![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nvmfval | Structured version Visualization version GIF version |
Description: Value of the function for the vector subtraction operation on a normed complex vector space. (Contributed by NM, 11-Sep-2007.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nvmval.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
nvmval.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
nvmval.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
nvmval.3 | ⊢ 𝑀 = ( −𝑣 ‘𝑈) |
Ref | Expression |
---|---|
nvmfval | ⊢ (𝑈 ∈ NrmCVec → 𝑀 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑥𝐺(-1𝑆𝑦)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nvmval.2 | . . . 4 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
2 | 1 | nvgrp 30440 | . . 3 ⊢ (𝑈 ∈ NrmCVec → 𝐺 ∈ GrpOp) |
3 | nvmval.1 | . . . . 5 ⊢ 𝑋 = (BaseSet‘𝑈) | |
4 | 3, 1 | bafval 30427 | . . . 4 ⊢ 𝑋 = ran 𝐺 |
5 | eqid 2728 | . . . 4 ⊢ (inv‘𝐺) = (inv‘𝐺) | |
6 | nvmval.3 | . . . . 5 ⊢ 𝑀 = ( −𝑣 ‘𝑈) | |
7 | 1, 6 | vsfval 30456 | . . . 4 ⊢ 𝑀 = ( /𝑔 ‘𝐺) |
8 | 4, 5, 7 | grpodivfval 30357 | . . 3 ⊢ (𝐺 ∈ GrpOp → 𝑀 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑥𝐺((inv‘𝐺)‘𝑦)))) |
9 | 2, 8 | syl 17 | . 2 ⊢ (𝑈 ∈ NrmCVec → 𝑀 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑥𝐺((inv‘𝐺)‘𝑦)))) |
10 | nvmval.4 | . . . . . 6 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
11 | 3, 1, 10, 5 | nvinv 30462 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑦 ∈ 𝑋) → (-1𝑆𝑦) = ((inv‘𝐺)‘𝑦)) |
12 | 11 | 3adant2 1129 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (-1𝑆𝑦) = ((inv‘𝐺)‘𝑦)) |
13 | 12 | oveq2d 7436 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑥𝐺(-1𝑆𝑦)) = (𝑥𝐺((inv‘𝐺)‘𝑦))) |
14 | 13 | mpoeq3dva 7497 | . 2 ⊢ (𝑈 ∈ NrmCVec → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑥𝐺(-1𝑆𝑦))) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑥𝐺((inv‘𝐺)‘𝑦)))) |
15 | 9, 14 | eqtr4d 2771 | 1 ⊢ (𝑈 ∈ NrmCVec → 𝑀 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑥𝐺(-1𝑆𝑦)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 ‘cfv 6548 (class class class)co 7420 ∈ cmpo 7422 1c1 11140 -cneg 11476 GrpOpcgr 30312 invcgn 30314 NrmCVeccnv 30407 +𝑣 cpv 30408 BaseSetcba 30409 ·𝑠OLD cns 30410 −𝑣 cnsb 30412 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-po 5590 df-so 5591 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-1st 7993 df-2nd 7994 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11281 df-mnf 11282 df-ltxr 11284 df-sub 11477 df-neg 11478 df-grpo 30316 df-gid 30317 df-ginv 30318 df-gdiv 30319 df-ablo 30368 df-vc 30382 df-nv 30415 df-va 30418 df-ba 30419 df-sm 30420 df-0v 30421 df-vs 30422 df-nmcv 30423 |
This theorem is referenced by: nvmf 30468 cnnvm 30505 vmcn 30522 h2hvs 30800 |
Copyright terms: Public domain | W3C validator |