Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > hvaddsub12 | Structured version Visualization version GIF version |
Description: Commutative/associative law. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hvaddsub12 | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 +ℎ (𝐵 −ℎ 𝐶)) = (𝐵 +ℎ (𝐴 −ℎ 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neg1cn 12157 | . . . 4 ⊢ -1 ∈ ℂ | |
2 | hvmulcl 29483 | . . . 4 ⊢ ((-1 ∈ ℂ ∧ 𝐶 ∈ ℋ) → (-1 ·ℎ 𝐶) ∈ ℋ) | |
3 | 1, 2 | mpan 687 | . . 3 ⊢ (𝐶 ∈ ℋ → (-1 ·ℎ 𝐶) ∈ ℋ) |
4 | hvadd12 29505 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ (-1 ·ℎ 𝐶) ∈ ℋ) → (𝐴 +ℎ (𝐵 +ℎ (-1 ·ℎ 𝐶))) = (𝐵 +ℎ (𝐴 +ℎ (-1 ·ℎ 𝐶)))) | |
5 | 3, 4 | syl3an3 1164 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 +ℎ (𝐵 +ℎ (-1 ·ℎ 𝐶))) = (𝐵 +ℎ (𝐴 +ℎ (-1 ·ℎ 𝐶)))) |
6 | hvsubval 29486 | . . . 4 ⊢ ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐵 −ℎ 𝐶) = (𝐵 +ℎ (-1 ·ℎ 𝐶))) | |
7 | 6 | oveq2d 7329 | . . 3 ⊢ ((𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 +ℎ (𝐵 −ℎ 𝐶)) = (𝐴 +ℎ (𝐵 +ℎ (-1 ·ℎ 𝐶)))) |
8 | 7 | 3adant1 1129 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 +ℎ (𝐵 −ℎ 𝐶)) = (𝐴 +ℎ (𝐵 +ℎ (-1 ·ℎ 𝐶)))) |
9 | hvsubval 29486 | . . . 4 ⊢ ((𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 −ℎ 𝐶) = (𝐴 +ℎ (-1 ·ℎ 𝐶))) | |
10 | 9 | oveq2d 7329 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐵 +ℎ (𝐴 −ℎ 𝐶)) = (𝐵 +ℎ (𝐴 +ℎ (-1 ·ℎ 𝐶)))) |
11 | 10 | 3adant2 1130 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐵 +ℎ (𝐴 −ℎ 𝐶)) = (𝐵 +ℎ (𝐴 +ℎ (-1 ·ℎ 𝐶)))) |
12 | 5, 8, 11 | 3eqtr4d 2787 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 +ℎ (𝐵 −ℎ 𝐶)) = (𝐵 +ℎ (𝐴 −ℎ 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 (class class class)co 7313 ℂcc 10939 1c1 10942 -cneg 11276 ℋchba 29389 +ℎ cva 29390 ·ℎ csm 29391 −ℎ cmv 29395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5236 ax-nul 5243 ax-pow 5301 ax-pr 5365 ax-un 7626 ax-resscn 10998 ax-1cn 10999 ax-icn 11000 ax-addcl 11001 ax-addrcl 11002 ax-mulcl 11003 ax-mulrcl 11004 ax-mulcom 11005 ax-addass 11006 ax-mulass 11007 ax-distr 11008 ax-i2m1 11009 ax-1ne0 11010 ax-1rid 11011 ax-rnegex 11012 ax-rrecex 11013 ax-cnre 11014 ax-pre-lttri 11015 ax-pre-lttrn 11016 ax-pre-ltadd 11017 ax-hvcom 29471 ax-hvass 29472 ax-hfvmul 29475 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4470 df-pw 4545 df-sn 4570 df-pr 4572 df-op 4576 df-uni 4849 df-iun 4937 df-br 5086 df-opab 5148 df-mpt 5169 df-id 5505 df-po 5519 df-so 5520 df-xp 5611 df-rel 5612 df-cnv 5613 df-co 5614 df-dm 5615 df-rn 5616 df-res 5617 df-ima 5618 df-iota 6415 df-fun 6465 df-fn 6466 df-f 6467 df-f1 6468 df-fo 6469 df-f1o 6470 df-fv 6471 df-riota 7270 df-ov 7316 df-oprab 7317 df-mpo 7318 df-er 8544 df-en 8780 df-dom 8781 df-sdom 8782 df-pnf 11081 df-mnf 11082 df-ltxr 11084 df-sub 11277 df-neg 11278 df-hvsub 29441 |
This theorem is referenced by: 5oalem1 30124 3oalem2 30133 pjcji 30154 pjclem4 30669 pj3si 30677 |
Copyright terms: Public domain | W3C validator |