![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > odm1inv | Structured version Visualization version GIF version |
Description: The (order-1)th multiple of an element is its inverse. (Contributed by SN, 31-Jan-2025.) |
Ref | Expression |
---|---|
odm1inv.x | โข ๐ = (Baseโ๐บ) |
odm1inv.o | โข ๐ = (odโ๐บ) |
odm1inv.t | โข ยท = (.gโ๐บ) |
odm1inv.i | โข ๐ผ = (invgโ๐บ) |
odm1inv.g | โข (๐ โ ๐บ โ Grp) |
odm1inv.1 | โข (๐ โ ๐ด โ ๐) |
Ref | Expression |
---|---|
odm1inv | โข (๐ โ (((๐โ๐ด) โ 1) ยท ๐ด) = (๐ผโ๐ด)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | odm1inv.1 | . . . 4 โข (๐ โ ๐ด โ ๐) | |
2 | odm1inv.x | . . . . 5 โข ๐ = (Baseโ๐บ) | |
3 | odm1inv.o | . . . . 5 โข ๐ = (odโ๐บ) | |
4 | odm1inv.t | . . . . 5 โข ยท = (.gโ๐บ) | |
5 | eqid 2728 | . . . . 5 โข (0gโ๐บ) = (0gโ๐บ) | |
6 | 2, 3, 4, 5 | odid 19500 | . . . 4 โข (๐ด โ ๐ โ ((๐โ๐ด) ยท ๐ด) = (0gโ๐บ)) |
7 | 1, 6 | syl 17 | . . 3 โข (๐ โ ((๐โ๐ด) ยท ๐ด) = (0gโ๐บ)) |
8 | 2, 4 | mulg1 19043 | . . . 4 โข (๐ด โ ๐ โ (1 ยท ๐ด) = ๐ด) |
9 | 1, 8 | syl 17 | . . 3 โข (๐ โ (1 ยท ๐ด) = ๐ด) |
10 | 7, 9 | oveq12d 7444 | . 2 โข (๐ โ (((๐โ๐ด) ยท ๐ด)(-gโ๐บ)(1 ยท ๐ด)) = ((0gโ๐บ)(-gโ๐บ)๐ด)) |
11 | odm1inv.g | . . 3 โข (๐ โ ๐บ โ Grp) | |
12 | 2, 3, 1 | odcld 19514 | . . . 4 โข (๐ โ (๐โ๐ด) โ โ0) |
13 | 12 | nn0zd 12622 | . . 3 โข (๐ โ (๐โ๐ด) โ โค) |
14 | 1zzd 12631 | . . 3 โข (๐ โ 1 โ โค) | |
15 | eqid 2728 | . . . 4 โข (-gโ๐บ) = (-gโ๐บ) | |
16 | 2, 4, 15 | mulgsubdir 19076 | . . 3 โข ((๐บ โ Grp โง ((๐โ๐ด) โ โค โง 1 โ โค โง ๐ด โ ๐)) โ (((๐โ๐ด) โ 1) ยท ๐ด) = (((๐โ๐ด) ยท ๐ด)(-gโ๐บ)(1 ยท ๐ด))) |
17 | 11, 13, 14, 1, 16 | syl13anc 1369 | . 2 โข (๐ โ (((๐โ๐ด) โ 1) ยท ๐ด) = (((๐โ๐ด) ยท ๐ด)(-gโ๐บ)(1 ยท ๐ด))) |
18 | odm1inv.i | . . . 4 โข ๐ผ = (invgโ๐บ) | |
19 | 2, 15, 18, 5 | grpinvval2 18986 | . . 3 โข ((๐บ โ Grp โง ๐ด โ ๐) โ (๐ผโ๐ด) = ((0gโ๐บ)(-gโ๐บ)๐ด)) |
20 | 11, 1, 19 | syl2anc 582 | . 2 โข (๐ โ (๐ผโ๐ด) = ((0gโ๐บ)(-gโ๐บ)๐ด)) |
21 | 10, 17, 20 | 3eqtr4d 2778 | 1 โข (๐ โ (((๐โ๐ด) โ 1) ยท ๐ด) = (๐ผโ๐ด)) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 = wceq 1533 โ wcel 2098 โcfv 6553 (class class class)co 7426 1c1 11147 โ cmin 11482 โคcz 12596 Basecbs 17187 0gc0g 17428 Grpcgrp 18897 invgcminusg 18898 -gcsg 18899 .gcmg 19030 odcod 19486 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7877 df-1st 7999 df-2nd 8000 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-er 8731 df-en 8971 df-dom 8972 df-sdom 8973 df-sup 9473 df-inf 9474 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-nn 12251 df-n0 12511 df-z 12597 df-uz 12861 df-fz 13525 df-seq 14007 df-0g 17430 df-mgm 18607 df-sgrp 18686 df-mnd 18702 df-grp 18900 df-minusg 18901 df-sbg 18902 df-mulg 19031 df-od 19490 |
This theorem is referenced by: finodsubmsubg 19529 |
Copyright terms: Public domain | W3C validator |