HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnopsubi Structured version   Visualization version   GIF version

Theorem lnopsubi 32006
Description: Subtraction property for a linear Hilbert space operator. (Contributed by NM, 1-Jul-2005.) (New usage is discouraged.)
Hypothesis
Ref Expression
lnopl.1 𝑇 ∈ LinOp
Assertion
Ref Expression
lnopsubi ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 𝐵)) = ((𝑇𝐴) − (𝑇𝐵)))

Proof of Theorem lnopsubi
StepHypRef Expression
1 neg1cn 12407 . . 3 -1 ∈ ℂ
2 lnopl.1 . . . 4 𝑇 ∈ LinOp
32lnopaddmuli 32005 . . 3 ((-1 ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 + (-1 · 𝐵))) = ((𝑇𝐴) + (-1 · (𝑇𝐵))))
41, 3mp3an1 1448 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 + (-1 · 𝐵))) = ((𝑇𝐴) + (-1 · (𝑇𝐵))))
5 hvsubval 31048 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 𝐵) = (𝐴 + (-1 · 𝐵)))
65fveq2d 6924 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 𝐵)) = (𝑇‘(𝐴 + (-1 · 𝐵))))
72lnopfi 32001 . . . 4 𝑇: ℋ⟶ ℋ
87ffvelcdmi 7117 . . 3 (𝐴 ∈ ℋ → (𝑇𝐴) ∈ ℋ)
97ffvelcdmi 7117 . . 3 (𝐵 ∈ ℋ → (𝑇𝐵) ∈ ℋ)
10 hvsubval 31048 . . 3 (((𝑇𝐴) ∈ ℋ ∧ (𝑇𝐵) ∈ ℋ) → ((𝑇𝐴) − (𝑇𝐵)) = ((𝑇𝐴) + (-1 · (𝑇𝐵))))
118, 9, 10syl2an 595 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝑇𝐴) − (𝑇𝐵)) = ((𝑇𝐴) + (-1 · (𝑇𝐵))))
124, 6, 113eqtr4d 2790 1 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 𝐵)) = ((𝑇𝐴) − (𝑇𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  cfv 6573  (class class class)co 7448  cc 11182  1c1 11185  -cneg 11521  chba 30951   + cva 30952   · csm 30953   cmv 30957  LinOpclo 30979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-hilex 31031  ax-hfvadd 31032  ax-hvass 31034  ax-hv0cl 31035  ax-hvaddid 31036  ax-hfvmul 31037  ax-hvmulid 31038  ax-hvdistr2 31041  ax-hvmul0 31042
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-ltxr 11329  df-sub 11522  df-neg 11523  df-hvsub 31003  df-lnop 31873
This theorem is referenced by:  lnopsubmuli  32007  lnopmulsubi  32008  hoddii  32021  lnopeq0lem1  32037  lnophmlem2  32049  lnopconi  32066
  Copyright terms: Public domain W3C validator