| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nvmfval | Structured version Visualization version GIF version | ||
| Description: Value of the function for the vector subtraction operation on a normed complex vector space. (Contributed by NM, 11-Sep-2007.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nvmval.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
| nvmval.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
| nvmval.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
| nvmval.3 | ⊢ 𝑀 = ( −𝑣 ‘𝑈) |
| Ref | Expression |
|---|---|
| nvmfval | ⊢ (𝑈 ∈ NrmCVec → 𝑀 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑥𝐺(-1𝑆𝑦)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nvmval.2 | . . . 4 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
| 2 | 1 | nvgrp 30592 | . . 3 ⊢ (𝑈 ∈ NrmCVec → 𝐺 ∈ GrpOp) |
| 3 | nvmval.1 | . . . . 5 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 4 | 3, 1 | bafval 30579 | . . . 4 ⊢ 𝑋 = ran 𝐺 |
| 5 | eqid 2731 | . . . 4 ⊢ (inv‘𝐺) = (inv‘𝐺) | |
| 6 | nvmval.3 | . . . . 5 ⊢ 𝑀 = ( −𝑣 ‘𝑈) | |
| 7 | 1, 6 | vsfval 30608 | . . . 4 ⊢ 𝑀 = ( /𝑔 ‘𝐺) |
| 8 | 4, 5, 7 | grpodivfval 30509 | . . 3 ⊢ (𝐺 ∈ GrpOp → 𝑀 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑥𝐺((inv‘𝐺)‘𝑦)))) |
| 9 | 2, 8 | syl 17 | . 2 ⊢ (𝑈 ∈ NrmCVec → 𝑀 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑥𝐺((inv‘𝐺)‘𝑦)))) |
| 10 | nvmval.4 | . . . . . 6 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
| 11 | 3, 1, 10, 5 | nvinv 30614 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑦 ∈ 𝑋) → (-1𝑆𝑦) = ((inv‘𝐺)‘𝑦)) |
| 12 | 11 | 3adant2 1131 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (-1𝑆𝑦) = ((inv‘𝐺)‘𝑦)) |
| 13 | 12 | oveq2d 7362 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑥𝐺(-1𝑆𝑦)) = (𝑥𝐺((inv‘𝐺)‘𝑦))) |
| 14 | 13 | mpoeq3dva 7423 | . 2 ⊢ (𝑈 ∈ NrmCVec → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑥𝐺(-1𝑆𝑦))) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑥𝐺((inv‘𝐺)‘𝑦)))) |
| 15 | 9, 14 | eqtr4d 2769 | 1 ⊢ (𝑈 ∈ NrmCVec → 𝑀 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑥𝐺(-1𝑆𝑦)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 1c1 11004 -cneg 11342 GrpOpcgr 30464 invcgn 30466 NrmCVeccnv 30559 +𝑣 cpv 30560 BaseSetcba 30561 ·𝑠OLD cns 30562 −𝑣 cnsb 30564 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-po 5524 df-so 5525 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11145 df-mnf 11146 df-ltxr 11148 df-sub 11343 df-neg 11344 df-grpo 30468 df-gid 30469 df-ginv 30470 df-gdiv 30471 df-ablo 30520 df-vc 30534 df-nv 30567 df-va 30570 df-ba 30571 df-sm 30572 df-0v 30573 df-vs 30574 df-nmcv 30575 |
| This theorem is referenced by: nvmf 30620 cnnvm 30657 vmcn 30674 h2hvs 30952 |
| Copyright terms: Public domain | W3C validator |