MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  distrlem1pr Structured version   Visualization version   GIF version

Theorem distrlem1pr 10712
Description: Lemma for distributive law for positive reals. (Contributed by NM, 1-May-1996.) (Revised by Mario Carneiro, 13-Jun-2013.) (New usage is discouraged.)
Assertion
Ref Expression
distrlem1pr ((𝐴P𝐵P𝐶P) → (𝐴 ·P (𝐵 +P 𝐶)) ⊆ ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)))

Proof of Theorem distrlem1pr
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addclpr 10705 . . . . 5 ((𝐵P𝐶P) → (𝐵 +P 𝐶) ∈ P)
2 df-mp 10671 . . . . . 6 ·P = (𝑦P, 𝑧P ↦ {𝑓 ∣ ∃𝑔𝑦𝑧 𝑓 = (𝑔 ·Q )})
3 mulclnq 10634 . . . . . 6 ((𝑔QQ) → (𝑔 ·Q ) ∈ Q)
42, 3genpelv 10687 . . . . 5 ((𝐴P ∧ (𝐵 +P 𝐶) ∈ P) → (𝑤 ∈ (𝐴 ·P (𝐵 +P 𝐶)) ↔ ∃𝑥𝐴𝑣 ∈ (𝐵 +P 𝐶)𝑤 = (𝑥 ·Q 𝑣)))
51, 4sylan2 592 . . . 4 ((𝐴P ∧ (𝐵P𝐶P)) → (𝑤 ∈ (𝐴 ·P (𝐵 +P 𝐶)) ↔ ∃𝑥𝐴𝑣 ∈ (𝐵 +P 𝐶)𝑤 = (𝑥 ·Q 𝑣)))
653impb 1113 . . 3 ((𝐴P𝐵P𝐶P) → (𝑤 ∈ (𝐴 ·P (𝐵 +P 𝐶)) ↔ ∃𝑥𝐴𝑣 ∈ (𝐵 +P 𝐶)𝑤 = (𝑥 ·Q 𝑣)))
7 df-plp 10670 . . . . . . . . . . 11 +P = (𝑤P, 𝑥P ↦ {𝑓 ∣ ∃𝑔𝑤𝑥 𝑓 = (𝑔 +Q )})
8 addclnq 10632 . . . . . . . . . . 11 ((𝑔QQ) → (𝑔 +Q ) ∈ Q)
97, 8genpelv 10687 . . . . . . . . . 10 ((𝐵P𝐶P) → (𝑣 ∈ (𝐵 +P 𝐶) ↔ ∃𝑦𝐵𝑧𝐶 𝑣 = (𝑦 +Q 𝑧)))
1093adant1 1128 . . . . . . . . 9 ((𝐴P𝐵P𝐶P) → (𝑣 ∈ (𝐵 +P 𝐶) ↔ ∃𝑦𝐵𝑧𝐶 𝑣 = (𝑦 +Q 𝑧)))
1110adantr 480 . . . . . . . 8 (((𝐴P𝐵P𝐶P) ∧ (𝑥𝐴𝑤 = (𝑥 ·Q 𝑣))) → (𝑣 ∈ (𝐵 +P 𝐶) ↔ ∃𝑦𝐵𝑧𝐶 𝑣 = (𝑦 +Q 𝑧)))
12 simprr 769 . . . . . . . . . . . 12 (((𝐴P𝐵P𝐶P) ∧ (𝑥𝐴𝑤 = (𝑥 ·Q 𝑣))) → 𝑤 = (𝑥 ·Q 𝑣))
13 simpr 484 . . . . . . . . . . . 12 (((𝑦𝐵𝑧𝐶) ∧ 𝑣 = (𝑦 +Q 𝑧)) → 𝑣 = (𝑦 +Q 𝑧))
14 oveq2 7263 . . . . . . . . . . . . . . 15 (𝑣 = (𝑦 +Q 𝑧) → (𝑥 ·Q 𝑣) = (𝑥 ·Q (𝑦 +Q 𝑧)))
1514eqeq2d 2749 . . . . . . . . . . . . . 14 (𝑣 = (𝑦 +Q 𝑧) → (𝑤 = (𝑥 ·Q 𝑣) ↔ 𝑤 = (𝑥 ·Q (𝑦 +Q 𝑧))))
1615biimpac 478 . . . . . . . . . . . . 13 ((𝑤 = (𝑥 ·Q 𝑣) ∧ 𝑣 = (𝑦 +Q 𝑧)) → 𝑤 = (𝑥 ·Q (𝑦 +Q 𝑧)))
17 distrnq 10648 . . . . . . . . . . . . 13 (𝑥 ·Q (𝑦 +Q 𝑧)) = ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧))
1816, 17eqtrdi 2795 . . . . . . . . . . . 12 ((𝑤 = (𝑥 ·Q 𝑣) ∧ 𝑣 = (𝑦 +Q 𝑧)) → 𝑤 = ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧)))
1912, 13, 18syl2an 595 . . . . . . . . . . 11 ((((𝐴P𝐵P𝐶P) ∧ (𝑥𝐴𝑤 = (𝑥 ·Q 𝑣))) ∧ ((𝑦𝐵𝑧𝐶) ∧ 𝑣 = (𝑦 +Q 𝑧))) → 𝑤 = ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧)))
20 mulclpr 10707 . . . . . . . . . . . . . 14 ((𝐴P𝐵P) → (𝐴 ·P 𝐵) ∈ P)
21203adant3 1130 . . . . . . . . . . . . 13 ((𝐴P𝐵P𝐶P) → (𝐴 ·P 𝐵) ∈ P)
2221ad2antrr 722 . . . . . . . . . . . 12 ((((𝐴P𝐵P𝐶P) ∧ (𝑥𝐴𝑤 = (𝑥 ·Q 𝑣))) ∧ ((𝑦𝐵𝑧𝐶) ∧ 𝑣 = (𝑦 +Q 𝑧))) → (𝐴 ·P 𝐵) ∈ P)
23 mulclpr 10707 . . . . . . . . . . . . . 14 ((𝐴P𝐶P) → (𝐴 ·P 𝐶) ∈ P)
24233adant2 1129 . . . . . . . . . . . . 13 ((𝐴P𝐵P𝐶P) → (𝐴 ·P 𝐶) ∈ P)
2524ad2antrr 722 . . . . . . . . . . . 12 ((((𝐴P𝐵P𝐶P) ∧ (𝑥𝐴𝑤 = (𝑥 ·Q 𝑣))) ∧ ((𝑦𝐵𝑧𝐶) ∧ 𝑣 = (𝑦 +Q 𝑧))) → (𝐴 ·P 𝐶) ∈ P)
26 simpll 763 . . . . . . . . . . . . 13 (((𝑦𝐵𝑧𝐶) ∧ 𝑣 = (𝑦 +Q 𝑧)) → 𝑦𝐵)
272, 3genpprecl 10688 . . . . . . . . . . . . . . . 16 ((𝐴P𝐵P) → ((𝑥𝐴𝑦𝐵) → (𝑥 ·Q 𝑦) ∈ (𝐴 ·P 𝐵)))
28273adant3 1130 . . . . . . . . . . . . . . 15 ((𝐴P𝐵P𝐶P) → ((𝑥𝐴𝑦𝐵) → (𝑥 ·Q 𝑦) ∈ (𝐴 ·P 𝐵)))
2928impl 455 . . . . . . . . . . . . . 14 ((((𝐴P𝐵P𝐶P) ∧ 𝑥𝐴) ∧ 𝑦𝐵) → (𝑥 ·Q 𝑦) ∈ (𝐴 ·P 𝐵))
3029adantlrr 717 . . . . . . . . . . . . 13 ((((𝐴P𝐵P𝐶P) ∧ (𝑥𝐴𝑤 = (𝑥 ·Q 𝑣))) ∧ 𝑦𝐵) → (𝑥 ·Q 𝑦) ∈ (𝐴 ·P 𝐵))
3126, 30sylan2 592 . . . . . . . . . . . 12 ((((𝐴P𝐵P𝐶P) ∧ (𝑥𝐴𝑤 = (𝑥 ·Q 𝑣))) ∧ ((𝑦𝐵𝑧𝐶) ∧ 𝑣 = (𝑦 +Q 𝑧))) → (𝑥 ·Q 𝑦) ∈ (𝐴 ·P 𝐵))
32 simplr 765 . . . . . . . . . . . . 13 (((𝑦𝐵𝑧𝐶) ∧ 𝑣 = (𝑦 +Q 𝑧)) → 𝑧𝐶)
332, 3genpprecl 10688 . . . . . . . . . . . . . . . 16 ((𝐴P𝐶P) → ((𝑥𝐴𝑧𝐶) → (𝑥 ·Q 𝑧) ∈ (𝐴 ·P 𝐶)))
34333adant2 1129 . . . . . . . . . . . . . . 15 ((𝐴P𝐵P𝐶P) → ((𝑥𝐴𝑧𝐶) → (𝑥 ·Q 𝑧) ∈ (𝐴 ·P 𝐶)))
3534impl 455 . . . . . . . . . . . . . 14 ((((𝐴P𝐵P𝐶P) ∧ 𝑥𝐴) ∧ 𝑧𝐶) → (𝑥 ·Q 𝑧) ∈ (𝐴 ·P 𝐶))
3635adantlrr 717 . . . . . . . . . . . . 13 ((((𝐴P𝐵P𝐶P) ∧ (𝑥𝐴𝑤 = (𝑥 ·Q 𝑣))) ∧ 𝑧𝐶) → (𝑥 ·Q 𝑧) ∈ (𝐴 ·P 𝐶))
3732, 36sylan2 592 . . . . . . . . . . . 12 ((((𝐴P𝐵P𝐶P) ∧ (𝑥𝐴𝑤 = (𝑥 ·Q 𝑣))) ∧ ((𝑦𝐵𝑧𝐶) ∧ 𝑣 = (𝑦 +Q 𝑧))) → (𝑥 ·Q 𝑧) ∈ (𝐴 ·P 𝐶))
387, 8genpprecl 10688 . . . . . . . . . . . . 13 (((𝐴 ·P 𝐵) ∈ P ∧ (𝐴 ·P 𝐶) ∈ P) → (((𝑥 ·Q 𝑦) ∈ (𝐴 ·P 𝐵) ∧ (𝑥 ·Q 𝑧) ∈ (𝐴 ·P 𝐶)) → ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧)) ∈ ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))))
3938imp 406 . . . . . . . . . . . 12 ((((𝐴 ·P 𝐵) ∈ P ∧ (𝐴 ·P 𝐶) ∈ P) ∧ ((𝑥 ·Q 𝑦) ∈ (𝐴 ·P 𝐵) ∧ (𝑥 ·Q 𝑧) ∈ (𝐴 ·P 𝐶))) → ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧)) ∈ ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)))
4022, 25, 31, 37, 39syl22anc 835 . . . . . . . . . . 11 ((((𝐴P𝐵P𝐶P) ∧ (𝑥𝐴𝑤 = (𝑥 ·Q 𝑣))) ∧ ((𝑦𝐵𝑧𝐶) ∧ 𝑣 = (𝑦 +Q 𝑧))) → ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧)) ∈ ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)))
4119, 40eqeltrd 2839 . . . . . . . . . 10 ((((𝐴P𝐵P𝐶P) ∧ (𝑥𝐴𝑤 = (𝑥 ·Q 𝑣))) ∧ ((𝑦𝐵𝑧𝐶) ∧ 𝑣 = (𝑦 +Q 𝑧))) → 𝑤 ∈ ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)))
4241exp32 420 . . . . . . . . 9 (((𝐴P𝐵P𝐶P) ∧ (𝑥𝐴𝑤 = (𝑥 ·Q 𝑣))) → ((𝑦𝐵𝑧𝐶) → (𝑣 = (𝑦 +Q 𝑧) → 𝑤 ∈ ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)))))
4342rexlimdvv 3221 . . . . . . . 8 (((𝐴P𝐵P𝐶P) ∧ (𝑥𝐴𝑤 = (𝑥 ·Q 𝑣))) → (∃𝑦𝐵𝑧𝐶 𝑣 = (𝑦 +Q 𝑧) → 𝑤 ∈ ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))))
4411, 43sylbid 239 . . . . . . 7 (((𝐴P𝐵P𝐶P) ∧ (𝑥𝐴𝑤 = (𝑥 ·Q 𝑣))) → (𝑣 ∈ (𝐵 +P 𝐶) → 𝑤 ∈ ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))))
4544exp32 420 . . . . . 6 ((𝐴P𝐵P𝐶P) → (𝑥𝐴 → (𝑤 = (𝑥 ·Q 𝑣) → (𝑣 ∈ (𝐵 +P 𝐶) → 𝑤 ∈ ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))))))
4645com34 91 . . . . 5 ((𝐴P𝐵P𝐶P) → (𝑥𝐴 → (𝑣 ∈ (𝐵 +P 𝐶) → (𝑤 = (𝑥 ·Q 𝑣) → 𝑤 ∈ ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))))))
4746impd 410 . . . 4 ((𝐴P𝐵P𝐶P) → ((𝑥𝐴𝑣 ∈ (𝐵 +P 𝐶)) → (𝑤 = (𝑥 ·Q 𝑣) → 𝑤 ∈ ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)))))
4847rexlimdvv 3221 . . 3 ((𝐴P𝐵P𝐶P) → (∃𝑥𝐴𝑣 ∈ (𝐵 +P 𝐶)𝑤 = (𝑥 ·Q 𝑣) → 𝑤 ∈ ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))))
496, 48sylbid 239 . 2 ((𝐴P𝐵P𝐶P) → (𝑤 ∈ (𝐴 ·P (𝐵 +P 𝐶)) → 𝑤 ∈ ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))))
5049ssrdv 3923 1 ((𝐴P𝐵P𝐶P) → (𝐴 ·P (𝐵 +P 𝐶)) ⊆ ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wrex 3064  wss 3883  (class class class)co 7255   +Q cplq 10542   ·Q cmq 10543  Pcnp 10546   +P cpp 10548   ·P cmp 10549
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-omul 8272  df-er 8456  df-ni 10559  df-pli 10560  df-mi 10561  df-lti 10562  df-plpq 10595  df-mpq 10596  df-ltpq 10597  df-enq 10598  df-nq 10599  df-erq 10600  df-plq 10601  df-mq 10602  df-1nq 10603  df-rq 10604  df-ltnq 10605  df-np 10668  df-plp 10670  df-mp 10671
This theorem is referenced by:  distrpr  10715
  Copyright terms: Public domain W3C validator