MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvmfval Structured version   Visualization version   GIF version

Theorem nvmfval 28075
Description: Value of the function for the vector subtraction operation on a normed complex vector space. (Contributed by NM, 11-Sep-2007.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvmval.1 𝑋 = (BaseSet‘𝑈)
nvmval.2 𝐺 = ( +𝑣𝑈)
nvmval.4 𝑆 = ( ·𝑠OLD𝑈)
nvmval.3 𝑀 = ( −𝑣𝑈)
Assertion
Ref Expression
nvmfval (𝑈 ∈ NrmCVec → 𝑀 = (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝐺(-1𝑆𝑦))))
Distinct variable groups:   𝑥,𝑦,𝐺   𝑥,𝑈,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝑆(𝑥,𝑦)   𝑀(𝑥,𝑦)

Proof of Theorem nvmfval
StepHypRef Expression
1 nvmval.2 . . . 4 𝐺 = ( +𝑣𝑈)
21nvgrp 28048 . . 3 (𝑈 ∈ NrmCVec → 𝐺 ∈ GrpOp)
3 nvmval.1 . . . . 5 𝑋 = (BaseSet‘𝑈)
43, 1bafval 28035 . . . 4 𝑋 = ran 𝐺
5 eqid 2778 . . . 4 (inv‘𝐺) = (inv‘𝐺)
6 nvmval.3 . . . . 5 𝑀 = ( −𝑣𝑈)
71, 6vsfval 28064 . . . 4 𝑀 = ( /𝑔𝐺)
84, 5, 7grpodivfval 27965 . . 3 (𝐺 ∈ GrpOp → 𝑀 = (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝐺((inv‘𝐺)‘𝑦))))
92, 8syl 17 . 2 (𝑈 ∈ NrmCVec → 𝑀 = (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝐺((inv‘𝐺)‘𝑦))))
10 nvmval.4 . . . . . 6 𝑆 = ( ·𝑠OLD𝑈)
113, 1, 10, 5nvinv 28070 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑦𝑋) → (-1𝑆𝑦) = ((inv‘𝐺)‘𝑦))
12113adant2 1122 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑥𝑋𝑦𝑋) → (-1𝑆𝑦) = ((inv‘𝐺)‘𝑦))
1312oveq2d 6940 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑥𝑋𝑦𝑋) → (𝑥𝐺(-1𝑆𝑦)) = (𝑥𝐺((inv‘𝐺)‘𝑦)))
1413mpt2eq3dva 6998 . 2 (𝑈 ∈ NrmCVec → (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝐺(-1𝑆𝑦))) = (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝐺((inv‘𝐺)‘𝑦))))
159, 14eqtr4d 2817 1 (𝑈 ∈ NrmCVec → 𝑀 = (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝐺(-1𝑆𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1071   = wceq 1601  wcel 2107  cfv 6137  (class class class)co 6924  cmpt2 6926  1c1 10275  -cneg 10609  GrpOpcgr 27920  invcgn 27922  NrmCVeccnv 28015   +𝑣 cpv 28016  BaseSetcba 28017   ·𝑠OLD cns 28018  𝑣 cnsb 28020
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-resscn 10331  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-addrcl 10335  ax-mulcl 10336  ax-mulrcl 10337  ax-mulcom 10338  ax-addass 10339  ax-mulass 10340  ax-distr 10341  ax-i2m1 10342  ax-1ne0 10343  ax-1rid 10344  ax-rnegex 10345  ax-rrecex 10346  ax-cnre 10347  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4674  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-id 5263  df-po 5276  df-so 5277  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-1st 7447  df-2nd 7448  df-er 8028  df-en 8244  df-dom 8245  df-sdom 8246  df-pnf 10415  df-mnf 10416  df-ltxr 10418  df-sub 10610  df-neg 10611  df-grpo 27924  df-gid 27925  df-ginv 27926  df-gdiv 27927  df-ablo 27976  df-vc 27990  df-nv 28023  df-va 28026  df-ba 28027  df-sm 28028  df-0v 28029  df-vs 28030  df-nmcv 28031
This theorem is referenced by:  nvmf  28076  cnnvm  28113  vmcn  28130  h2hvs  28410
  Copyright terms: Public domain W3C validator