![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > ho2times | Structured version Visualization version GIF version |
Description: Two times a Hilbert space operator. (Contributed by NM, 26-Aug-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ho2times | ⊢ (𝑇: ℋ⟶ ℋ → (2 ·op 𝑇) = (𝑇 +op 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2 12356 | . . . 4 ⊢ 2 = (1 + 1) | |
2 | 1 | oveq1i 7458 | . . 3 ⊢ (2 ·op 𝑇) = ((1 + 1) ·op 𝑇) |
3 | ax-1cn 11242 | . . . 4 ⊢ 1 ∈ ℂ | |
4 | hoadddir 31836 | . . . 4 ⊢ ((1 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ) → ((1 + 1) ·op 𝑇) = ((1 ·op 𝑇) +op (1 ·op 𝑇))) | |
5 | 3, 3, 4 | mp3an12 1451 | . . 3 ⊢ (𝑇: ℋ⟶ ℋ → ((1 + 1) ·op 𝑇) = ((1 ·op 𝑇) +op (1 ·op 𝑇))) |
6 | 2, 5 | eqtrid 2792 | . 2 ⊢ (𝑇: ℋ⟶ ℋ → (2 ·op 𝑇) = ((1 ·op 𝑇) +op (1 ·op 𝑇))) |
7 | hoadddi 31835 | . . . 4 ⊢ ((1 ∈ ℂ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (1 ·op (𝑇 +op 𝑇)) = ((1 ·op 𝑇) +op (1 ·op 𝑇))) | |
8 | 3, 7 | mp3an1 1448 | . . 3 ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (1 ·op (𝑇 +op 𝑇)) = ((1 ·op 𝑇) +op (1 ·op 𝑇))) |
9 | 8 | anidms 566 | . 2 ⊢ (𝑇: ℋ⟶ ℋ → (1 ·op (𝑇 +op 𝑇)) = ((1 ·op 𝑇) +op (1 ·op 𝑇))) |
10 | hoaddcl 31790 | . . . 4 ⊢ ((𝑇: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (𝑇 +op 𝑇): ℋ⟶ ℋ) | |
11 | 10 | anidms 566 | . . 3 ⊢ (𝑇: ℋ⟶ ℋ → (𝑇 +op 𝑇): ℋ⟶ ℋ) |
12 | homullid 31832 | . . 3 ⊢ ((𝑇 +op 𝑇): ℋ⟶ ℋ → (1 ·op (𝑇 +op 𝑇)) = (𝑇 +op 𝑇)) | |
13 | 11, 12 | syl 17 | . 2 ⊢ (𝑇: ℋ⟶ ℋ → (1 ·op (𝑇 +op 𝑇)) = (𝑇 +op 𝑇)) |
14 | 6, 9, 13 | 3eqtr2d 2786 | 1 ⊢ (𝑇: ℋ⟶ ℋ → (2 ·op 𝑇) = (𝑇 +op 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ⟶wf 6569 (class class class)co 7448 ℂcc 11182 1c1 11185 + caddc 11187 2c2 12348 ℋchba 30951 +op chos 30970 ·op chot 30971 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-1cn 11242 ax-addcl 11244 ax-hilex 31031 ax-hfvadd 31032 ax-hfvmul 31037 ax-hvmulid 31038 ax-hvdistr1 31040 ax-hvdistr2 31041 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-map 8886 df-2 12356 df-hosum 31762 df-homul 31763 |
This theorem is referenced by: opsqrlem6 32177 |
Copyright terms: Public domain | W3C validator |