Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  icoreval Structured version   Visualization version   GIF version

Theorem icoreval 37418
Description: Value of the closed-below, open-above interval function on reals. (Contributed by ML, 26-Jul-2020.)
Assertion
Ref Expression
icoreval ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,)𝐵) = {𝑧 ∈ ℝ ∣ (𝐴𝑧𝑧 < 𝐵)})
Distinct variable groups:   𝑧,𝐴   𝑧,𝐵

Proof of Theorem icoreval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovres 7518 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴([,) ↾ (ℝ × ℝ))𝐵) = (𝐴[,)𝐵))
2 breq1 5096 . . . . 5 (𝑥 = 𝐴 → (𝑥𝑧𝐴𝑧))
32anbi1d 631 . . . 4 (𝑥 = 𝐴 → ((𝑥𝑧𝑧 < 𝑦) ↔ (𝐴𝑧𝑧 < 𝑦)))
43rabbidv 3403 . . 3 (𝑥 = 𝐴 → {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)} = {𝑧 ∈ ℝ ∣ (𝐴𝑧𝑧 < 𝑦)})
5 breq2 5097 . . . . 5 (𝑦 = 𝐵 → (𝑧 < 𝑦𝑧 < 𝐵))
65anbi2d 630 . . . 4 (𝑦 = 𝐵 → ((𝐴𝑧𝑧 < 𝑦) ↔ (𝐴𝑧𝑧 < 𝐵)))
76rabbidv 3403 . . 3 (𝑦 = 𝐵 → {𝑧 ∈ ℝ ∣ (𝐴𝑧𝑧 < 𝑦)} = {𝑧 ∈ ℝ ∣ (𝐴𝑧𝑧 < 𝐵)})
8 eqid 2733 . . . 4 ([,) ↾ (ℝ × ℝ)) = ([,) ↾ (ℝ × ℝ))
98icorempo 37416 . . 3 ([,) ↾ (ℝ × ℝ)) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)})
10 reex 11104 . . . 4 ℝ ∈ V
1110rabex 5279 . . 3 {𝑧 ∈ ℝ ∣ (𝐴𝑧𝑧 < 𝐵)} ∈ V
124, 7, 9, 11ovmpo 7512 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴([,) ↾ (ℝ × ℝ))𝐵) = {𝑧 ∈ ℝ ∣ (𝐴𝑧𝑧 < 𝐵)})
131, 12eqtr3d 2770 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,)𝐵) = {𝑧 ∈ ℝ ∣ (𝐴𝑧𝑧 < 𝐵)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  {crab 3396   class class class wbr 5093   × cxp 5617  cres 5621  (class class class)co 7352  cr 11012   < clt 11153  cle 11154  [,)cico 13249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-pre-lttri 11087  ax-pre-lttrn 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-ico 13253
This theorem is referenced by:  icoreelrnab  37419  icoreelrn  37426  relowlssretop  37428
  Copyright terms: Public domain W3C validator