Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fge0npnf | Structured version Visualization version GIF version |
Description: If 𝐹 maps to nonnegative reals, then +∞ is not in its range. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
fge0npnf.1 | ⊢ (𝜑 → 𝐹:𝑋⟶(0[,)+∞)) |
Ref | Expression |
---|---|
fge0npnf | ⊢ (𝜑 → ¬ +∞ ∈ ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fge0npnf.1 | . . . . 5 ⊢ (𝜑 → 𝐹:𝑋⟶(0[,)+∞)) | |
2 | 1 | frnd 6671 | . . . 4 ⊢ (𝜑 → ran 𝐹 ⊆ (0[,)+∞)) |
3 | 2 | adantr 482 | . . 3 ⊢ ((𝜑 ∧ +∞ ∈ ran 𝐹) → ran 𝐹 ⊆ (0[,)+∞)) |
4 | simpr 486 | . . 3 ⊢ ((𝜑 ∧ +∞ ∈ ran 𝐹) → +∞ ∈ ran 𝐹) | |
5 | 3, 4 | sseldd 3943 | . 2 ⊢ ((𝜑 ∧ +∞ ∈ ran 𝐹) → +∞ ∈ (0[,)+∞)) |
6 | 0xr 11135 | . . . 4 ⊢ 0 ∈ ℝ* | |
7 | icoub 43456 | . . . 4 ⊢ (0 ∈ ℝ* → ¬ +∞ ∈ (0[,)+∞)) | |
8 | 6, 7 | ax-mp 5 | . . 3 ⊢ ¬ +∞ ∈ (0[,)+∞) |
9 | 8 | a1i 11 | . 2 ⊢ ((𝜑 ∧ +∞ ∈ ran 𝐹) → ¬ +∞ ∈ (0[,)+∞)) |
10 | 5, 9 | pm2.65da 815 | 1 ⊢ (𝜑 → ¬ +∞ ∈ ran 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 ∈ wcel 2106 ⊆ wss 3908 ran crn 5631 ⟶wf 6487 (class class class)co 7349 0cc0 10984 +∞cpnf 11119 ℝ*cxr 11121 [,)cico 13194 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5254 ax-nul 5261 ax-pow 5318 ax-pr 5382 ax-un 7662 ax-cnex 11040 ax-resscn 11041 ax-1cn 11042 ax-addrcl 11045 ax-rnegex 11055 ax-cnre 11057 ax-pre-lttri 11058 ax-pre-lttrn 11059 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rab 3406 df-v 3445 df-sbc 3738 df-csb 3854 df-dif 3911 df-un 3913 df-in 3915 df-ss 3925 df-nul 4281 df-if 4485 df-pw 4560 df-sn 4585 df-pr 4587 df-op 4591 df-uni 4864 df-iun 4954 df-br 5104 df-opab 5166 df-mpt 5187 df-id 5528 df-po 5542 df-so 5543 df-xp 5636 df-rel 5637 df-cnv 5638 df-co 5639 df-dm 5640 df-rn 5641 df-res 5642 df-ima 5643 df-iota 6443 df-fun 6493 df-fn 6494 df-f 6495 df-f1 6496 df-fo 6497 df-f1o 6498 df-fv 6499 df-ov 7352 df-oprab 7353 df-mpo 7354 df-1st 7911 df-2nd 7912 df-er 8581 df-en 8817 df-dom 8818 df-sdom 8819 df-pnf 11124 df-mnf 11125 df-xr 11126 df-ltxr 11127 df-ico 13198 |
This theorem is referenced by: sge0reval 44303 sge0fsum 44318 |
Copyright terms: Public domain | W3C validator |