| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cgraid | Structured version Visualization version GIF version | ||
| Description: Angle congruence is reflexive. Theorem 11.6 of [Schwabhauser] p. 96. (Contributed by Thierry Arnoux, 31-Jul-2020.) |
| Ref | Expression |
|---|---|
| cgraid.p | ⊢ 𝑃 = (Base‘𝐺) |
| cgraid.i | ⊢ 𝐼 = (Itv‘𝐺) |
| cgraid.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| cgraid.k | ⊢ 𝐾 = (hlG‘𝐺) |
| cgraid.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| cgraid.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| cgraid.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
| cgraid.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| cgraid.2 | ⊢ (𝜑 → 𝐵 ≠ 𝐶) |
| Ref | Expression |
|---|---|
| cgraid | ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐴𝐵𝐶”〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cgraid.p | . 2 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | cgraid.i | . 2 ⊢ 𝐼 = (Itv‘𝐺) | |
| 3 | cgraid.k | . 2 ⊢ 𝐾 = (hlG‘𝐺) | |
| 4 | cgraid.g | . 2 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 5 | cgraid.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 6 | cgraid.b | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 7 | cgraid.c | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
| 8 | eqid 2730 | . . 3 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
| 9 | eqid 2730 | . . 3 ⊢ (cgrG‘𝐺) = (cgrG‘𝐺) | |
| 10 | 1, 8, 2, 9, 4, 5, 6, 7 | cgr3id 28490 | . 2 ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝐴𝐵𝐶”〉) |
| 11 | cgraid.1 | . . 3 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
| 12 | 1, 2, 3, 5, 5, 6, 4, 11 | hlid 28580 | . 2 ⊢ (𝜑 → 𝐴(𝐾‘𝐵)𝐴) |
| 13 | cgraid.2 | . . . 4 ⊢ (𝜑 → 𝐵 ≠ 𝐶) | |
| 14 | 13 | necomd 2981 | . . 3 ⊢ (𝜑 → 𝐶 ≠ 𝐵) |
| 15 | 1, 2, 3, 7, 5, 6, 4, 14 | hlid 28580 | . 2 ⊢ (𝜑 → 𝐶(𝐾‘𝐵)𝐶) |
| 16 | 1, 2, 3, 4, 5, 6, 7, 5, 6, 7, 5, 7, 10, 12, 15 | iscgrad 28782 | 1 ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐴𝐵𝐶”〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2110 ≠ wne 2926 class class class wbr 5089 ‘cfv 6477 〈“cs3 14741 Basecbs 17112 distcds 17162 TarskiGcstrkg 28398 Itvcitv 28404 cgrGccgrg 28481 hlGchlg 28571 cgrAccgra 28778 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-tp 4579 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-map 8747 df-pm 8748 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-card 9824 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-nn 12118 df-2 12180 df-3 12181 df-n0 12374 df-z 12461 df-uz 12725 df-fz 13400 df-fzo 13547 df-hash 14230 df-word 14413 df-concat 14470 df-s1 14496 df-s2 14747 df-s3 14748 df-trkgc 28419 df-trkgcb 28421 df-trkg 28424 df-cgrg 28482 df-hlg 28572 df-cgra 28779 |
| This theorem is referenced by: sacgr 28802 |
| Copyright terms: Public domain | W3C validator |