![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > lnopsubi | Structured version Visualization version GIF version |
Description: Subtraction property for a linear Hilbert space operator. (Contributed by NM, 1-Jul-2005.) (New usage is discouraged.) |
Ref | Expression |
---|---|
lnopl.1 | ⊢ 𝑇 ∈ LinOp |
Ref | Expression |
---|---|
lnopsubi | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 −ℎ 𝐵)) = ((𝑇‘𝐴) −ℎ (𝑇‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neg1cn 12322 | . . 3 ⊢ -1 ∈ ℂ | |
2 | lnopl.1 | . . . 4 ⊢ 𝑇 ∈ LinOp | |
3 | 2 | lnopaddmuli 31213 | . . 3 ⊢ ((-1 ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 +ℎ (-1 ·ℎ 𝐵))) = ((𝑇‘𝐴) +ℎ (-1 ·ℎ (𝑇‘𝐵)))) |
4 | 1, 3 | mp3an1 1448 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 +ℎ (-1 ·ℎ 𝐵))) = ((𝑇‘𝐴) +ℎ (-1 ·ℎ (𝑇‘𝐵)))) |
5 | hvsubval 30256 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 −ℎ 𝐵) = (𝐴 +ℎ (-1 ·ℎ 𝐵))) | |
6 | 5 | fveq2d 6892 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 −ℎ 𝐵)) = (𝑇‘(𝐴 +ℎ (-1 ·ℎ 𝐵)))) |
7 | 2 | lnopfi 31209 | . . . 4 ⊢ 𝑇: ℋ⟶ ℋ |
8 | 7 | ffvelcdmi 7082 | . . 3 ⊢ (𝐴 ∈ ℋ → (𝑇‘𝐴) ∈ ℋ) |
9 | 7 | ffvelcdmi 7082 | . . 3 ⊢ (𝐵 ∈ ℋ → (𝑇‘𝐵) ∈ ℋ) |
10 | hvsubval 30256 | . . 3 ⊢ (((𝑇‘𝐴) ∈ ℋ ∧ (𝑇‘𝐵) ∈ ℋ) → ((𝑇‘𝐴) −ℎ (𝑇‘𝐵)) = ((𝑇‘𝐴) +ℎ (-1 ·ℎ (𝑇‘𝐵)))) | |
11 | 8, 9, 10 | syl2an 596 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝑇‘𝐴) −ℎ (𝑇‘𝐵)) = ((𝑇‘𝐴) +ℎ (-1 ·ℎ (𝑇‘𝐵)))) |
12 | 4, 6, 11 | 3eqtr4d 2782 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 −ℎ 𝐵)) = ((𝑇‘𝐴) −ℎ (𝑇‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ‘cfv 6540 (class class class)co 7405 ℂcc 11104 1c1 11107 -cneg 11441 ℋchba 30159 +ℎ cva 30160 ·ℎ csm 30161 −ℎ cmv 30165 LinOpclo 30187 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-hilex 30239 ax-hfvadd 30240 ax-hvass 30242 ax-hv0cl 30243 ax-hvaddid 30244 ax-hfvmul 30245 ax-hvmulid 30246 ax-hvdistr2 30249 ax-hvmul0 30250 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-po 5587 df-so 5588 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-er 8699 df-map 8818 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-ltxr 11249 df-sub 11442 df-neg 11443 df-hvsub 30211 df-lnop 31081 |
This theorem is referenced by: lnopsubmuli 31215 lnopmulsubi 31216 hoddii 31229 lnopeq0lem1 31245 lnophmlem2 31257 lnopconi 31274 |
Copyright terms: Public domain | W3C validator |