| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > ho2times | Structured version Visualization version GIF version | ||
| Description: Two times a Hilbert space operator. (Contributed by NM, 26-Aug-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ho2times | ⊢ (𝑇: ℋ⟶ ℋ → (2 ·op 𝑇) = (𝑇 +op 𝑇)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2 12227 | . . . 4 ⊢ 2 = (1 + 1) | |
| 2 | 1 | oveq1i 7379 | . . 3 ⊢ (2 ·op 𝑇) = ((1 + 1) ·op 𝑇) |
| 3 | ax-1cn 11104 | . . . 4 ⊢ 1 ∈ ℂ | |
| 4 | hoadddir 31784 | . . . 4 ⊢ ((1 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → ((1 + 1) ·op 𝑇) = ((1 ·op 𝑇) +op (1 ·op 𝑇))) | |
| 5 | 3, 3, 4 | mp3an12 1453 | . . 3 ⊢ (𝑇: ℋ⟶ ℋ → ((1 + 1) ·op 𝑇) = ((1 ·op 𝑇) +op (1 ·op 𝑇))) |
| 6 | 2, 5 | eqtrid 2776 | . 2 ⊢ (𝑇: ℋ⟶ ℋ → (2 ·op 𝑇) = ((1 ·op 𝑇) +op (1 ·op 𝑇))) |
| 7 | hoadddi 31783 | . . . 4 ⊢ ((1 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (1 ·op (𝑇 +op 𝑇)) = ((1 ·op 𝑇) +op (1 ·op 𝑇))) | |
| 8 | 3, 7 | mp3an1 1450 | . . 3 ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (1 ·op (𝑇 +op 𝑇)) = ((1 ·op 𝑇) +op (1 ·op 𝑇))) |
| 9 | 8 | anidms 566 | . 2 ⊢ (𝑇: ℋ⟶ ℋ → (1 ·op (𝑇 +op 𝑇)) = ((1 ·op 𝑇) +op (1 ·op 𝑇))) |
| 10 | hoaddcl 31738 | . . . 4 ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (𝑇 +op 𝑇): ℋ⟶ ℋ) | |
| 11 | 10 | anidms 566 | . . 3 ⊢ (𝑇: ℋ⟶ ℋ → (𝑇 +op 𝑇): ℋ⟶ ℋ) |
| 12 | homullid 31780 | . . 3 ⊢ ((𝑇 +op 𝑇): ℋ⟶ ℋ → (1 ·op (𝑇 +op 𝑇)) = (𝑇 +op 𝑇)) | |
| 13 | 11, 12 | syl 17 | . 2 ⊢ (𝑇: ℋ⟶ ℋ → (1 ·op (𝑇 +op 𝑇)) = (𝑇 +op 𝑇)) |
| 14 | 6, 9, 13 | 3eqtr2d 2770 | 1 ⊢ (𝑇: ℋ⟶ ℋ → (2 ·op 𝑇) = (𝑇 +op 𝑇)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⟶wf 6495 (class class class)co 7369 ℂcc 11044 1c1 11047 + caddc 11049 2c2 12219 ℋchba 30899 +op chos 30918 ·op chot 30919 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-1cn 11104 ax-addcl 11106 ax-hilex 30979 ax-hfvadd 30980 ax-hfvmul 30985 ax-hvmulid 30986 ax-hvdistr1 30988 ax-hvdistr2 30989 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-map 8778 df-2 12227 df-hosum 31710 df-homul 31711 |
| This theorem is referenced by: opsqrlem6 32125 |
| Copyright terms: Public domain | W3C validator |