MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  distrlem1pr Structured version   Visualization version   GIF version

Theorem distrlem1pr 10978
Description: Lemma for distributive law for positive reals. (Contributed by NM, 1-May-1996.) (Revised by Mario Carneiro, 13-Jun-2013.) (New usage is discouraged.)
Assertion
Ref Expression
distrlem1pr ((𝐴P𝐵P𝐶P) → (𝐴 ·P (𝐵 +P 𝐶)) ⊆ ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)))

Proof of Theorem distrlem1pr
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addclpr 10971 . . . . 5 ((𝐵P𝐶P) → (𝐵 +P 𝐶) ∈ P)
2 df-mp 10937 . . . . . 6 ·P = (𝑦P, 𝑧P ↦ {𝑓 ∣ ∃𝑔𝑦𝑧 𝑓 = (𝑔 ·Q )})
3 mulclnq 10900 . . . . . 6 ((𝑔QQ) → (𝑔 ·Q ) ∈ Q)
42, 3genpelv 10953 . . . . 5 ((𝐴P ∧ (𝐵 +P 𝐶) ∈ P) → (𝑤 ∈ (𝐴 ·P (𝐵 +P 𝐶)) ↔ ∃𝑥𝐴𝑣 ∈ (𝐵 +P 𝐶)𝑤 = (𝑥 ·Q 𝑣)))
51, 4sylan2 593 . . . 4 ((𝐴P ∧ (𝐵P𝐶P)) → (𝑤 ∈ (𝐴 ·P (𝐵 +P 𝐶)) ↔ ∃𝑥𝐴𝑣 ∈ (𝐵 +P 𝐶)𝑤 = (𝑥 ·Q 𝑣)))
653impb 1114 . . 3 ((𝐴P𝐵P𝐶P) → (𝑤 ∈ (𝐴 ·P (𝐵 +P 𝐶)) ↔ ∃𝑥𝐴𝑣 ∈ (𝐵 +P 𝐶)𝑤 = (𝑥 ·Q 𝑣)))
7 df-plp 10936 . . . . . . . . . . 11 +P = (𝑤P, 𝑥P ↦ {𝑓 ∣ ∃𝑔𝑤𝑥 𝑓 = (𝑔 +Q )})
8 addclnq 10898 . . . . . . . . . . 11 ((𝑔QQ) → (𝑔 +Q ) ∈ Q)
97, 8genpelv 10953 . . . . . . . . . 10 ((𝐵P𝐶P) → (𝑣 ∈ (𝐵 +P 𝐶) ↔ ∃𝑦𝐵𝑧𝐶 𝑣 = (𝑦 +Q 𝑧)))
1093adant1 1130 . . . . . . . . 9 ((𝐴P𝐵P𝐶P) → (𝑣 ∈ (𝐵 +P 𝐶) ↔ ∃𝑦𝐵𝑧𝐶 𝑣 = (𝑦 +Q 𝑧)))
1110adantr 480 . . . . . . . 8 (((𝐴P𝐵P𝐶P) ∧ (𝑥𝐴𝑤 = (𝑥 ·Q 𝑣))) → (𝑣 ∈ (𝐵 +P 𝐶) ↔ ∃𝑦𝐵𝑧𝐶 𝑣 = (𝑦 +Q 𝑧)))
12 simprr 772 . . . . . . . . . . . 12 (((𝐴P𝐵P𝐶P) ∧ (𝑥𝐴𝑤 = (𝑥 ·Q 𝑣))) → 𝑤 = (𝑥 ·Q 𝑣))
13 simpr 484 . . . . . . . . . . . 12 (((𝑦𝐵𝑧𝐶) ∧ 𝑣 = (𝑦 +Q 𝑧)) → 𝑣 = (𝑦 +Q 𝑧))
14 oveq2 7395 . . . . . . . . . . . . . . 15 (𝑣 = (𝑦 +Q 𝑧) → (𝑥 ·Q 𝑣) = (𝑥 ·Q (𝑦 +Q 𝑧)))
1514eqeq2d 2740 . . . . . . . . . . . . . 14 (𝑣 = (𝑦 +Q 𝑧) → (𝑤 = (𝑥 ·Q 𝑣) ↔ 𝑤 = (𝑥 ·Q (𝑦 +Q 𝑧))))
1615biimpac 478 . . . . . . . . . . . . 13 ((𝑤 = (𝑥 ·Q 𝑣) ∧ 𝑣 = (𝑦 +Q 𝑧)) → 𝑤 = (𝑥 ·Q (𝑦 +Q 𝑧)))
17 distrnq 10914 . . . . . . . . . . . . 13 (𝑥 ·Q (𝑦 +Q 𝑧)) = ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧))
1816, 17eqtrdi 2780 . . . . . . . . . . . 12 ((𝑤 = (𝑥 ·Q 𝑣) ∧ 𝑣 = (𝑦 +Q 𝑧)) → 𝑤 = ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧)))
1912, 13, 18syl2an 596 . . . . . . . . . . 11 ((((𝐴P𝐵P𝐶P) ∧ (𝑥𝐴𝑤 = (𝑥 ·Q 𝑣))) ∧ ((𝑦𝐵𝑧𝐶) ∧ 𝑣 = (𝑦 +Q 𝑧))) → 𝑤 = ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧)))
20 mulclpr 10973 . . . . . . . . . . . . . 14 ((𝐴P𝐵P) → (𝐴 ·P 𝐵) ∈ P)
21203adant3 1132 . . . . . . . . . . . . 13 ((𝐴P𝐵P𝐶P) → (𝐴 ·P 𝐵) ∈ P)
2221ad2antrr 726 . . . . . . . . . . . 12 ((((𝐴P𝐵P𝐶P) ∧ (𝑥𝐴𝑤 = (𝑥 ·Q 𝑣))) ∧ ((𝑦𝐵𝑧𝐶) ∧ 𝑣 = (𝑦 +Q 𝑧))) → (𝐴 ·P 𝐵) ∈ P)
23 mulclpr 10973 . . . . . . . . . . . . . 14 ((𝐴P𝐶P) → (𝐴 ·P 𝐶) ∈ P)
24233adant2 1131 . . . . . . . . . . . . 13 ((𝐴P𝐵P𝐶P) → (𝐴 ·P 𝐶) ∈ P)
2524ad2antrr 726 . . . . . . . . . . . 12 ((((𝐴P𝐵P𝐶P) ∧ (𝑥𝐴𝑤 = (𝑥 ·Q 𝑣))) ∧ ((𝑦𝐵𝑧𝐶) ∧ 𝑣 = (𝑦 +Q 𝑧))) → (𝐴 ·P 𝐶) ∈ P)
26 simpll 766 . . . . . . . . . . . . 13 (((𝑦𝐵𝑧𝐶) ∧ 𝑣 = (𝑦 +Q 𝑧)) → 𝑦𝐵)
272, 3genpprecl 10954 . . . . . . . . . . . . . . . 16 ((𝐴P𝐵P) → ((𝑥𝐴𝑦𝐵) → (𝑥 ·Q 𝑦) ∈ (𝐴 ·P 𝐵)))
28273adant3 1132 . . . . . . . . . . . . . . 15 ((𝐴P𝐵P𝐶P) → ((𝑥𝐴𝑦𝐵) → (𝑥 ·Q 𝑦) ∈ (𝐴 ·P 𝐵)))
2928impl 455 . . . . . . . . . . . . . 14 ((((𝐴P𝐵P𝐶P) ∧ 𝑥𝐴) ∧ 𝑦𝐵) → (𝑥 ·Q 𝑦) ∈ (𝐴 ·P 𝐵))
3029adantlrr 721 . . . . . . . . . . . . 13 ((((𝐴P𝐵P𝐶P) ∧ (𝑥𝐴𝑤 = (𝑥 ·Q 𝑣))) ∧ 𝑦𝐵) → (𝑥 ·Q 𝑦) ∈ (𝐴 ·P 𝐵))
3126, 30sylan2 593 . . . . . . . . . . . 12 ((((𝐴P𝐵P𝐶P) ∧ (𝑥𝐴𝑤 = (𝑥 ·Q 𝑣))) ∧ ((𝑦𝐵𝑧𝐶) ∧ 𝑣 = (𝑦 +Q 𝑧))) → (𝑥 ·Q 𝑦) ∈ (𝐴 ·P 𝐵))
32 simplr 768 . . . . . . . . . . . . 13 (((𝑦𝐵𝑧𝐶) ∧ 𝑣 = (𝑦 +Q 𝑧)) → 𝑧𝐶)
332, 3genpprecl 10954 . . . . . . . . . . . . . . . 16 ((𝐴P𝐶P) → ((𝑥𝐴𝑧𝐶) → (𝑥 ·Q 𝑧) ∈ (𝐴 ·P 𝐶)))
34333adant2 1131 . . . . . . . . . . . . . . 15 ((𝐴P𝐵P𝐶P) → ((𝑥𝐴𝑧𝐶) → (𝑥 ·Q 𝑧) ∈ (𝐴 ·P 𝐶)))
3534impl 455 . . . . . . . . . . . . . 14 ((((𝐴P𝐵P𝐶P) ∧ 𝑥𝐴) ∧ 𝑧𝐶) → (𝑥 ·Q 𝑧) ∈ (𝐴 ·P 𝐶))
3635adantlrr 721 . . . . . . . . . . . . 13 ((((𝐴P𝐵P𝐶P) ∧ (𝑥𝐴𝑤 = (𝑥 ·Q 𝑣))) ∧ 𝑧𝐶) → (𝑥 ·Q 𝑧) ∈ (𝐴 ·P 𝐶))
3732, 36sylan2 593 . . . . . . . . . . . 12 ((((𝐴P𝐵P𝐶P) ∧ (𝑥𝐴𝑤 = (𝑥 ·Q 𝑣))) ∧ ((𝑦𝐵𝑧𝐶) ∧ 𝑣 = (𝑦 +Q 𝑧))) → (𝑥 ·Q 𝑧) ∈ (𝐴 ·P 𝐶))
387, 8genpprecl 10954 . . . . . . . . . . . . 13 (((𝐴 ·P 𝐵) ∈ P ∧ (𝐴 ·P 𝐶) ∈ P) → (((𝑥 ·Q 𝑦) ∈ (𝐴 ·P 𝐵) ∧ (𝑥 ·Q 𝑧) ∈ (𝐴 ·P 𝐶)) → ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧)) ∈ ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))))
3938imp 406 . . . . . . . . . . . 12 ((((𝐴 ·P 𝐵) ∈ P ∧ (𝐴 ·P 𝐶) ∈ P) ∧ ((𝑥 ·Q 𝑦) ∈ (𝐴 ·P 𝐵) ∧ (𝑥 ·Q 𝑧) ∈ (𝐴 ·P 𝐶))) → ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧)) ∈ ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)))
4022, 25, 31, 37, 39syl22anc 838 . . . . . . . . . . 11 ((((𝐴P𝐵P𝐶P) ∧ (𝑥𝐴𝑤 = (𝑥 ·Q 𝑣))) ∧ ((𝑦𝐵𝑧𝐶) ∧ 𝑣 = (𝑦 +Q 𝑧))) → ((𝑥 ·Q 𝑦) +Q (𝑥 ·Q 𝑧)) ∈ ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)))
4119, 40eqeltrd 2828 . . . . . . . . . 10 ((((𝐴P𝐵P𝐶P) ∧ (𝑥𝐴𝑤 = (𝑥 ·Q 𝑣))) ∧ ((𝑦𝐵𝑧𝐶) ∧ 𝑣 = (𝑦 +Q 𝑧))) → 𝑤 ∈ ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)))
4241exp32 420 . . . . . . . . 9 (((𝐴P𝐵P𝐶P) ∧ (𝑥𝐴𝑤 = (𝑥 ·Q 𝑣))) → ((𝑦𝐵𝑧𝐶) → (𝑣 = (𝑦 +Q 𝑧) → 𝑤 ∈ ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)))))
4342rexlimdvv 3193 . . . . . . . 8 (((𝐴P𝐵P𝐶P) ∧ (𝑥𝐴𝑤 = (𝑥 ·Q 𝑣))) → (∃𝑦𝐵𝑧𝐶 𝑣 = (𝑦 +Q 𝑧) → 𝑤 ∈ ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))))
4411, 43sylbid 240 . . . . . . 7 (((𝐴P𝐵P𝐶P) ∧ (𝑥𝐴𝑤 = (𝑥 ·Q 𝑣))) → (𝑣 ∈ (𝐵 +P 𝐶) → 𝑤 ∈ ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))))
4544exp32 420 . . . . . 6 ((𝐴P𝐵P𝐶P) → (𝑥𝐴 → (𝑤 = (𝑥 ·Q 𝑣) → (𝑣 ∈ (𝐵 +P 𝐶) → 𝑤 ∈ ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))))))
4645com34 91 . . . . 5 ((𝐴P𝐵P𝐶P) → (𝑥𝐴 → (𝑣 ∈ (𝐵 +P 𝐶) → (𝑤 = (𝑥 ·Q 𝑣) → 𝑤 ∈ ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))))))
4746impd 410 . . . 4 ((𝐴P𝐵P𝐶P) → ((𝑥𝐴𝑣 ∈ (𝐵 +P 𝐶)) → (𝑤 = (𝑥 ·Q 𝑣) → 𝑤 ∈ ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)))))
4847rexlimdvv 3193 . . 3 ((𝐴P𝐵P𝐶P) → (∃𝑥𝐴𝑣 ∈ (𝐵 +P 𝐶)𝑤 = (𝑥 ·Q 𝑣) → 𝑤 ∈ ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))))
496, 48sylbid 240 . 2 ((𝐴P𝐵P𝐶P) → (𝑤 ∈ (𝐴 ·P (𝐵 +P 𝐶)) → 𝑤 ∈ ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶))))
5049ssrdv 3952 1 ((𝐴P𝐵P𝐶P) → (𝐴 ·P (𝐵 +P 𝐶)) ⊆ ((𝐴 ·P 𝐵) +P (𝐴 ·P 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3053  wss 3914  (class class class)co 7387   +Q cplq 10808   ·Q cmq 10809  Pcnp 10812   +P cpp 10814   ·P cmp 10815
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-oadd 8438  df-omul 8439  df-er 8671  df-ni 10825  df-pli 10826  df-mi 10827  df-lti 10828  df-plpq 10861  df-mpq 10862  df-ltpq 10863  df-enq 10864  df-nq 10865  df-erq 10866  df-plq 10867  df-mq 10868  df-1nq 10869  df-rq 10870  df-ltnq 10871  df-np 10934  df-plp 10936  df-mp 10937
This theorem is referenced by:  distrpr  10981
  Copyright terms: Public domain W3C validator