| Mathbox for ML |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > icoreval | Structured version Visualization version GIF version | ||
| Description: Value of the closed-below, open-above interval function on reals. (Contributed by ML, 26-Jul-2020.) |
| Ref | Expression |
|---|---|
| icoreval | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,)𝐵) = {𝑧 ∈ ℝ ∣ (𝐴 ≤ 𝑧 ∧ 𝑧 < 𝐵)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovres 7555 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴([,) ↾ (ℝ × ℝ))𝐵) = (𝐴[,)𝐵)) | |
| 2 | breq1 5110 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ≤ 𝑧 ↔ 𝐴 ≤ 𝑧)) | |
| 3 | 2 | anbi1d 631 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦) ↔ (𝐴 ≤ 𝑧 ∧ 𝑧 < 𝑦))) |
| 4 | 3 | rabbidv 3413 | . . 3 ⊢ (𝑥 = 𝐴 → {𝑧 ∈ ℝ ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} = {𝑧 ∈ ℝ ∣ (𝐴 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) |
| 5 | breq2 5111 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝑧 < 𝑦 ↔ 𝑧 < 𝐵)) | |
| 6 | 5 | anbi2d 630 | . . . 4 ⊢ (𝑦 = 𝐵 → ((𝐴 ≤ 𝑧 ∧ 𝑧 < 𝑦) ↔ (𝐴 ≤ 𝑧 ∧ 𝑧 < 𝐵))) |
| 7 | 6 | rabbidv 3413 | . . 3 ⊢ (𝑦 = 𝐵 → {𝑧 ∈ ℝ ∣ (𝐴 ≤ 𝑧 ∧ 𝑧 < 𝑦)} = {𝑧 ∈ ℝ ∣ (𝐴 ≤ 𝑧 ∧ 𝑧 < 𝐵)}) |
| 8 | eqid 2729 | . . . 4 ⊢ ([,) ↾ (ℝ × ℝ)) = ([,) ↾ (ℝ × ℝ)) | |
| 9 | 8 | icorempo 37339 | . . 3 ⊢ ([,) ↾ (ℝ × ℝ)) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) |
| 10 | reex 11159 | . . . 4 ⊢ ℝ ∈ V | |
| 11 | 10 | rabex 5294 | . . 3 ⊢ {𝑧 ∈ ℝ ∣ (𝐴 ≤ 𝑧 ∧ 𝑧 < 𝐵)} ∈ V |
| 12 | 4, 7, 9, 11 | ovmpo 7549 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴([,) ↾ (ℝ × ℝ))𝐵) = {𝑧 ∈ ℝ ∣ (𝐴 ≤ 𝑧 ∧ 𝑧 < 𝐵)}) |
| 13 | 1, 12 | eqtr3d 2766 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,)𝐵) = {𝑧 ∈ ℝ ∣ (𝐴 ≤ 𝑧 ∧ 𝑧 < 𝐵)}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3405 class class class wbr 5107 × cxp 5636 ↾ cres 5640 (class class class)co 7387 ℝcr 11067 < clt 11208 ≤ cle 11209 [,)cico 13308 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-pre-lttri 11142 ax-pre-lttrn 11143 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-ico 13312 |
| This theorem is referenced by: icoreelrnab 37342 icoreelrn 37349 relowlssretop 37351 |
| Copyright terms: Public domain | W3C validator |