![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > lnopsubi | Structured version Visualization version GIF version |
Description: Subtraction property for a linear Hilbert space operator. (Contributed by NM, 1-Jul-2005.) (New usage is discouraged.) |
Ref | Expression |
---|---|
lnopl.1 | ⊢ 𝑇 ∈ LinOp |
Ref | Expression |
---|---|
lnopsubi | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 −ℎ 𝐵)) = ((𝑇‘𝐴) −ℎ (𝑇‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neg1cn 11472 | . . 3 ⊢ -1 ∈ ℂ | |
2 | lnopl.1 | . . . 4 ⊢ 𝑇 ∈ LinOp | |
3 | 2 | lnopaddmuli 29387 | . . 3 ⊢ ((-1 ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 +ℎ (-1 ·ℎ 𝐵))) = ((𝑇‘𝐴) +ℎ (-1 ·ℎ (𝑇‘𝐵)))) |
4 | 1, 3 | mp3an1 1578 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 +ℎ (-1 ·ℎ 𝐵))) = ((𝑇‘𝐴) +ℎ (-1 ·ℎ (𝑇‘𝐵)))) |
5 | hvsubval 28428 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 −ℎ 𝐵) = (𝐴 +ℎ (-1 ·ℎ 𝐵))) | |
6 | 5 | fveq2d 6437 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 −ℎ 𝐵)) = (𝑇‘(𝐴 +ℎ (-1 ·ℎ 𝐵)))) |
7 | 2 | lnopfi 29383 | . . . 4 ⊢ 𝑇: ℋ⟶ ℋ |
8 | 7 | ffvelrni 6607 | . . 3 ⊢ (𝐴 ∈ ℋ → (𝑇‘𝐴) ∈ ℋ) |
9 | 7 | ffvelrni 6607 | . . 3 ⊢ (𝐵 ∈ ℋ → (𝑇‘𝐵) ∈ ℋ) |
10 | hvsubval 28428 | . . 3 ⊢ (((𝑇‘𝐴) ∈ ℋ ∧ (𝑇‘𝐵) ∈ ℋ) → ((𝑇‘𝐴) −ℎ (𝑇‘𝐵)) = ((𝑇‘𝐴) +ℎ (-1 ·ℎ (𝑇‘𝐵)))) | |
11 | 8, 9, 10 | syl2an 591 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝑇‘𝐴) −ℎ (𝑇‘𝐵)) = ((𝑇‘𝐴) +ℎ (-1 ·ℎ (𝑇‘𝐵)))) |
12 | 4, 6, 11 | 3eqtr4d 2871 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 −ℎ 𝐵)) = ((𝑇‘𝐴) −ℎ (𝑇‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1658 ∈ wcel 2166 ‘cfv 6123 (class class class)co 6905 ℂcc 10250 1c1 10253 -cneg 10586 ℋchba 28331 +ℎ cva 28332 ·ℎ csm 28333 −ℎ cmv 28337 LinOpclo 28359 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 ax-resscn 10309 ax-1cn 10310 ax-icn 10311 ax-addcl 10312 ax-addrcl 10313 ax-mulcl 10314 ax-mulrcl 10315 ax-mulcom 10316 ax-addass 10317 ax-mulass 10318 ax-distr 10319 ax-i2m1 10320 ax-1ne0 10321 ax-1rid 10322 ax-rnegex 10323 ax-rrecex 10324 ax-cnre 10325 ax-pre-lttri 10326 ax-pre-lttrn 10327 ax-pre-ltadd 10328 ax-hilex 28411 ax-hfvadd 28412 ax-hvass 28414 ax-hv0cl 28415 ax-hvaddid 28416 ax-hfvmul 28417 ax-hvmulid 28418 ax-hvdistr2 28421 ax-hvmul0 28422 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4659 df-iun 4742 df-br 4874 df-opab 4936 df-mpt 4953 df-id 5250 df-po 5263 df-so 5264 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-fv 6131 df-riota 6866 df-ov 6908 df-oprab 6909 df-mpt2 6910 df-er 8009 df-map 8124 df-en 8223 df-dom 8224 df-sdom 8225 df-pnf 10393 df-mnf 10394 df-ltxr 10396 df-sub 10587 df-neg 10588 df-hvsub 28383 df-lnop 29255 |
This theorem is referenced by: lnopsubmuli 29389 lnopmulsubi 29390 hoddii 29403 lnopeq0lem1 29419 lnophmlem2 29431 lnopconi 29448 |
Copyright terms: Public domain | W3C validator |