MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvmfval Structured version   Visualization version   GIF version

Theorem nvmfval 30467
Description: Value of the function for the vector subtraction operation on a normed complex vector space. (Contributed by NM, 11-Sep-2007.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvmval.1 𝑋 = (BaseSet‘𝑈)
nvmval.2 𝐺 = ( +𝑣𝑈)
nvmval.4 𝑆 = ( ·𝑠OLD𝑈)
nvmval.3 𝑀 = ( −𝑣𝑈)
Assertion
Ref Expression
nvmfval (𝑈 ∈ NrmCVec → 𝑀 = (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝐺(-1𝑆𝑦))))
Distinct variable groups:   𝑥,𝑦,𝐺   𝑥,𝑈,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝑆(𝑥,𝑦)   𝑀(𝑥,𝑦)

Proof of Theorem nvmfval
StepHypRef Expression
1 nvmval.2 . . . 4 𝐺 = ( +𝑣𝑈)
21nvgrp 30440 . . 3 (𝑈 ∈ NrmCVec → 𝐺 ∈ GrpOp)
3 nvmval.1 . . . . 5 𝑋 = (BaseSet‘𝑈)
43, 1bafval 30427 . . . 4 𝑋 = ran 𝐺
5 eqid 2728 . . . 4 (inv‘𝐺) = (inv‘𝐺)
6 nvmval.3 . . . . 5 𝑀 = ( −𝑣𝑈)
71, 6vsfval 30456 . . . 4 𝑀 = ( /𝑔𝐺)
84, 5, 7grpodivfval 30357 . . 3 (𝐺 ∈ GrpOp → 𝑀 = (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝐺((inv‘𝐺)‘𝑦))))
92, 8syl 17 . 2 (𝑈 ∈ NrmCVec → 𝑀 = (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝐺((inv‘𝐺)‘𝑦))))
10 nvmval.4 . . . . . 6 𝑆 = ( ·𝑠OLD𝑈)
113, 1, 10, 5nvinv 30462 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑦𝑋) → (-1𝑆𝑦) = ((inv‘𝐺)‘𝑦))
12113adant2 1129 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑥𝑋𝑦𝑋) → (-1𝑆𝑦) = ((inv‘𝐺)‘𝑦))
1312oveq2d 7436 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑥𝑋𝑦𝑋) → (𝑥𝐺(-1𝑆𝑦)) = (𝑥𝐺((inv‘𝐺)‘𝑦)))
1413mpoeq3dva 7497 . 2 (𝑈 ∈ NrmCVec → (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝐺(-1𝑆𝑦))) = (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝐺((inv‘𝐺)‘𝑦))))
159, 14eqtr4d 2771 1 (𝑈 ∈ NrmCVec → 𝑀 = (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝐺(-1𝑆𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085   = wceq 1534  wcel 2099  cfv 6548  (class class class)co 7420  cmpo 7422  1c1 11140  -cneg 11476  GrpOpcgr 30312  invcgn 30314  NrmCVeccnv 30407   +𝑣 cpv 30408  BaseSetcba 30409   ·𝑠OLD cns 30410  𝑣 cnsb 30412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-po 5590  df-so 5591  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-1st 7993  df-2nd 7994  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11281  df-mnf 11282  df-ltxr 11284  df-sub 11477  df-neg 11478  df-grpo 30316  df-gid 30317  df-ginv 30318  df-gdiv 30319  df-ablo 30368  df-vc 30382  df-nv 30415  df-va 30418  df-ba 30419  df-sm 30420  df-0v 30421  df-vs 30422  df-nmcv 30423
This theorem is referenced by:  nvmf  30468  cnnvm  30505  vmcn  30522  h2hvs  30800
  Copyright terms: Public domain W3C validator