MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvmfval Structured version   Visualization version   GIF version

Theorem nvmfval 28421
Description: Value of the function for the vector subtraction operation on a normed complex vector space. (Contributed by NM, 11-Sep-2007.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvmval.1 𝑋 = (BaseSet‘𝑈)
nvmval.2 𝐺 = ( +𝑣𝑈)
nvmval.4 𝑆 = ( ·𝑠OLD𝑈)
nvmval.3 𝑀 = ( −𝑣𝑈)
Assertion
Ref Expression
nvmfval (𝑈 ∈ NrmCVec → 𝑀 = (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝐺(-1𝑆𝑦))))
Distinct variable groups:   𝑥,𝑦,𝐺   𝑥,𝑈,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝑆(𝑥,𝑦)   𝑀(𝑥,𝑦)

Proof of Theorem nvmfval
StepHypRef Expression
1 nvmval.2 . . . 4 𝐺 = ( +𝑣𝑈)
21nvgrp 28394 . . 3 (𝑈 ∈ NrmCVec → 𝐺 ∈ GrpOp)
3 nvmval.1 . . . . 5 𝑋 = (BaseSet‘𝑈)
43, 1bafval 28381 . . . 4 𝑋 = ran 𝐺
5 eqid 2821 . . . 4 (inv‘𝐺) = (inv‘𝐺)
6 nvmval.3 . . . . 5 𝑀 = ( −𝑣𝑈)
71, 6vsfval 28410 . . . 4 𝑀 = ( /𝑔𝐺)
84, 5, 7grpodivfval 28311 . . 3 (𝐺 ∈ GrpOp → 𝑀 = (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝐺((inv‘𝐺)‘𝑦))))
92, 8syl 17 . 2 (𝑈 ∈ NrmCVec → 𝑀 = (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝐺((inv‘𝐺)‘𝑦))))
10 nvmval.4 . . . . . 6 𝑆 = ( ·𝑠OLD𝑈)
113, 1, 10, 5nvinv 28416 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝑦𝑋) → (-1𝑆𝑦) = ((inv‘𝐺)‘𝑦))
12113adant2 1127 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑥𝑋𝑦𝑋) → (-1𝑆𝑦) = ((inv‘𝐺)‘𝑦))
1312oveq2d 7172 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑥𝑋𝑦𝑋) → (𝑥𝐺(-1𝑆𝑦)) = (𝑥𝐺((inv‘𝐺)‘𝑦)))
1413mpoeq3dva 7231 . 2 (𝑈 ∈ NrmCVec → (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝐺(-1𝑆𝑦))) = (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝐺((inv‘𝐺)‘𝑦))))
159, 14eqtr4d 2859 1 (𝑈 ∈ NrmCVec → 𝑀 = (𝑥𝑋, 𝑦𝑋 ↦ (𝑥𝐺(-1𝑆𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1083   = wceq 1537  wcel 2114  cfv 6355  (class class class)co 7156  cmpo 7158  1c1 10538  -cneg 10871  GrpOpcgr 28266  invcgn 28268  NrmCVeccnv 28361   +𝑣 cpv 28362  BaseSetcba 28363   ·𝑠OLD cns 28364  𝑣 cnsb 28366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-po 5474  df-so 5475  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-1st 7689  df-2nd 7690  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-ltxr 10680  df-sub 10872  df-neg 10873  df-grpo 28270  df-gid 28271  df-ginv 28272  df-gdiv 28273  df-ablo 28322  df-vc 28336  df-nv 28369  df-va 28372  df-ba 28373  df-sm 28374  df-0v 28375  df-vs 28376  df-nmcv 28377
This theorem is referenced by:  nvmf  28422  cnnvm  28459  vmcn  28476  h2hvs  28754
  Copyright terms: Public domain W3C validator