| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > resv1r | Structured version Visualization version GIF version | ||
| Description: 1r is unaffected by scalar restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.) |
| Ref | Expression |
|---|---|
| resvbas.1 | ⊢ 𝐻 = (𝐺 ↾v 𝐴) |
| resv1r.2 | ⊢ 1 = (1r‘𝐺) |
| Ref | Expression |
|---|---|
| resv1r | ⊢ (𝐴 ∈ 𝑉 → 1 = (1r‘𝐻)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resvbas.1 | . . . . . 6 ⊢ 𝐻 = (𝐺 ↾v 𝐴) | |
| 2 | eqid 2730 | . . . . . 6 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 3 | 1, 2 | resvbas 33313 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (Base‘𝐺) = (Base‘𝐻)) |
| 4 | 3 | eleq2d 2815 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝑒 ∈ (Base‘𝐺) ↔ 𝑒 ∈ (Base‘𝐻))) |
| 5 | eqid 2730 | . . . . . . . . 9 ⊢ (.r‘𝐺) = (.r‘𝐺) | |
| 6 | 1, 5 | resvmulr 33316 | . . . . . . . 8 ⊢ (𝐴 ∈ 𝑉 → (.r‘𝐺) = (.r‘𝐻)) |
| 7 | 6 | oveqd 7407 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑉 → (𝑒(.r‘𝐺)𝑥) = (𝑒(.r‘𝐻)𝑥)) |
| 8 | 7 | eqeq1d 2732 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → ((𝑒(.r‘𝐺)𝑥) = 𝑥 ↔ (𝑒(.r‘𝐻)𝑥) = 𝑥)) |
| 9 | 6 | oveqd 7407 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑉 → (𝑥(.r‘𝐺)𝑒) = (𝑥(.r‘𝐻)𝑒)) |
| 10 | 9 | eqeq1d 2732 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → ((𝑥(.r‘𝐺)𝑒) = 𝑥 ↔ (𝑥(.r‘𝐻)𝑒) = 𝑥)) |
| 11 | 8, 10 | anbi12d 632 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (((𝑒(.r‘𝐺)𝑥) = 𝑥 ∧ (𝑥(.r‘𝐺)𝑒) = 𝑥) ↔ ((𝑒(.r‘𝐻)𝑥) = 𝑥 ∧ (𝑥(.r‘𝐻)𝑒) = 𝑥))) |
| 12 | 3, 11 | raleqbidv 3321 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥 ∈ (Base‘𝐺)((𝑒(.r‘𝐺)𝑥) = 𝑥 ∧ (𝑥(.r‘𝐺)𝑒) = 𝑥) ↔ ∀𝑥 ∈ (Base‘𝐻)((𝑒(.r‘𝐻)𝑥) = 𝑥 ∧ (𝑥(.r‘𝐻)𝑒) = 𝑥))) |
| 13 | 4, 12 | anbi12d 632 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ((𝑒 ∈ (Base‘𝐺) ∧ ∀𝑥 ∈ (Base‘𝐺)((𝑒(.r‘𝐺)𝑥) = 𝑥 ∧ (𝑥(.r‘𝐺)𝑒) = 𝑥)) ↔ (𝑒 ∈ (Base‘𝐻) ∧ ∀𝑥 ∈ (Base‘𝐻)((𝑒(.r‘𝐻)𝑥) = 𝑥 ∧ (𝑥(.r‘𝐻)𝑒) = 𝑥)))) |
| 14 | 13 | iotabidv 6498 | . 2 ⊢ (𝐴 ∈ 𝑉 → (℩𝑒(𝑒 ∈ (Base‘𝐺) ∧ ∀𝑥 ∈ (Base‘𝐺)((𝑒(.r‘𝐺)𝑥) = 𝑥 ∧ (𝑥(.r‘𝐺)𝑒) = 𝑥))) = (℩𝑒(𝑒 ∈ (Base‘𝐻) ∧ ∀𝑥 ∈ (Base‘𝐻)((𝑒(.r‘𝐻)𝑥) = 𝑥 ∧ (𝑥(.r‘𝐻)𝑒) = 𝑥)))) |
| 15 | resv1r.2 | . . 3 ⊢ 1 = (1r‘𝐺) | |
| 16 | 2, 5, 15 | dfur2 20100 | . 2 ⊢ 1 = (℩𝑒(𝑒 ∈ (Base‘𝐺) ∧ ∀𝑥 ∈ (Base‘𝐺)((𝑒(.r‘𝐺)𝑥) = 𝑥 ∧ (𝑥(.r‘𝐺)𝑒) = 𝑥))) |
| 17 | eqid 2730 | . . 3 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
| 18 | eqid 2730 | . . 3 ⊢ (.r‘𝐻) = (.r‘𝐻) | |
| 19 | eqid 2730 | . . 3 ⊢ (1r‘𝐻) = (1r‘𝐻) | |
| 20 | 17, 18, 19 | dfur2 20100 | . 2 ⊢ (1r‘𝐻) = (℩𝑒(𝑒 ∈ (Base‘𝐻) ∧ ∀𝑥 ∈ (Base‘𝐻)((𝑒(.r‘𝐻)𝑥) = 𝑥 ∧ (𝑥(.r‘𝐻)𝑒) = 𝑥))) |
| 21 | 14, 16, 20 | 3eqtr4g 2790 | 1 ⊢ (𝐴 ∈ 𝑉 → 1 = (1r‘𝐻)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ℩cio 6465 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 .rcmulr 17228 1rcur 20097 ↾v cresv 33305 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-plusg 17240 df-mulr 17241 df-sca 17243 df-0g 17411 df-mgp 20057 df-ur 20098 df-resv 33306 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |