Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  icoreval Structured version   Visualization version   GIF version

Theorem icoreval 37326
Description: Value of the closed-below, open-above interval function on reals. (Contributed by ML, 26-Jul-2020.)
Assertion
Ref Expression
icoreval ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,)𝐵) = {𝑧 ∈ ℝ ∣ (𝐴𝑧𝑧 < 𝐵)})
Distinct variable groups:   𝑧,𝐴   𝑧,𝐵

Proof of Theorem icoreval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovres 7519 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴([,) ↾ (ℝ × ℝ))𝐵) = (𝐴[,)𝐵))
2 breq1 5098 . . . . 5 (𝑥 = 𝐴 → (𝑥𝑧𝐴𝑧))
32anbi1d 631 . . . 4 (𝑥 = 𝐴 → ((𝑥𝑧𝑧 < 𝑦) ↔ (𝐴𝑧𝑧 < 𝑦)))
43rabbidv 3404 . . 3 (𝑥 = 𝐴 → {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)} = {𝑧 ∈ ℝ ∣ (𝐴𝑧𝑧 < 𝑦)})
5 breq2 5099 . . . . 5 (𝑦 = 𝐵 → (𝑧 < 𝑦𝑧 < 𝐵))
65anbi2d 630 . . . 4 (𝑦 = 𝐵 → ((𝐴𝑧𝑧 < 𝑦) ↔ (𝐴𝑧𝑧 < 𝐵)))
76rabbidv 3404 . . 3 (𝑦 = 𝐵 → {𝑧 ∈ ℝ ∣ (𝐴𝑧𝑧 < 𝑦)} = {𝑧 ∈ ℝ ∣ (𝐴𝑧𝑧 < 𝐵)})
8 eqid 2729 . . . 4 ([,) ↾ (ℝ × ℝ)) = ([,) ↾ (ℝ × ℝ))
98icorempo 37324 . . 3 ([,) ↾ (ℝ × ℝ)) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)})
10 reex 11119 . . . 4 ℝ ∈ V
1110rabex 5281 . . 3 {𝑧 ∈ ℝ ∣ (𝐴𝑧𝑧 < 𝐵)} ∈ V
124, 7, 9, 11ovmpo 7513 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴([,) ↾ (ℝ × ℝ))𝐵) = {𝑧 ∈ ℝ ∣ (𝐴𝑧𝑧 < 𝐵)})
131, 12eqtr3d 2766 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,)𝐵) = {𝑧 ∈ ℝ ∣ (𝐴𝑧𝑧 < 𝐵)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3396   class class class wbr 5095   × cxp 5621  cres 5625  (class class class)co 7353  cr 11027   < clt 11168  cle 11169  [,)cico 13268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-pre-lttri 11102  ax-pre-lttrn 11103
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-po 5531  df-so 5532  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-ico 13272
This theorem is referenced by:  icoreelrnab  37327  icoreelrn  37334  relowlssretop  37336
  Copyright terms: Public domain W3C validator