![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hvsubcan | Structured version Visualization version GIF version |
Description: Cancellation law for vector addition. (Contributed by NM, 18-May-2005.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hvsubcan | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 −ℎ 𝐵) = (𝐴 −ℎ 𝐶) ↔ 𝐵 = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hvsubval 28429 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 −ℎ 𝐵) = (𝐴 +ℎ (-1 ·ℎ 𝐵))) | |
2 | 1 | 3adant3 1168 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 −ℎ 𝐵) = (𝐴 +ℎ (-1 ·ℎ 𝐵))) |
3 | hvsubval 28429 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 −ℎ 𝐶) = (𝐴 +ℎ (-1 ·ℎ 𝐶))) | |
4 | 3 | 3adant2 1167 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 −ℎ 𝐶) = (𝐴 +ℎ (-1 ·ℎ 𝐶))) |
5 | 2, 4 | eqeq12d 2841 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 −ℎ 𝐵) = (𝐴 −ℎ 𝐶) ↔ (𝐴 +ℎ (-1 ·ℎ 𝐵)) = (𝐴 +ℎ (-1 ·ℎ 𝐶)))) |
6 | neg1cn 11473 | . . . 4 ⊢ -1 ∈ ℂ | |
7 | hvmulcl 28426 | . . . 4 ⊢ ((-1 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (-1 ·ℎ 𝐵) ∈ ℋ) | |
8 | 6, 7 | mpan 683 | . . 3 ⊢ (𝐵 ∈ ℋ → (-1 ·ℎ 𝐵) ∈ ℋ) |
9 | hvmulcl 28426 | . . . . 5 ⊢ ((-1 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (-1 ·ℎ 𝐶) ∈ ℋ) | |
10 | 6, 9 | mpan 683 | . . . 4 ⊢ (𝐶 ∈ ℋ → (-1 ·ℎ 𝐶) ∈ ℋ) |
11 | hvaddcan 28483 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ (-1 ·ℎ 𝐵) ∈ ℋ ∧ (-1 ·ℎ 𝐶) ∈ ℋ) → ((𝐴 +ℎ (-1 ·ℎ 𝐵)) = (𝐴 +ℎ (-1 ·ℎ 𝐶)) ↔ (-1 ·ℎ 𝐵) = (-1 ·ℎ 𝐶))) | |
12 | 10, 11 | syl3an3 1211 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ (-1 ·ℎ 𝐵) ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 +ℎ (-1 ·ℎ 𝐵)) = (𝐴 +ℎ (-1 ·ℎ 𝐶)) ↔ (-1 ·ℎ 𝐵) = (-1 ·ℎ 𝐶))) |
13 | 8, 12 | syl3an2 1209 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 +ℎ (-1 ·ℎ 𝐵)) = (𝐴 +ℎ (-1 ·ℎ 𝐶)) ↔ (-1 ·ℎ 𝐵) = (-1 ·ℎ 𝐶))) |
14 | neg1ne0 11475 | . . . . 5 ⊢ -1 ≠ 0 | |
15 | 6, 14 | pm3.2i 464 | . . . 4 ⊢ (-1 ∈ ℂ ∧ -1 ≠ 0) |
16 | hvmulcan 28485 | . . . 4 ⊢ (((-1 ∈ ℂ ∧ -1 ≠ 0) ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((-1 ·ℎ 𝐵) = (-1 ·ℎ 𝐶) ↔ 𝐵 = 𝐶)) | |
17 | 15, 16 | mp3an1 1578 | . . 3 ⊢ ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((-1 ·ℎ 𝐵) = (-1 ·ℎ 𝐶) ↔ 𝐵 = 𝐶)) |
18 | 17 | 3adant1 1166 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((-1 ·ℎ 𝐵) = (-1 ·ℎ 𝐶) ↔ 𝐵 = 𝐶)) |
19 | 5, 13, 18 | 3bitrd 297 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 −ℎ 𝐵) = (𝐴 −ℎ 𝐶) ↔ 𝐵 = 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 ∧ w3a 1113 = wceq 1658 ∈ wcel 2166 ≠ wne 3000 (class class class)co 6906 ℂcc 10251 0cc0 10253 1c1 10254 -cneg 10587 ℋchba 28332 +ℎ cva 28333 ·ℎ csm 28334 −ℎ cmv 28338 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2804 ax-sep 5006 ax-nul 5014 ax-pow 5066 ax-pr 5128 ax-un 7210 ax-resscn 10310 ax-1cn 10311 ax-icn 10312 ax-addcl 10313 ax-addrcl 10314 ax-mulcl 10315 ax-mulrcl 10316 ax-mulcom 10317 ax-addass 10318 ax-mulass 10319 ax-distr 10320 ax-i2m1 10321 ax-1ne0 10322 ax-1rid 10323 ax-rnegex 10324 ax-rrecex 10325 ax-cnre 10326 ax-pre-lttri 10327 ax-pre-lttrn 10328 ax-pre-ltadd 10329 ax-pre-mulgt0 10330 ax-hfvadd 28413 ax-hvcom 28414 ax-hvass 28415 ax-hv0cl 28416 ax-hvaddid 28417 ax-hfvmul 28418 ax-hvmulid 28419 ax-hvmulass 28420 ax-hvdistr1 28421 ax-hvdistr2 28422 ax-hvmul0 28423 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2606 df-eu 2641 df-clab 2813 df-cleq 2819 df-clel 2822 df-nfc 2959 df-ne 3001 df-nel 3104 df-ral 3123 df-rex 3124 df-reu 3125 df-rmo 3126 df-rab 3127 df-v 3417 df-sbc 3664 df-csb 3759 df-dif 3802 df-un 3804 df-in 3806 df-ss 3813 df-nul 4146 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4660 df-iun 4743 df-br 4875 df-opab 4937 df-mpt 4954 df-id 5251 df-po 5264 df-so 5265 df-xp 5349 df-rel 5350 df-cnv 5351 df-co 5352 df-dm 5353 df-rn 5354 df-res 5355 df-ima 5356 df-iota 6087 df-fun 6126 df-fn 6127 df-f 6128 df-f1 6129 df-fo 6130 df-f1o 6131 df-fv 6132 df-riota 6867 df-ov 6909 df-oprab 6910 df-mpt2 6911 df-er 8010 df-en 8224 df-dom 8225 df-sdom 8226 df-pnf 10394 df-mnf 10395 df-xr 10396 df-ltxr 10397 df-le 10398 df-sub 10588 df-neg 10589 df-div 11011 df-hvsub 28384 |
This theorem is referenced by: hvsubcan2 28488 |
Copyright terms: Public domain | W3C validator |