Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fge0npnf Structured version   Visualization version   GIF version

Theorem fge0npnf 44298
Description: If 𝐹 maps to nonnegative reals, then +∞ is not in its range. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypothesis
Ref Expression
fge0npnf.1 (𝜑𝐹:𝑋⟶(0[,)+∞))
Assertion
Ref Expression
fge0npnf (𝜑 → ¬ +∞ ∈ ran 𝐹)

Proof of Theorem fge0npnf
StepHypRef Expression
1 fge0npnf.1 . . . . 5 (𝜑𝐹:𝑋⟶(0[,)+∞))
21frnd 6671 . . . 4 (𝜑 → ran 𝐹 ⊆ (0[,)+∞))
32adantr 482 . . 3 ((𝜑 ∧ +∞ ∈ ran 𝐹) → ran 𝐹 ⊆ (0[,)+∞))
4 simpr 486 . . 3 ((𝜑 ∧ +∞ ∈ ran 𝐹) → +∞ ∈ ran 𝐹)
53, 4sseldd 3943 . 2 ((𝜑 ∧ +∞ ∈ ran 𝐹) → +∞ ∈ (0[,)+∞))
6 0xr 11135 . . . 4 0 ∈ ℝ*
7 icoub 43456 . . . 4 (0 ∈ ℝ* → ¬ +∞ ∈ (0[,)+∞))
86, 7ax-mp 5 . . 3 ¬ +∞ ∈ (0[,)+∞)
98a1i 11 . 2 ((𝜑 ∧ +∞ ∈ ran 𝐹) → ¬ +∞ ∈ (0[,)+∞))
105, 9pm2.65da 815 1 (𝜑 → ¬ +∞ ∈ ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397  wcel 2106  wss 3908  ran crn 5631  wf 6487  (class class class)co 7349  0cc0 10984  +∞cpnf 11119  *cxr 11121  [,)cico 13194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5254  ax-nul 5261  ax-pow 5318  ax-pr 5382  ax-un 7662  ax-cnex 11040  ax-resscn 11041  ax-1cn 11042  ax-addrcl 11045  ax-rnegex 11055  ax-cnre 11057  ax-pre-lttri 11058  ax-pre-lttrn 11059
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rab 3406  df-v 3445  df-sbc 3738  df-csb 3854  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4281  df-if 4485  df-pw 4560  df-sn 4585  df-pr 4587  df-op 4591  df-uni 4864  df-iun 4954  df-br 5104  df-opab 5166  df-mpt 5187  df-id 5528  df-po 5542  df-so 5543  df-xp 5636  df-rel 5637  df-cnv 5638  df-co 5639  df-dm 5640  df-rn 5641  df-res 5642  df-ima 5643  df-iota 6443  df-fun 6493  df-fn 6494  df-f 6495  df-f1 6496  df-fo 6497  df-f1o 6498  df-fv 6499  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7911  df-2nd 7912  df-er 8581  df-en 8817  df-dom 8818  df-sdom 8819  df-pnf 11124  df-mnf 11125  df-xr 11126  df-ltxr 11127  df-ico 13198
This theorem is referenced by:  sge0reval  44303  sge0fsum  44318
  Copyright terms: Public domain W3C validator