| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nvmfval | Structured version Visualization version GIF version | ||
| Description: Value of the function for the vector subtraction operation on a normed complex vector space. (Contributed by NM, 11-Sep-2007.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nvmval.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
| nvmval.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
| nvmval.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
| nvmval.3 | ⊢ 𝑀 = ( −𝑣 ‘𝑈) |
| Ref | Expression |
|---|---|
| nvmfval | ⊢ (𝑈 ∈ NrmCVec → 𝑀 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑥𝐺(-1𝑆𝑦)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nvmval.2 | . . . 4 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
| 2 | 1 | nvgrp 30603 | . . 3 ⊢ (𝑈 ∈ NrmCVec → 𝐺 ∈ GrpOp) |
| 3 | nvmval.1 | . . . . 5 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 4 | 3, 1 | bafval 30590 | . . . 4 ⊢ 𝑋 = ran 𝐺 |
| 5 | eqid 2736 | . . . 4 ⊢ (inv‘𝐺) = (inv‘𝐺) | |
| 6 | nvmval.3 | . . . . 5 ⊢ 𝑀 = ( −𝑣 ‘𝑈) | |
| 7 | 1, 6 | vsfval 30619 | . . . 4 ⊢ 𝑀 = ( /𝑔 ‘𝐺) |
| 8 | 4, 5, 7 | grpodivfval 30520 | . . 3 ⊢ (𝐺 ∈ GrpOp → 𝑀 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑥𝐺((inv‘𝐺)‘𝑦)))) |
| 9 | 2, 8 | syl 17 | . 2 ⊢ (𝑈 ∈ NrmCVec → 𝑀 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑥𝐺((inv‘𝐺)‘𝑦)))) |
| 10 | nvmval.4 | . . . . . 6 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
| 11 | 3, 1, 10, 5 | nvinv 30625 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑦 ∈ 𝑋) → (-1𝑆𝑦) = ((inv‘𝐺)‘𝑦)) |
| 12 | 11 | 3adant2 1131 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (-1𝑆𝑦) = ((inv‘𝐺)‘𝑦)) |
| 13 | 12 | oveq2d 7426 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑥𝐺(-1𝑆𝑦)) = (𝑥𝐺((inv‘𝐺)‘𝑦))) |
| 14 | 13 | mpoeq3dva 7489 | . 2 ⊢ (𝑈 ∈ NrmCVec → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑥𝐺(-1𝑆𝑦))) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑥𝐺((inv‘𝐺)‘𝑦)))) |
| 15 | 9, 14 | eqtr4d 2774 | 1 ⊢ (𝑈 ∈ NrmCVec → 𝑀 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑥𝐺(-1𝑆𝑦)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6536 (class class class)co 7410 ∈ cmpo 7412 1c1 11135 -cneg 11472 GrpOpcgr 30475 invcgn 30477 NrmCVeccnv 30570 +𝑣 cpv 30571 BaseSetcba 30572 ·𝑠OLD cns 30573 −𝑣 cnsb 30575 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-po 5566 df-so 5567 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-1st 7993 df-2nd 7994 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-ltxr 11279 df-sub 11473 df-neg 11474 df-grpo 30479 df-gid 30480 df-ginv 30481 df-gdiv 30482 df-ablo 30531 df-vc 30545 df-nv 30578 df-va 30581 df-ba 30582 df-sm 30583 df-0v 30584 df-vs 30585 df-nmcv 30586 |
| This theorem is referenced by: nvmf 30631 cnnvm 30668 vmcn 30685 h2hvs 30963 |
| Copyright terms: Public domain | W3C validator |