22anc 838 . . . . . . . . . . 11 ((((𝐴P𝐵P𝐶P) ∧ (𝑥𝐴𝑤 = (𝑥 ·Q 𝑣))) ∧ ((𝑦𝐵𝑧𝐶) ∧ 𝑣 = (𝑦 +Q 𝑧))) → ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧)) ∈ ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)))
4119, 40eqeltrd 2835 . . . . . . . . . 10 ((((𝐴P𝐵P𝐶P) ∧ (𝑥𝐴𝑤 = (𝑥 ·Q 𝑣))) ∧ ((𝑦𝐵𝑧𝐶) ∧ 𝑣 = (𝑦 +Q 𝑧))) → 𝑤 ∈ ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)))
4241exp32 420 . . . . . . . . 9 (((𝐴P𝐵P𝐶P) ∧ (𝑥𝐴𝑤 = (𝑥 ·Q 𝑣))) → ((𝑦𝐵𝑧𝐶) → (𝑣 = (𝑦 +Q 𝑧) → 𝑤 ∈ ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)))))
4342rexlimdvv 3201 . . . . . . . 8 (((𝐴P𝐵P𝐶P) ∧ (𝑥𝐴𝑤 = (𝑥 ·Q 𝑣))) → (∃𝑦𝐵𝑧𝐶 𝑣 = (𝑦 +Q 𝑧) → 𝑤 ∈ ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))))
4411, 43sylbid 240 . . . . . . 7 (((𝐴P𝐵P𝐶P) ∧ (𝑥𝐴𝑤 = (𝑥 ·Q 𝑣))) → (𝑣 ∈ (𝐵 +P 𝐶) → 𝑤 ∈ ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))))
4544exp32 420 . . . . . 6 ((𝐴P𝐵P𝐶P) → (𝑥𝐴 → (𝑤 = (𝑥 ·Q 𝑣) → (𝑣 ∈ (𝐵 +P 𝐶) → 𝑤 ∈ ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))))))
4645com34 91 . . . . 5 ((𝐴P𝐵P𝐶P) → (𝑥𝐴 → (𝑣 ∈ (𝐵 +P 𝐶) → (𝑤 = (𝑥 ·Q 𝑣) → 𝑤 ∈ ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))))))
4746impd 410 . . . 4 ((𝐴P𝐵P𝐶P) → ((𝑥𝐴𝑣 ∈ (𝐵 +P 𝐶)) → (𝑤 = (𝑥 ·Q 𝑣) → 𝑤 ∈ ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)))))
4847rexlimdvv 3201 . . 3 ((𝐴P𝐵P𝐶P) → (∃𝑥𝐴𝑣 ∈ (𝐵 +P 𝐶)𝑤 = (𝑥 ·Q 𝑣) → 𝑤 ∈ ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))))
496, 48sylbid 240 . 2 ((𝐴P𝐵P𝐶P) → (𝑤 ∈ (𝐴 ·P (𝐵 +P 𝐶)) → 𝑤 ∈ ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))))
5049ssrdv 3969 1 ((𝐴P𝐵P𝐶P) → (𝐴 ·P (𝐵 +P 𝐶)) ⊆ ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3061  wss 3931  (class class class)co 7410   +Q cplq 10874   ·Q cmq 10875  Pcnp 10878   +P cpp 10880   ·P cmp 10881
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-oadd 8489  df-omul 8490  df-er 8724  df-ni 10891  df-pli 10892  df-mi 10893  df-lti 10894  df-plpq 10927  df-mpq 10928  df-ltpq 10929  df-enq 10930  df-nq 10931  df-erq 10932  df-plq 10933  df-mq 10934  df-1nq 10935  df-rq 10936  df-ltnq 10937  df-np 11000  df-plp 11002  df-mp 11003
This theorem is referenced by:  distrpr  11047
  Copyright terms: Public domain W3C validator