![]() |
Mathbox for ML |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > icoreval | Structured version Visualization version GIF version |
Description: Value of the closed-below, open-above interval function on reals. (Contributed by ML, 26-Jul-2020.) |
Ref | Expression |
---|---|
icoreval | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,)𝐵) = {𝑧 ∈ ℝ ∣ (𝐴 ≤ 𝑧 ∧ 𝑧 < 𝐵)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovres 7573 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴([,) ↾ (ℝ × ℝ))𝐵) = (𝐴[,)𝐵)) | |
2 | breq1 5152 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ≤ 𝑧 ↔ 𝐴 ≤ 𝑧)) | |
3 | 2 | anbi1d 631 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦) ↔ (𝐴 ≤ 𝑧 ∧ 𝑧 < 𝑦))) |
4 | 3 | rabbidv 3441 | . . 3 ⊢ (𝑥 = 𝐴 → {𝑧 ∈ ℝ ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} = {𝑧 ∈ ℝ ∣ (𝐴 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) |
5 | breq2 5153 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝑧 < 𝑦 ↔ 𝑧 < 𝐵)) | |
6 | 5 | anbi2d 630 | . . . 4 ⊢ (𝑦 = 𝐵 → ((𝐴 ≤ 𝑧 ∧ 𝑧 < 𝑦) ↔ (𝐴 ≤ 𝑧 ∧ 𝑧 < 𝐵))) |
7 | 6 | rabbidv 3441 | . . 3 ⊢ (𝑦 = 𝐵 → {𝑧 ∈ ℝ ∣ (𝐴 ≤ 𝑧 ∧ 𝑧 < 𝑦)} = {𝑧 ∈ ℝ ∣ (𝐴 ≤ 𝑧 ∧ 𝑧 < 𝐵)}) |
8 | eqid 2733 | . . . 4 ⊢ ([,) ↾ (ℝ × ℝ)) = ([,) ↾ (ℝ × ℝ)) | |
9 | 8 | icorempo 36232 | . . 3 ⊢ ([,) ↾ (ℝ × ℝ)) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) |
10 | reex 11201 | . . . 4 ⊢ ℝ ∈ V | |
11 | 10 | rabex 5333 | . . 3 ⊢ {𝑧 ∈ ℝ ∣ (𝐴 ≤ 𝑧 ∧ 𝑧 < 𝐵)} ∈ V |
12 | 4, 7, 9, 11 | ovmpo 7568 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴([,) ↾ (ℝ × ℝ))𝐵) = {𝑧 ∈ ℝ ∣ (𝐴 ≤ 𝑧 ∧ 𝑧 < 𝐵)}) |
13 | 1, 12 | eqtr3d 2775 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,)𝐵) = {𝑧 ∈ ℝ ∣ (𝐴 ≤ 𝑧 ∧ 𝑧 < 𝐵)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 {crab 3433 class class class wbr 5149 × cxp 5675 ↾ cres 5679 (class class class)co 7409 ℝcr 11109 < clt 11248 ≤ cle 11249 [,)cico 13326 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-pre-lttri 11184 ax-pre-lttrn 11185 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-po 5589 df-so 5590 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-ico 13330 |
This theorem is referenced by: icoreelrnab 36235 icoreelrn 36242 relowlssretop 36244 |
Copyright terms: Public domain | W3C validator |