MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odm1inv Structured version   Visualization version   GIF version

Theorem odm1inv 19489
Description: The (order-1)th multiple of an element is its inverse. (Contributed by SN, 31-Jan-2025.)
Hypotheses
Ref Expression
odm1inv.x 𝑋 = (Base‘𝐺)
odm1inv.o 𝑂 = (od‘𝐺)
odm1inv.t · = (.g𝐺)
odm1inv.i 𝐼 = (invg𝐺)
odm1inv.g (𝜑𝐺 ∈ Grp)
odm1inv.1 (𝜑𝐴𝑋)
Assertion
Ref Expression
odm1inv (𝜑 → (((𝑂𝐴) − 1) · 𝐴) = (𝐼𝐴))

Proof of Theorem odm1inv
StepHypRef Expression
1 odm1inv.1 . . . 4 (𝜑𝐴𝑋)
2 odm1inv.x . . . . 5 𝑋 = (Base‘𝐺)
3 odm1inv.o . . . . 5 𝑂 = (od‘𝐺)
4 odm1inv.t . . . . 5 · = (.g𝐺)
5 eqid 2730 . . . . 5 (0g𝐺) = (0g𝐺)
62, 3, 4, 5odid 19474 . . . 4 (𝐴𝑋 → ((𝑂𝐴) · 𝐴) = (0g𝐺))
71, 6syl 17 . . 3 (𝜑 → ((𝑂𝐴) · 𝐴) = (0g𝐺))
82, 4mulg1 19019 . . . 4 (𝐴𝑋 → (1 · 𝐴) = 𝐴)
91, 8syl 17 . . 3 (𝜑 → (1 · 𝐴) = 𝐴)
107, 9oveq12d 7407 . 2 (𝜑 → (((𝑂𝐴) · 𝐴)(-g𝐺)(1 · 𝐴)) = ((0g𝐺)(-g𝐺)𝐴))
11 odm1inv.g . . 3 (𝜑𝐺 ∈ Grp)
122, 3, 1odcld 19488 . . . 4 (𝜑 → (𝑂𝐴) ∈ ℕ0)
1312nn0zd 12561 . . 3 (𝜑 → (𝑂𝐴) ∈ ℤ)
14 1zzd 12570 . . 3 (𝜑 → 1 ∈ ℤ)
15 eqid 2730 . . . 4 (-g𝐺) = (-g𝐺)
162, 4, 15mulgsubdir 19052 . . 3 ((𝐺 ∈ Grp ∧ ((𝑂𝐴) ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝐴𝑋)) → (((𝑂𝐴) − 1) · 𝐴) = (((𝑂𝐴) · 𝐴)(-g𝐺)(1 · 𝐴)))
1711, 13, 14, 1, 16syl13anc 1374 . 2 (𝜑 → (((𝑂𝐴) − 1) · 𝐴) = (((𝑂𝐴) · 𝐴)(-g𝐺)(1 · 𝐴)))
18 odm1inv.i . . . 4 𝐼 = (invg𝐺)
192, 15, 18, 5grpinvval2 18961 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝐼𝐴) = ((0g𝐺)(-g𝐺)𝐴))
2011, 1, 19syl2anc 584 . 2 (𝜑 → (𝐼𝐴) = ((0g𝐺)(-g𝐺)𝐴))
2110, 17, 203eqtr4d 2775 1 (𝜑 → (((𝑂𝐴) − 1) · 𝐴) = (𝐼𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cfv 6513  (class class class)co 7389  1c1 11075  cmin 11411  cz 12535  Basecbs 17185  0gc0g 17408  Grpcgrp 18871  invgcminusg 18872  -gcsg 18873  .gcmg 19005  odcod 19460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-1st 7970  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-er 8673  df-en 8921  df-dom 8922  df-sdom 8923  df-sup 9399  df-inf 9400  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-nn 12188  df-n0 12449  df-z 12536  df-uz 12800  df-fz 13475  df-seq 13973  df-0g 17410  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-grp 18874  df-minusg 18875  df-sbg 18876  df-mulg 19006  df-od 19464
This theorem is referenced by:  finodsubmsubg  19503
  Copyright terms: Public domain W3C validator