Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > ho2times | Structured version Visualization version GIF version |
Description: Two times a Hilbert space operator. (Contributed by NM, 26-Aug-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ho2times | ⊢ (𝑇: ℋ⟶ ℋ → (2 ·op 𝑇) = (𝑇 +op 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2 12036 | . . . 4 ⊢ 2 = (1 + 1) | |
2 | 1 | oveq1i 7285 | . . 3 ⊢ (2 ·op 𝑇) = ((1 + 1) ·op 𝑇) |
3 | ax-1cn 10929 | . . . 4 ⊢ 1 ∈ ℂ | |
4 | hoadddir 30166 | . . . 4 ⊢ ((1 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → ((1 + 1) ·op 𝑇) = ((1 ·op 𝑇) +op (1 ·op 𝑇))) | |
5 | 3, 3, 4 | mp3an12 1450 | . . 3 ⊢ (𝑇: ℋ⟶ ℋ → ((1 + 1) ·op 𝑇) = ((1 ·op 𝑇) +op (1 ·op 𝑇))) |
6 | 2, 5 | eqtrid 2790 | . 2 ⊢ (𝑇: ℋ⟶ ℋ → (2 ·op 𝑇) = ((1 ·op 𝑇) +op (1 ·op 𝑇))) |
7 | hoadddi 30165 | . . . 4 ⊢ ((1 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (1 ·op (𝑇 +op 𝑇)) = ((1 ·op 𝑇) +op (1 ·op 𝑇))) | |
8 | 3, 7 | mp3an1 1447 | . . 3 ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (1 ·op (𝑇 +op 𝑇)) = ((1 ·op 𝑇) +op (1 ·op 𝑇))) |
9 | 8 | anidms 567 | . 2 ⊢ (𝑇: ℋ⟶ ℋ → (1 ·op (𝑇 +op 𝑇)) = ((1 ·op 𝑇) +op (1 ·op 𝑇))) |
10 | hoaddcl 30120 | . . . 4 ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (𝑇 +op 𝑇): ℋ⟶ ℋ) | |
11 | 10 | anidms 567 | . . 3 ⊢ (𝑇: ℋ⟶ ℋ → (𝑇 +op 𝑇): ℋ⟶ ℋ) |
12 | homulid2 30162 | . . 3 ⊢ ((𝑇 +op 𝑇): ℋ⟶ ℋ → (1 ·op (𝑇 +op 𝑇)) = (𝑇 +op 𝑇)) | |
13 | 11, 12 | syl 17 | . 2 ⊢ (𝑇: ℋ⟶ ℋ → (1 ·op (𝑇 +op 𝑇)) = (𝑇 +op 𝑇)) |
14 | 6, 9, 13 | 3eqtr2d 2784 | 1 ⊢ (𝑇: ℋ⟶ ℋ → (2 ·op 𝑇) = (𝑇 +op 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ⟶wf 6429 (class class class)co 7275 ℂcc 10869 1c1 10872 + caddc 10874 2c2 12028 ℋchba 29281 +op chos 29300 ·op chot 29301 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-1cn 10929 ax-addcl 10931 ax-hilex 29361 ax-hfvadd 29362 ax-hfvmul 29367 ax-hvmulid 29368 ax-hvdistr1 29370 ax-hvdistr2 29371 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-map 8617 df-2 12036 df-hosum 30092 df-homul 30093 |
This theorem is referenced by: opsqrlem6 30507 |
Copyright terms: Public domain | W3C validator |