| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > odm1inv | Structured version Visualization version GIF version | ||
| Description: The (order-1)th multiple of an element is its inverse. (Contributed by SN, 31-Jan-2025.) |
| Ref | Expression |
|---|---|
| odm1inv.x | ⊢ 𝑋 = (Base‘𝐺) |
| odm1inv.o | ⊢ 𝑂 = (od‘𝐺) |
| odm1inv.t | ⊢ · = (.g‘𝐺) |
| odm1inv.i | ⊢ 𝐼 = (invg‘𝐺) |
| odm1inv.g | ⊢ (𝜑 → 𝐺 ∈ Grp) |
| odm1inv.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
| Ref | Expression |
|---|---|
| odm1inv | ⊢ (𝜑 → (((𝑂‘𝐴) − 1) · 𝐴) = (𝐼‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odm1inv.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
| 2 | odm1inv.x | . . . . 5 ⊢ 𝑋 = (Base‘𝐺) | |
| 3 | odm1inv.o | . . . . 5 ⊢ 𝑂 = (od‘𝐺) | |
| 4 | odm1inv.t | . . . . 5 ⊢ · = (.g‘𝐺) | |
| 5 | eqid 2729 | . . . . 5 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 6 | 2, 3, 4, 5 | odid 19468 | . . . 4 ⊢ (𝐴 ∈ 𝑋 → ((𝑂‘𝐴) · 𝐴) = (0g‘𝐺)) |
| 7 | 1, 6 | syl 17 | . . 3 ⊢ (𝜑 → ((𝑂‘𝐴) · 𝐴) = (0g‘𝐺)) |
| 8 | 2, 4 | mulg1 19013 | . . . 4 ⊢ (𝐴 ∈ 𝑋 → (1 · 𝐴) = 𝐴) |
| 9 | 1, 8 | syl 17 | . . 3 ⊢ (𝜑 → (1 · 𝐴) = 𝐴) |
| 10 | 7, 9 | oveq12d 7405 | . 2 ⊢ (𝜑 → (((𝑂‘𝐴) · 𝐴)(-g‘𝐺)(1 · 𝐴)) = ((0g‘𝐺)(-g‘𝐺)𝐴)) |
| 11 | odm1inv.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
| 12 | 2, 3, 1 | odcld 19482 | . . . 4 ⊢ (𝜑 → (𝑂‘𝐴) ∈ ℕ0) |
| 13 | 12 | nn0zd 12555 | . . 3 ⊢ (𝜑 → (𝑂‘𝐴) ∈ ℤ) |
| 14 | 1zzd 12564 | . . 3 ⊢ (𝜑 → 1 ∈ ℤ) | |
| 15 | eqid 2729 | . . . 4 ⊢ (-g‘𝐺) = (-g‘𝐺) | |
| 16 | 2, 4, 15 | mulgsubdir 19046 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ ((𝑂‘𝐴) ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝐴 ∈ 𝑋)) → (((𝑂‘𝐴) − 1) · 𝐴) = (((𝑂‘𝐴) · 𝐴)(-g‘𝐺)(1 · 𝐴))) |
| 17 | 11, 13, 14, 1, 16 | syl13anc 1374 | . 2 ⊢ (𝜑 → (((𝑂‘𝐴) − 1) · 𝐴) = (((𝑂‘𝐴) · 𝐴)(-g‘𝐺)(1 · 𝐴))) |
| 18 | odm1inv.i | . . . 4 ⊢ 𝐼 = (invg‘𝐺) | |
| 19 | 2, 15, 18, 5 | grpinvval2 18955 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝐼‘𝐴) = ((0g‘𝐺)(-g‘𝐺)𝐴)) |
| 20 | 11, 1, 19 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐼‘𝐴) = ((0g‘𝐺)(-g‘𝐺)𝐴)) |
| 21 | 10, 17, 20 | 3eqtr4d 2774 | 1 ⊢ (𝜑 → (((𝑂‘𝐴) − 1) · 𝐴) = (𝐼‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6511 (class class class)co 7387 1c1 11069 − cmin 11405 ℤcz 12529 Basecbs 17179 0gc0g 17402 Grpcgrp 18865 invgcminusg 18866 -gcsg 18867 .gcmg 18999 odcod 19454 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-sup 9393 df-inf 9394 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-n0 12443 df-z 12530 df-uz 12794 df-fz 13469 df-seq 13967 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 df-minusg 18869 df-sbg 18870 df-mulg 19000 df-od 19458 |
| This theorem is referenced by: finodsubmsubg 19497 |
| Copyright terms: Public domain | W3C validator |