Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  icoreval Structured version   Visualization version   GIF version

Theorem icoreval 37386
Description: Value of the closed-below, open-above interval function on reals. (Contributed by ML, 26-Jul-2020.)
Assertion
Ref Expression
icoreval ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,)𝐵) = {𝑧 ∈ ℝ ∣ (𝐴𝑧𝑧 < 𝐵)})
Distinct variable groups:   𝑧,𝐴   𝑧,𝐵

Proof of Theorem icoreval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovres 7512 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴([,) ↾ (ℝ × ℝ))𝐵) = (𝐴[,)𝐵))
2 breq1 5094 . . . . 5 (𝑥 = 𝐴 → (𝑥𝑧𝐴𝑧))
32anbi1d 631 . . . 4 (𝑥 = 𝐴 → ((𝑥𝑧𝑧 < 𝑦) ↔ (𝐴𝑧𝑧 < 𝑦)))
43rabbidv 3402 . . 3 (𝑥 = 𝐴 → {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)} = {𝑧 ∈ ℝ ∣ (𝐴𝑧𝑧 < 𝑦)})
5 breq2 5095 . . . . 5 (𝑦 = 𝐵 → (𝑧 < 𝑦𝑧 < 𝐵))
65anbi2d 630 . . . 4 (𝑦 = 𝐵 → ((𝐴𝑧𝑧 < 𝑦) ↔ (𝐴𝑧𝑧 < 𝐵)))
76rabbidv 3402 . . 3 (𝑦 = 𝐵 → {𝑧 ∈ ℝ ∣ (𝐴𝑧𝑧 < 𝑦)} = {𝑧 ∈ ℝ ∣ (𝐴𝑧𝑧 < 𝐵)})
8 eqid 2731 . . . 4 ([,) ↾ (ℝ × ℝ)) = ([,) ↾ (ℝ × ℝ))
98icorempo 37384 . . 3 ([,) ↾ (ℝ × ℝ)) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ ∣ (𝑥𝑧𝑧 < 𝑦)})
10 reex 11094 . . . 4 ℝ ∈ V
1110rabex 5277 . . 3 {𝑧 ∈ ℝ ∣ (𝐴𝑧𝑧 < 𝐵)} ∈ V
124, 7, 9, 11ovmpo 7506 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴([,) ↾ (ℝ × ℝ))𝐵) = {𝑧 ∈ ℝ ∣ (𝐴𝑧𝑧 < 𝐵)})
131, 12eqtr3d 2768 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,)𝐵) = {𝑧 ∈ ℝ ∣ (𝐴𝑧𝑧 < 𝐵)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  {crab 3395   class class class wbr 5091   × cxp 5614  cres 5618  (class class class)co 7346  cr 11002   < clt 11143  cle 11144  [,)cico 13244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-pre-lttri 11077  ax-pre-lttrn 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-po 5524  df-so 5525  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-ico 13248
This theorem is referenced by:  icoreelrnab  37387  icoreelrn  37394  relowlssretop  37396
  Copyright terms: Public domain W3C validator