Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  resv1r Structured version   Visualization version   GIF version

Theorem resv1r 33318
Description: 1r is unaffected by scalar restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.)
Hypotheses
Ref Expression
resvbas.1 𝐻 = (𝐺v 𝐴)
resv1r.2 1 = (1r𝐺)
Assertion
Ref Expression
resv1r (𝐴𝑉1 = (1r𝐻))

Proof of Theorem resv1r
Dummy variables 𝑥 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 resvbas.1 . . . . . 6 𝐻 = (𝐺v 𝐴)
2 eqid 2730 . . . . . 6 (Base‘𝐺) = (Base‘𝐺)
31, 2resvbas 33313 . . . . 5 (𝐴𝑉 → (Base‘𝐺) = (Base‘𝐻))
43eleq2d 2815 . . . 4 (𝐴𝑉 → (𝑒 ∈ (Base‘𝐺) ↔ 𝑒 ∈ (Base‘𝐻)))
5 eqid 2730 . . . . . . . . 9 (.r𝐺) = (.r𝐺)
61, 5resvmulr 33316 . . . . . . . 8 (𝐴𝑉 → (.r𝐺) = (.r𝐻))
76oveqd 7407 . . . . . . 7 (𝐴𝑉 → (𝑒(.r𝐺)𝑥) = (𝑒(.r𝐻)𝑥))
87eqeq1d 2732 . . . . . 6 (𝐴𝑉 → ((𝑒(.r𝐺)𝑥) = 𝑥 ↔ (𝑒(.r𝐻)𝑥) = 𝑥))
96oveqd 7407 . . . . . . 7 (𝐴𝑉 → (𝑥(.r𝐺)𝑒) = (𝑥(.r𝐻)𝑒))
109eqeq1d 2732 . . . . . 6 (𝐴𝑉 → ((𝑥(.r𝐺)𝑒) = 𝑥 ↔ (𝑥(.r𝐻)𝑒) = 𝑥))
118, 10anbi12d 632 . . . . 5 (𝐴𝑉 → (((𝑒(.r𝐺)𝑥) = 𝑥 ∧ (𝑥(.r𝐺)𝑒) = 𝑥) ↔ ((𝑒(.r𝐻)𝑥) = 𝑥 ∧ (𝑥(.r𝐻)𝑒) = 𝑥)))
123, 11raleqbidv 3321 . . . 4 (𝐴𝑉 → (∀𝑥 ∈ (Base‘𝐺)((𝑒(.r𝐺)𝑥) = 𝑥 ∧ (𝑥(.r𝐺)𝑒) = 𝑥) ↔ ∀𝑥 ∈ (Base‘𝐻)((𝑒(.r𝐻)𝑥) = 𝑥 ∧ (𝑥(.r𝐻)𝑒) = 𝑥)))
134, 12anbi12d 632 . . 3 (𝐴𝑉 → ((𝑒 ∈ (Base‘𝐺) ∧ ∀𝑥 ∈ (Base‘𝐺)((𝑒(.r𝐺)𝑥) = 𝑥 ∧ (𝑥(.r𝐺)𝑒) = 𝑥)) ↔ (𝑒 ∈ (Base‘𝐻) ∧ ∀𝑥 ∈ (Base‘𝐻)((𝑒(.r𝐻)𝑥) = 𝑥 ∧ (𝑥(.r𝐻)𝑒) = 𝑥))))
1413iotabidv 6498 . 2 (𝐴𝑉 → (℩𝑒(𝑒 ∈ (Base‘𝐺) ∧ ∀𝑥 ∈ (Base‘𝐺)((𝑒(.r𝐺)𝑥) = 𝑥 ∧ (𝑥(.r𝐺)𝑒) = 𝑥))) = (℩𝑒(𝑒 ∈ (Base‘𝐻) ∧ ∀𝑥 ∈ (Base‘𝐻)((𝑒(.r𝐻)𝑥) = 𝑥 ∧ (𝑥(.r𝐻)𝑒) = 𝑥))))
15 resv1r.2 . . 3 1 = (1r𝐺)
162, 5, 15dfur2 20100 . 2 1 = (℩𝑒(𝑒 ∈ (Base‘𝐺) ∧ ∀𝑥 ∈ (Base‘𝐺)((𝑒(.r𝐺)𝑥) = 𝑥 ∧ (𝑥(.r𝐺)𝑒) = 𝑥)))
17 eqid 2730 . . 3 (Base‘𝐻) = (Base‘𝐻)
18 eqid 2730 . . 3 (.r𝐻) = (.r𝐻)
19 eqid 2730 . . 3 (1r𝐻) = (1r𝐻)
2017, 18, 19dfur2 20100 . 2 (1r𝐻) = (℩𝑒(𝑒 ∈ (Base‘𝐻) ∧ ∀𝑥 ∈ (Base‘𝐻)((𝑒(.r𝐻)𝑥) = 𝑥 ∧ (𝑥(.r𝐻)𝑒) = 𝑥)))
2114, 16, 203eqtr4g 2790 1 (𝐴𝑉1 = (1r𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3045  cio 6465  cfv 6514  (class class class)co 7390  Basecbs 17186  .rcmulr 17228  1rcur 20097  v cresv 33305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-plusg 17240  df-mulr 17241  df-sca 17243  df-0g 17411  df-mgp 20057  df-ur 20098  df-resv 33306
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator