HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvsubcan Structured version   Visualization version   GIF version

Theorem hvsubcan 31001
Description: Cancellation law for vector addition. (Contributed by NM, 18-May-2005.) (New usage is discouraged.)
Assertion
Ref Expression
hvsubcan ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 𝐵) = (𝐴 𝐶) ↔ 𝐵 = 𝐶))

Proof of Theorem hvsubcan
StepHypRef Expression
1 hvsubval 30943 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 𝐵) = (𝐴 + (-1 · 𝐵)))
213adant3 1132 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 𝐵) = (𝐴 + (-1 · 𝐵)))
3 hvsubval 30943 . . . 4 ((𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 𝐶) = (𝐴 + (-1 · 𝐶)))
433adant2 1131 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 𝐶) = (𝐴 + (-1 · 𝐶)))
52, 4eqeq12d 2751 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 𝐵) = (𝐴 𝐶) ↔ (𝐴 + (-1 · 𝐵)) = (𝐴 + (-1 · 𝐶))))
6 neg1cn 12352 . . . 4 -1 ∈ ℂ
7 hvmulcl 30940 . . . 4 ((-1 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (-1 · 𝐵) ∈ ℋ)
86, 7mpan 690 . . 3 (𝐵 ∈ ℋ → (-1 · 𝐵) ∈ ℋ)
9 hvmulcl 30940 . . . . 5 ((-1 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (-1 · 𝐶) ∈ ℋ)
106, 9mpan 690 . . . 4 (𝐶 ∈ ℋ → (-1 · 𝐶) ∈ ℋ)
11 hvaddcan 30997 . . . 4 ((𝐴 ∈ ℋ ∧ (-1 · 𝐵) ∈ ℋ ∧ (-1 · 𝐶) ∈ ℋ) → ((𝐴 + (-1 · 𝐵)) = (𝐴 + (-1 · 𝐶)) ↔ (-1 · 𝐵) = (-1 · 𝐶)))
1210, 11syl3an3 1165 . . 3 ((𝐴 ∈ ℋ ∧ (-1 · 𝐵) ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 + (-1 · 𝐵)) = (𝐴 + (-1 · 𝐶)) ↔ (-1 · 𝐵) = (-1 · 𝐶)))
138, 12syl3an2 1164 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 + (-1 · 𝐵)) = (𝐴 + (-1 · 𝐶)) ↔ (-1 · 𝐵) = (-1 · 𝐶)))
14 neg1ne0 12354 . . . . 5 -1 ≠ 0
156, 14pm3.2i 470 . . . 4 (-1 ∈ ℂ ∧ -1 ≠ 0)
16 hvmulcan 30999 . . . 4 (((-1 ∈ ℂ ∧ -1 ≠ 0) ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((-1 · 𝐵) = (-1 · 𝐶) ↔ 𝐵 = 𝐶))
1715, 16mp3an1 1450 . . 3 ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((-1 · 𝐵) = (-1 · 𝐶) ↔ 𝐵 = 𝐶))
18173adant1 1130 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((-1 · 𝐵) = (-1 · 𝐶) ↔ 𝐵 = 𝐶))
195, 13, 183bitrd 305 1 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 𝐵) = (𝐴 𝐶) ↔ 𝐵 = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932  (class class class)co 7403  cc 11125  0cc0 11127  1c1 11128  -cneg 11465  chba 30846   + cva 30847   · csm 30848   cmv 30852
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-hfvadd 30927  ax-hvcom 30928  ax-hvass 30929  ax-hv0cl 30930  ax-hvaddid 30931  ax-hfvmul 30932  ax-hvmulid 30933  ax-hvmulass 30934  ax-hvdistr1 30935  ax-hvdistr2 30936  ax-hvmul0 30937
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-po 5561  df-so 5562  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-er 8717  df-en 8958  df-dom 8959  df-sdom 8960  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-hvsub 30898
This theorem is referenced by:  hvsubcan2  31002
  Copyright terms: Public domain W3C validator