![]() |
Mathbox for ML |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > icoreval | Structured version Visualization version GIF version |
Description: Value of the closed-below, open-above interval function on reals. (Contributed by ML, 26-Jul-2020.) |
Ref | Expression |
---|---|
icoreval | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,)𝐵) = {𝑧 ∈ ℝ ∣ (𝐴 ≤ 𝑧 ∧ 𝑧 < 𝐵)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovres 7570 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴([,) ↾ (ℝ × ℝ))𝐵) = (𝐴[,)𝐵)) | |
2 | breq1 5144 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ≤ 𝑧 ↔ 𝐴 ≤ 𝑧)) | |
3 | 2 | anbi1d 629 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦) ↔ (𝐴 ≤ 𝑧 ∧ 𝑧 < 𝑦))) |
4 | 3 | rabbidv 3434 | . . 3 ⊢ (𝑥 = 𝐴 → {𝑧 ∈ ℝ ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)} = {𝑧 ∈ ℝ ∣ (𝐴 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) |
5 | breq2 5145 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝑧 < 𝑦 ↔ 𝑧 < 𝐵)) | |
6 | 5 | anbi2d 628 | . . . 4 ⊢ (𝑦 = 𝐵 → ((𝐴 ≤ 𝑧 ∧ 𝑧 < 𝑦) ↔ (𝐴 ≤ 𝑧 ∧ 𝑧 < 𝐵))) |
7 | 6 | rabbidv 3434 | . . 3 ⊢ (𝑦 = 𝐵 → {𝑧 ∈ ℝ ∣ (𝐴 ≤ 𝑧 ∧ 𝑧 < 𝑦)} = {𝑧 ∈ ℝ ∣ (𝐴 ≤ 𝑧 ∧ 𝑧 < 𝐵)}) |
8 | eqid 2726 | . . . 4 ⊢ ([,) ↾ (ℝ × ℝ)) = ([,) ↾ (ℝ × ℝ)) | |
9 | 8 | icorempo 36739 | . . 3 ⊢ ([,) ↾ (ℝ × ℝ)) = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ {𝑧 ∈ ℝ ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) |
10 | reex 11203 | . . . 4 ⊢ ℝ ∈ V | |
11 | 10 | rabex 5325 | . . 3 ⊢ {𝑧 ∈ ℝ ∣ (𝐴 ≤ 𝑧 ∧ 𝑧 < 𝐵)} ∈ V |
12 | 4, 7, 9, 11 | ovmpo 7564 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴([,) ↾ (ℝ × ℝ))𝐵) = {𝑧 ∈ ℝ ∣ (𝐴 ≤ 𝑧 ∧ 𝑧 < 𝐵)}) |
13 | 1, 12 | eqtr3d 2768 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,)𝐵) = {𝑧 ∈ ℝ ∣ (𝐴 ≤ 𝑧 ∧ 𝑧 < 𝐵)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 {crab 3426 class class class wbr 5141 × cxp 5667 ↾ cres 5671 (class class class)co 7405 ℝcr 11111 < clt 11252 ≤ cle 11253 [,)cico 13332 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-pre-lttri 11186 ax-pre-lttrn 11187 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-po 5581 df-so 5582 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-ov 7408 df-oprab 7409 df-mpo 7410 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-ico 13336 |
This theorem is referenced by: icoreelrnab 36742 icoreelrn 36749 relowlssretop 36751 |
Copyright terms: Public domain | W3C validator |