![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fge0npnf | Structured version Visualization version GIF version |
Description: If 𝐹 maps to nonnegative reals, then +∞ is not in its range. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
fge0npnf.1 | ⊢ (𝜑 → 𝐹:𝑋⟶(0[,)+∞)) |
Ref | Expression |
---|---|
fge0npnf | ⊢ (𝜑 → ¬ +∞ ∈ ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fge0npnf.1 | . . . . 5 ⊢ (𝜑 → 𝐹:𝑋⟶(0[,)+∞)) | |
2 | 1 | frnd 6298 | . . . 4 ⊢ (𝜑 → ran 𝐹 ⊆ (0[,)+∞)) |
3 | 2 | adantr 474 | . . 3 ⊢ ((𝜑 ∧ +∞ ∈ ran 𝐹) → ran 𝐹 ⊆ (0[,)+∞)) |
4 | simpr 479 | . . 3 ⊢ ((𝜑 ∧ +∞ ∈ ran 𝐹) → +∞ ∈ ran 𝐹) | |
5 | 3, 4 | sseldd 3821 | . 2 ⊢ ((𝜑 ∧ +∞ ∈ ran 𝐹) → +∞ ∈ (0[,)+∞)) |
6 | 0xr 10423 | . . . 4 ⊢ 0 ∈ ℝ* | |
7 | icoub 40654 | . . . 4 ⊢ (0 ∈ ℝ* → ¬ +∞ ∈ (0[,)+∞)) | |
8 | 6, 7 | ax-mp 5 | . . 3 ⊢ ¬ +∞ ∈ (0[,)+∞) |
9 | 8 | a1i 11 | . 2 ⊢ ((𝜑 ∧ +∞ ∈ ran 𝐹) → ¬ +∞ ∈ (0[,)+∞)) |
10 | 5, 9 | pm2.65da 807 | 1 ⊢ (𝜑 → ¬ +∞ ∈ ran 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 386 ∈ wcel 2106 ⊆ wss 3791 ran crn 5356 ⟶wf 6131 (class class class)co 6922 0cc0 10272 +∞cpnf 10408 ℝ*cxr 10410 [,)cico 12489 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-8 2108 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-cnex 10328 ax-resscn 10329 ax-1cn 10330 ax-addrcl 10333 ax-rnegex 10343 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ne 2969 df-nel 3075 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3399 df-sbc 3652 df-csb 3751 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-nul 4141 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4672 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-po 5274 df-so 5275 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-1st 7445 df-2nd 7446 df-er 8026 df-en 8242 df-dom 8243 df-sdom 8244 df-pnf 10413 df-mnf 10414 df-xr 10415 df-ltxr 10416 df-ico 12493 |
This theorem is referenced by: sge0reval 41506 sge0fsum 41521 |
Copyright terms: Public domain | W3C validator |