| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > odm1inv | Structured version Visualization version GIF version | ||
| Description: The (order-1)th multiple of an element is its inverse. (Contributed by SN, 31-Jan-2025.) |
| Ref | Expression |
|---|---|
| odm1inv.x | ⊢ 𝑋 = (Base‘𝐺) |
| odm1inv.o | ⊢ 𝑂 = (od‘𝐺) |
| odm1inv.t | ⊢ · = (.g‘𝐺) |
| odm1inv.i | ⊢ 𝐼 = (invg‘𝐺) |
| odm1inv.g | ⊢ (𝜑 → 𝐺 ∈ Grp) |
| odm1inv.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
| Ref | Expression |
|---|---|
| odm1inv | ⊢ (𝜑 → (((𝑂‘𝐴) − 1) · 𝐴) = (𝐼‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odm1inv.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
| 2 | odm1inv.x | . . . . 5 ⊢ 𝑋 = (Base‘𝐺) | |
| 3 | odm1inv.o | . . . . 5 ⊢ 𝑂 = (od‘𝐺) | |
| 4 | odm1inv.t | . . . . 5 ⊢ · = (.g‘𝐺) | |
| 5 | eqid 2729 | . . . . 5 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 6 | 2, 3, 4, 5 | odid 19444 | . . . 4 ⊢ (𝐴 ∈ 𝑋 → ((𝑂‘𝐴) · 𝐴) = (0g‘𝐺)) |
| 7 | 1, 6 | syl 17 | . . 3 ⊢ (𝜑 → ((𝑂‘𝐴) · 𝐴) = (0g‘𝐺)) |
| 8 | 2, 4 | mulg1 18989 | . . . 4 ⊢ (𝐴 ∈ 𝑋 → (1 · 𝐴) = 𝐴) |
| 9 | 1, 8 | syl 17 | . . 3 ⊢ (𝜑 → (1 · 𝐴) = 𝐴) |
| 10 | 7, 9 | oveq12d 7387 | . 2 ⊢ (𝜑 → (((𝑂‘𝐴) · 𝐴)(-g‘𝐺)(1 · 𝐴)) = ((0g‘𝐺)(-g‘𝐺)𝐴)) |
| 11 | odm1inv.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
| 12 | 2, 3, 1 | odcld 19458 | . . . 4 ⊢ (𝜑 → (𝑂‘𝐴) ∈ ℕ0) |
| 13 | 12 | nn0zd 12531 | . . 3 ⊢ (𝜑 → (𝑂‘𝐴) ∈ ℤ) |
| 14 | 1zzd 12540 | . . 3 ⊢ (𝜑 → 1 ∈ ℤ) | |
| 15 | eqid 2729 | . . . 4 ⊢ (-g‘𝐺) = (-g‘𝐺) | |
| 16 | 2, 4, 15 | mulgsubdir 19022 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ ((𝑂‘𝐴) ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝐴 ∈ 𝑋)) → (((𝑂‘𝐴) − 1) · 𝐴) = (((𝑂‘𝐴) · 𝐴)(-g‘𝐺)(1 · 𝐴))) |
| 17 | 11, 13, 14, 1, 16 | syl13anc 1374 | . 2 ⊢ (𝜑 → (((𝑂‘𝐴) − 1) · 𝐴) = (((𝑂‘𝐴) · 𝐴)(-g‘𝐺)(1 · 𝐴))) |
| 18 | odm1inv.i | . . . 4 ⊢ 𝐼 = (invg‘𝐺) | |
| 19 | 2, 15, 18, 5 | grpinvval2 18931 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝐼‘𝐴) = ((0g‘𝐺)(-g‘𝐺)𝐴)) |
| 20 | 11, 1, 19 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐼‘𝐴) = ((0g‘𝐺)(-g‘𝐺)𝐴)) |
| 21 | 10, 17, 20 | 3eqtr4d 2774 | 1 ⊢ (𝜑 → (((𝑂‘𝐴) − 1) · 𝐴) = (𝐼‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6499 (class class class)co 7369 1c1 11045 − cmin 11381 ℤcz 12505 Basecbs 17155 0gc0g 17378 Grpcgrp 18841 invgcminusg 18842 -gcsg 18843 .gcmg 18975 odcod 19430 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-sup 9369 df-inf 9370 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-n0 12419 df-z 12506 df-uz 12770 df-fz 13445 df-seq 13943 df-0g 17380 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-grp 18844 df-minusg 18845 df-sbg 18846 df-mulg 18976 df-od 19434 |
| This theorem is referenced by: finodsubmsubg 19473 |
| Copyright terms: Public domain | W3C validator |