|   | Hilbert Space Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > HSE Home > Th. List > lnopsubi | Structured version Visualization version GIF version | ||
| Description: Subtraction property for a linear Hilbert space operator. (Contributed by NM, 1-Jul-2005.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| lnopl.1 | ⊢ 𝑇 ∈ LinOp | 
| Ref | Expression | 
|---|---|
| lnopsubi | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 −ℎ 𝐵)) = ((𝑇‘𝐴) −ℎ (𝑇‘𝐵))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | neg1cn 12380 | . . 3 ⊢ -1 ∈ ℂ | |
| 2 | lnopl.1 | . . . 4 ⊢ 𝑇 ∈ LinOp | |
| 3 | 2 | lnopaddmuli 31992 | . . 3 ⊢ ((-1 ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 +ℎ (-1 ·ℎ 𝐵))) = ((𝑇‘𝐴) +ℎ (-1 ·ℎ (𝑇‘𝐵)))) | 
| 4 | 1, 3 | mp3an1 1450 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 +ℎ (-1 ·ℎ 𝐵))) = ((𝑇‘𝐴) +ℎ (-1 ·ℎ (𝑇‘𝐵)))) | 
| 5 | hvsubval 31035 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 −ℎ 𝐵) = (𝐴 +ℎ (-1 ·ℎ 𝐵))) | |
| 6 | 5 | fveq2d 6910 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 −ℎ 𝐵)) = (𝑇‘(𝐴 +ℎ (-1 ·ℎ 𝐵)))) | 
| 7 | 2 | lnopfi 31988 | . . . 4 ⊢ 𝑇: ℋ⟶ ℋ | 
| 8 | 7 | ffvelcdmi 7103 | . . 3 ⊢ (𝐴 ∈ ℋ → (𝑇‘𝐴) ∈ ℋ) | 
| 9 | 7 | ffvelcdmi 7103 | . . 3 ⊢ (𝐵 ∈ ℋ → (𝑇‘𝐵) ∈ ℋ) | 
| 10 | hvsubval 31035 | . . 3 ⊢ (((𝑇‘𝐴) ∈ ℋ ∧ (𝑇‘𝐵) ∈ ℋ) → ((𝑇‘𝐴) −ℎ (𝑇‘𝐵)) = ((𝑇‘𝐴) +ℎ (-1 ·ℎ (𝑇‘𝐵)))) | |
| 11 | 8, 9, 10 | syl2an 596 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝑇‘𝐴) −ℎ (𝑇‘𝐵)) = ((𝑇‘𝐴) +ℎ (-1 ·ℎ (𝑇‘𝐵)))) | 
| 12 | 4, 6, 11 | 3eqtr4d 2787 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 −ℎ 𝐵)) = ((𝑇‘𝐴) −ℎ (𝑇‘𝐵))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ‘cfv 6561 (class class class)co 7431 ℂcc 11153 1c1 11156 -cneg 11493 ℋchba 30938 +ℎ cva 30939 ·ℎ csm 30940 −ℎ cmv 30944 LinOpclo 30966 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-hilex 31018 ax-hfvadd 31019 ax-hvass 31021 ax-hv0cl 31022 ax-hvaddid 31023 ax-hfvmul 31024 ax-hvmulid 31025 ax-hvdistr2 31028 ax-hvmul0 31029 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-po 5592 df-so 5593 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-er 8745 df-map 8868 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-ltxr 11300 df-sub 11494 df-neg 11495 df-hvsub 30990 df-lnop 31860 | 
| This theorem is referenced by: lnopsubmuli 31994 lnopmulsubi 31995 hoddii 32008 lnopeq0lem1 32024 lnophmlem2 32036 lnopconi 32053 | 
| Copyright terms: Public domain | W3C validator |