| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > odm1inv | Structured version Visualization version GIF version | ||
| Description: The (order-1)th multiple of an element is its inverse. (Contributed by SN, 31-Jan-2025.) |
| Ref | Expression |
|---|---|
| odm1inv.x | ⊢ 𝑋 = (Base‘𝐺) |
| odm1inv.o | ⊢ 𝑂 = (od‘𝐺) |
| odm1inv.t | ⊢ · = (.g‘𝐺) |
| odm1inv.i | ⊢ 𝐼 = (invg‘𝐺) |
| odm1inv.g | ⊢ (𝜑 → 𝐺 ∈ Grp) |
| odm1inv.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
| Ref | Expression |
|---|---|
| odm1inv | ⊢ (𝜑 → (((𝑂‘𝐴) − 1) · 𝐴) = (𝐼‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odm1inv.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
| 2 | odm1inv.x | . . . . 5 ⊢ 𝑋 = (Base‘𝐺) | |
| 3 | odm1inv.o | . . . . 5 ⊢ 𝑂 = (od‘𝐺) | |
| 4 | odm1inv.t | . . . . 5 ⊢ · = (.g‘𝐺) | |
| 5 | eqid 2730 | . . . . 5 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 6 | 2, 3, 4, 5 | odid 19474 | . . . 4 ⊢ (𝐴 ∈ 𝑋 → ((𝑂‘𝐴) · 𝐴) = (0g‘𝐺)) |
| 7 | 1, 6 | syl 17 | . . 3 ⊢ (𝜑 → ((𝑂‘𝐴) · 𝐴) = (0g‘𝐺)) |
| 8 | 2, 4 | mulg1 19019 | . . . 4 ⊢ (𝐴 ∈ 𝑋 → (1 · 𝐴) = 𝐴) |
| 9 | 1, 8 | syl 17 | . . 3 ⊢ (𝜑 → (1 · 𝐴) = 𝐴) |
| 10 | 7, 9 | oveq12d 7407 | . 2 ⊢ (𝜑 → (((𝑂‘𝐴) · 𝐴)(-g‘𝐺)(1 · 𝐴)) = ((0g‘𝐺)(-g‘𝐺)𝐴)) |
| 11 | odm1inv.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
| 12 | 2, 3, 1 | odcld 19488 | . . . 4 ⊢ (𝜑 → (𝑂‘𝐴) ∈ ℕ0) |
| 13 | 12 | nn0zd 12561 | . . 3 ⊢ (𝜑 → (𝑂‘𝐴) ∈ ℤ) |
| 14 | 1zzd 12570 | . . 3 ⊢ (𝜑 → 1 ∈ ℤ) | |
| 15 | eqid 2730 | . . . 4 ⊢ (-g‘𝐺) = (-g‘𝐺) | |
| 16 | 2, 4, 15 | mulgsubdir 19052 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ ((𝑂‘𝐴) ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝐴 ∈ 𝑋)) → (((𝑂‘𝐴) − 1) · 𝐴) = (((𝑂‘𝐴) · 𝐴)(-g‘𝐺)(1 · 𝐴))) |
| 17 | 11, 13, 14, 1, 16 | syl13anc 1374 | . 2 ⊢ (𝜑 → (((𝑂‘𝐴) − 1) · 𝐴) = (((𝑂‘𝐴) · 𝐴)(-g‘𝐺)(1 · 𝐴))) |
| 18 | odm1inv.i | . . . 4 ⊢ 𝐼 = (invg‘𝐺) | |
| 19 | 2, 15, 18, 5 | grpinvval2 18961 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝐼‘𝐴) = ((0g‘𝐺)(-g‘𝐺)𝐴)) |
| 20 | 11, 1, 19 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐼‘𝐴) = ((0g‘𝐺)(-g‘𝐺)𝐴)) |
| 21 | 10, 17, 20 | 3eqtr4d 2775 | 1 ⊢ (𝜑 → (((𝑂‘𝐴) − 1) · 𝐴) = (𝐼‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6513 (class class class)co 7389 1c1 11075 − cmin 11411 ℤcz 12535 Basecbs 17185 0gc0g 17408 Grpcgrp 18871 invgcminusg 18872 -gcsg 18873 .gcmg 19005 odcod 19460 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-1st 7970 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-er 8673 df-en 8921 df-dom 8922 df-sdom 8923 df-sup 9399 df-inf 9400 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-nn 12188 df-n0 12449 df-z 12536 df-uz 12800 df-fz 13475 df-seq 13973 df-0g 17410 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-grp 18874 df-minusg 18875 df-sbg 18876 df-mulg 19006 df-od 19464 |
| This theorem is referenced by: finodsubmsubg 19503 |
| Copyright terms: Public domain | W3C validator |