| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sadid1 | Structured version Visualization version GIF version | ||
| Description: The adder sequence function has a left identity, the empty set, which is the representation of the integer zero. (Contributed by Mario Carneiro, 9-Sep-2016.) |
| Ref | Expression |
|---|---|
| sadid1 | ⊢ (𝐴 ⊆ ℕ0 → (𝐴 sadd ∅) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . 3 ⊢ (𝐴 ⊆ ℕ0 → 𝐴 ⊆ ℕ0) | |
| 2 | 0ss 4349 | . . . 4 ⊢ ∅ ⊆ ℕ0 | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (𝐴 ⊆ ℕ0 → ∅ ⊆ ℕ0) |
| 4 | in0 4344 | . . . 4 ⊢ (𝐴 ∩ ∅) = ∅ | |
| 5 | 4 | a1i 11 | . . 3 ⊢ (𝐴 ⊆ ℕ0 → (𝐴 ∩ ∅) = ∅) |
| 6 | 1, 3, 5 | saddisj 16383 | . 2 ⊢ (𝐴 ⊆ ℕ0 → (𝐴 sadd ∅) = (𝐴 ∪ ∅)) |
| 7 | un0 4343 | . 2 ⊢ (𝐴 ∪ ∅) = 𝐴 | |
| 8 | 6, 7 | eqtrdi 2784 | 1 ⊢ (𝐴 ⊆ ℕ0 → (𝐴 sadd ∅) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∪ cun 3896 ∩ cin 3897 ⊆ wss 3898 ∅c0 4282 (class class class)co 7355 ℕ0cn0 12392 sadd csad 16338 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-xor 1513 df-tru 1544 df-fal 1554 df-had 1595 df-cad 1608 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-2o 8395 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-n0 12393 df-z 12480 df-uz 12743 df-fz 13415 df-seq 13916 df-sad 16369 |
| This theorem is referenced by: sadid2 16387 smuval2 16400 smupvallem 16401 smu01lem 16403 |
| Copyright terms: Public domain | W3C validator |