![]() |
Mathbox for ML |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > icoreval | Structured version Visualization version GIF version |
Description: Value of the closed-below, open-above interval function on reals. (Contributed by ML, 26-Jul-2020.) |
Ref | Expression |
---|---|
icoreval | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,)𝐵) = {𝑧 ∈ ℝ ∣ (𝐴 ≤ 𝑧 ∧ 𝑧 < 𝐵)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovres 7525 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴([,) ↾ (ℝ × ℝ))𝐵) = (𝐴[,)𝐵)) | |
2 | breq1 5113 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ≤ 𝑧 ↔ 𝐴 ≤ 𝑧)) | |
3 | 2 | anbi1d 631 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦) ↔ (𝐴 ≤ 𝑧 ∧ 𝑧 < 𝑦))) |
4 | 3 | rabbidv 3418 | . . 3 ⊢ (𝑥 = 𝐴 → {𝑧 ∈ ℝ ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} = {𝑧 ∈ ℝ ∣ (𝐴 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) |
5 | breq2 5114 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝑧 < 𝑦 ↔ 𝑧 < 𝐵)) | |
6 | 5 | anbi2d 630 | . . . 4 ⊢ (𝑦 = 𝐵 → ((𝐴 ≤ 𝑧 ∧ 𝑧 < 𝑦) ↔ (𝐴 ≤ 𝑧 ∧ 𝑧 < 𝐵))) |
7 | 6 | rabbidv 3418 | . . 3 ⊢ (𝑦 = 𝐵 → {𝑧 ∈ ℝ ∣ (𝐴 ≤ 𝑧 ∧ 𝑧 < 𝑦)} = {𝑧 ∈ ℝ ∣ (𝐴 ≤ 𝑧 ∧ 𝑧 < 𝐵)}) |
8 | eqid 2737 | . . . 4 ⊢ ([,) ↾ (ℝ × ℝ)) = ([,) ↾ (ℝ × ℝ)) | |
9 | 8 | icorempo 35851 | . . 3 ⊢ ([,) ↾ (ℝ × ℝ)) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) |
10 | reex 11149 | . . . 4 ⊢ ℝ ∈ V | |
11 | 10 | rabex 5294 | . . 3 ⊢ {𝑧 ∈ ℝ ∣ (𝐴 ≤ 𝑧 ∧ 𝑧 < 𝐵)} ∈ V |
12 | 4, 7, 9, 11 | ovmpo 7520 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴([,) ↾ (ℝ × ℝ))𝐵) = {𝑧 ∈ ℝ ∣ (𝐴 ≤ 𝑧 ∧ 𝑧 < 𝐵)}) |
13 | 1, 12 | eqtr3d 2779 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,)𝐵) = {𝑧 ∈ ℝ ∣ (𝐴 ≤ 𝑧 ∧ 𝑧 < 𝐵)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 {crab 3410 class class class wbr 5110 × cxp 5636 ↾ cres 5640 (class class class)co 7362 ℝcr 11057 < clt 11196 ≤ cle 11197 [,)cico 13273 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5261 ax-nul 5268 ax-pow 5325 ax-pr 5389 ax-un 7677 ax-cnex 11114 ax-resscn 11115 ax-pre-lttri 11132 ax-pre-lttrn 11133 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3066 df-rex 3075 df-rab 3411 df-v 3450 df-sbc 3745 df-csb 3861 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-nul 4288 df-if 4492 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-br 5111 df-opab 5173 df-mpt 5194 df-id 5536 df-po 5550 df-so 5551 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6453 df-fun 6503 df-fn 6504 df-f 6505 df-f1 6506 df-fo 6507 df-f1o 6508 df-fv 6509 df-ov 7365 df-oprab 7366 df-mpo 7367 df-er 8655 df-en 8891 df-dom 8892 df-sdom 8893 df-pnf 11198 df-mnf 11199 df-xr 11200 df-ltxr 11201 df-le 11202 df-ico 13277 |
This theorem is referenced by: icoreelrnab 35854 icoreelrn 35861 relowlssretop 35863 |
Copyright terms: Public domain | W3C validator |