![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cgraid | Structured version Visualization version GIF version |
Description: Angle congruence is reflexive. Theorem 11.6 of [Schwabhauser] p. 96. (Contributed by Thierry Arnoux, 31-Jul-2020.) |
Ref | Expression |
---|---|
cgraid.p | β’ π = (BaseβπΊ) |
cgraid.i | β’ πΌ = (ItvβπΊ) |
cgraid.g | β’ (π β πΊ β TarskiG) |
cgraid.k | β’ πΎ = (hlGβπΊ) |
cgraid.a | β’ (π β π΄ β π) |
cgraid.b | β’ (π β π΅ β π) |
cgraid.c | β’ (π β πΆ β π) |
cgraid.1 | β’ (π β π΄ β π΅) |
cgraid.2 | β’ (π β π΅ β πΆ) |
Ref | Expression |
---|---|
cgraid | β’ (π β β¨βπ΄π΅πΆββ©(cgrAβπΊ)β¨βπ΄π΅πΆββ©) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cgraid.p | . 2 β’ π = (BaseβπΊ) | |
2 | cgraid.i | . 2 β’ πΌ = (ItvβπΊ) | |
3 | cgraid.k | . 2 β’ πΎ = (hlGβπΊ) | |
4 | cgraid.g | . 2 β’ (π β πΊ β TarskiG) | |
5 | cgraid.a | . 2 β’ (π β π΄ β π) | |
6 | cgraid.b | . 2 β’ (π β π΅ β π) | |
7 | cgraid.c | . 2 β’ (π β πΆ β π) | |
8 | eqid 2733 | . . 3 β’ (distβπΊ) = (distβπΊ) | |
9 | eqid 2733 | . . 3 β’ (cgrGβπΊ) = (cgrGβπΊ) | |
10 | 1, 8, 2, 9, 4, 5, 6, 7 | cgr3id 27770 | . 2 β’ (π β β¨βπ΄π΅πΆββ©(cgrGβπΊ)β¨βπ΄π΅πΆββ©) |
11 | cgraid.1 | . . 3 β’ (π β π΄ β π΅) | |
12 | 1, 2, 3, 5, 5, 6, 4, 11 | hlid 27860 | . 2 β’ (π β π΄(πΎβπ΅)π΄) |
13 | cgraid.2 | . . . 4 β’ (π β π΅ β πΆ) | |
14 | 13 | necomd 2997 | . . 3 β’ (π β πΆ β π΅) |
15 | 1, 2, 3, 7, 5, 6, 4, 14 | hlid 27860 | . 2 β’ (π β πΆ(πΎβπ΅)πΆ) |
16 | 1, 2, 3, 4, 5, 6, 7, 5, 6, 7, 5, 7, 10, 12, 15 | iscgrad 28062 | 1 β’ (π β β¨βπ΄π΅πΆββ©(cgrAβπΊ)β¨βπ΄π΅πΆββ©) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1542 β wcel 2107 β wne 2941 class class class wbr 5149 βcfv 6544 β¨βcs3 14793 Basecbs 17144 distcds 17206 TarskiGcstrkg 27678 Itvcitv 27684 cgrGccgrg 27761 hlGchlg 27851 cgrAccgra 28058 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-er 8703 df-map 8822 df-pm 8823 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-card 9934 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-2 12275 df-3 12276 df-n0 12473 df-z 12559 df-uz 12823 df-fz 13485 df-fzo 13628 df-hash 14291 df-word 14465 df-concat 14521 df-s1 14546 df-s2 14799 df-s3 14800 df-trkgc 27699 df-trkgcb 27701 df-trkg 27704 df-cgrg 27762 df-hlg 27852 df-cgra 28059 |
This theorem is referenced by: sacgr 28082 |
Copyright terms: Public domain | W3C validator |