| Mathbox for ML |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > icoreval | Structured version Visualization version GIF version | ||
| Description: Value of the closed-below, open-above interval function on reals. (Contributed by ML, 26-Jul-2020.) |
| Ref | Expression |
|---|---|
| icoreval | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,)𝐵) = {𝑧 ∈ ℝ ∣ (𝐴 ≤ 𝑧 ∧ 𝑧 < 𝐵)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovres 7582 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴([,) ↾ (ℝ × ℝ))𝐵) = (𝐴[,)𝐵)) | |
| 2 | breq1 5128 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ≤ 𝑧 ↔ 𝐴 ≤ 𝑧)) | |
| 3 | 2 | anbi1d 631 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦) ↔ (𝐴 ≤ 𝑧 ∧ 𝑧 < 𝑦))) |
| 4 | 3 | rabbidv 3428 | . . 3 ⊢ (𝑥 = 𝐴 → {𝑧 ∈ ℝ ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} = {𝑧 ∈ ℝ ∣ (𝐴 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) |
| 5 | breq2 5129 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝑧 < 𝑦 ↔ 𝑧 < 𝐵)) | |
| 6 | 5 | anbi2d 630 | . . . 4 ⊢ (𝑦 = 𝐵 → ((𝐴 ≤ 𝑧 ∧ 𝑧 < 𝑦) ↔ (𝐴 ≤ 𝑧 ∧ 𝑧 < 𝐵))) |
| 7 | 6 | rabbidv 3428 | . . 3 ⊢ (𝑦 = 𝐵 → {𝑧 ∈ ℝ ∣ (𝐴 ≤ 𝑧 ∧ 𝑧 < 𝑦)} = {𝑧 ∈ ℝ ∣ (𝐴 ≤ 𝑧 ∧ 𝑧 < 𝐵)}) |
| 8 | eqid 2734 | . . . 4 ⊢ ([,) ↾ (ℝ × ℝ)) = ([,) ↾ (ℝ × ℝ)) | |
| 9 | 8 | icorempo 37293 | . . 3 ⊢ ([,) ↾ (ℝ × ℝ)) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) |
| 10 | reex 11229 | . . . 4 ⊢ ℝ ∈ V | |
| 11 | 10 | rabex 5321 | . . 3 ⊢ {𝑧 ∈ ℝ ∣ (𝐴 ≤ 𝑧 ∧ 𝑧 < 𝐵)} ∈ V |
| 12 | 4, 7, 9, 11 | ovmpo 7576 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴([,) ↾ (ℝ × ℝ))𝐵) = {𝑧 ∈ ℝ ∣ (𝐴 ≤ 𝑧 ∧ 𝑧 < 𝐵)}) |
| 13 | 1, 12 | eqtr3d 2771 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,)𝐵) = {𝑧 ∈ ℝ ∣ (𝐴 ≤ 𝑧 ∧ 𝑧 < 𝐵)}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 {crab 3420 class class class wbr 5125 × cxp 5665 ↾ cres 5669 (class class class)co 7414 ℝcr 11137 < clt 11278 ≤ cle 11279 [,)cico 13372 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-pre-lttri 11212 ax-pre-lttrn 11213 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-br 5126 df-opab 5188 df-mpt 5208 df-id 5560 df-po 5574 df-so 5575 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-er 8728 df-en 8969 df-dom 8970 df-sdom 8971 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-ico 13376 |
| This theorem is referenced by: icoreelrnab 37296 icoreelrn 37303 relowlssretop 37305 |
| Copyright terms: Public domain | W3C validator |