Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvmfval Structured version   Visualization version   GIF version

Theorem nvmfval 28436
 Description: Value of the function for the vector subtraction operation on a normed complex vector space. (Contributed by NM, 11-Sep-2007.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvmval.1 𝑋 = (BaseSet‘𝑈)
nvmval.2 𝐺 = ( +𝑣𝑈)
nvmval.4 𝑆 = ( ·𝑠OLD𝑈)
nvmval.3 𝑀 = ( −𝑣𝑈)
Assertion
Ref Expression
nvmfval (𝑈 ∈ NrmCVec → 𝑀 = (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝐺(-1𝑆𝑦))))
Distinct variable groups:   𝑥,𝑦,𝐺   𝑥,𝑈,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝑆(𝑥,𝑦)   𝑀(𝑥,𝑦)

Proof of Theorem nvmfval
StepHypRef Expression
1 nvmval.2 . . . 4 𝐺 = ( +𝑣𝑈)
21nvgrp 28409 . . 3 (𝑈 ∈ NrmCVec → 𝐺 ∈ GrpOp)
3 nvmval.1 . . . . 5 𝑋 = (BaseSet‘𝑈)
43, 1bafval 28396 . . . 4 𝑋 = ran 𝐺
5 eqid 2824 . . . 4 (inv‘𝐺) = (inv‘𝐺)
6 nvmval.3 . . . . 5 𝑀 = ( −𝑣𝑈)
71, 6vsfval 28425 . . . 4 𝑀 = ( /𝑔𝐺)
84, 5, 7grpodivfval 28326 . . 3 (𝐺 ∈ GrpOp → 𝑀 = (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝐺((inv‘𝐺)‘𝑦))))
92, 8syl 17 . 2 (𝑈 ∈ NrmCVec → 𝑀 = (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝐺((inv‘𝐺)‘𝑦))))
10 nvmval.4 . . . . . 6 𝑆 = ( ·𝑠OLD𝑈)
113, 1, 10, 5nvinv 28431 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑦𝑋) → (-1𝑆𝑦) = ((inv‘𝐺)‘𝑦))
12113adant2 1128 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑥𝑋𝑦𝑋) → (-1𝑆𝑦) = ((inv‘𝐺)‘𝑦))
1312oveq2d 7167 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑥𝑋𝑦𝑋) → (𝑥𝐺(-1𝑆𝑦)) = (𝑥𝐺((inv‘𝐺)‘𝑦)))
1413mpoeq3dva 7226 . 2 (𝑈 ∈ NrmCVec → (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝐺(-1𝑆𝑦))) = (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝐺((inv‘𝐺)‘𝑦))))
159, 14eqtr4d 2862 1 (𝑈 ∈ NrmCVec → 𝑀 = (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝐺(-1𝑆𝑦))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ w3a 1084   = wceq 1538   ∈ wcel 2115  ‘cfv 6345  (class class class)co 7151   ∈ cmpo 7153  1c1 10538  -cneg 10871  GrpOpcgr 28281  invcgn 28283  NrmCVeccnv 28376   +𝑣 cpv 28377  BaseSetcba 28378   ·𝑠OLD cns 28379   −𝑣 cnsb 28381 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7457  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4825  df-iun 4907  df-br 5054  df-opab 5116  df-mpt 5134  df-id 5448  df-po 5462  df-so 5463  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-iota 6304  df-fun 6347  df-fn 6348  df-f 6349  df-f1 6350  df-fo 6351  df-f1o 6352  df-fv 6353  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-1st 7686  df-2nd 7687  df-er 8287  df-en 8508  df-dom 8509  df-sdom 8510  df-pnf 10677  df-mnf 10678  df-ltxr 10680  df-sub 10872  df-neg 10873  df-grpo 28285  df-gid 28286  df-ginv 28287  df-gdiv 28288  df-ablo 28337  df-vc 28351  df-nv 28384  df-va 28387  df-ba 28388  df-sm 28389  df-0v 28390  df-vs 28391  df-nmcv 28392 This theorem is referenced by:  nvmf  28437  cnnvm  28474  vmcn  28491  h2hvs  28769
 Copyright terms: Public domain W3C validator