![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > resv1r | Structured version Visualization version GIF version |
Description: 1r is unaffected by scalar restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.) |
Ref | Expression |
---|---|
resvbas.1 | ⊢ 𝐻 = (𝐺 ↾v 𝐴) |
resv1r.2 | ⊢ 1 = (1r‘𝐺) |
Ref | Expression |
---|---|
resv1r | ⊢ (𝐴 ∈ 𝑉 → 1 = (1r‘𝐻)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resvbas.1 | . . . . . 6 ⊢ 𝐻 = (𝐺 ↾v 𝐴) | |
2 | eqid 2730 | . . . . . 6 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
3 | 1, 2 | resvbas 32715 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (Base‘𝐺) = (Base‘𝐻)) |
4 | 3 | eleq2d 2817 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝑒 ∈ (Base‘𝐺) ↔ 𝑒 ∈ (Base‘𝐻))) |
5 | eqid 2730 | . . . . . . . . 9 ⊢ (.r‘𝐺) = (.r‘𝐺) | |
6 | 1, 5 | resvmulr 32721 | . . . . . . . 8 ⊢ (𝐴 ∈ 𝑉 → (.r‘𝐺) = (.r‘𝐻)) |
7 | 6 | oveqd 7430 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑉 → (𝑒(.r‘𝐺)𝑥) = (𝑒(.r‘𝐻)𝑥)) |
8 | 7 | eqeq1d 2732 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → ((𝑒(.r‘𝐺)𝑥) = 𝑥 ↔ (𝑒(.r‘𝐻)𝑥) = 𝑥)) |
9 | 6 | oveqd 7430 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑉 → (𝑥(.r‘𝐺)𝑒) = (𝑥(.r‘𝐻)𝑒)) |
10 | 9 | eqeq1d 2732 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → ((𝑥(.r‘𝐺)𝑒) = 𝑥 ↔ (𝑥(.r‘𝐻)𝑒) = 𝑥)) |
11 | 8, 10 | anbi12d 629 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (((𝑒(.r‘𝐺)𝑥) = 𝑥 ∧ (𝑥(.r‘𝐺)𝑒) = 𝑥) ↔ ((𝑒(.r‘𝐻)𝑥) = 𝑥 ∧ (𝑥(.r‘𝐻)𝑒) = 𝑥))) |
12 | 3, 11 | raleqbidv 3340 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥 ∈ (Base‘𝐺)((𝑒(.r‘𝐺)𝑥) = 𝑥 ∧ (𝑥(.r‘𝐺)𝑒) = 𝑥) ↔ ∀𝑥 ∈ (Base‘𝐻)((𝑒(.r‘𝐻)𝑥) = 𝑥 ∧ (𝑥(.r‘𝐻)𝑒) = 𝑥))) |
13 | 4, 12 | anbi12d 629 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ((𝑒 ∈ (Base‘𝐺) ∧ ∀𝑥 ∈ (Base‘𝐺)((𝑒(.r‘𝐺)𝑥) = 𝑥 ∧ (𝑥(.r‘𝐺)𝑒) = 𝑥)) ↔ (𝑒 ∈ (Base‘𝐻) ∧ ∀𝑥 ∈ (Base‘𝐻)((𝑒(.r‘𝐻)𝑥) = 𝑥 ∧ (𝑥(.r‘𝐻)𝑒) = 𝑥)))) |
14 | 13 | iotabidv 6528 | . 2 ⊢ (𝐴 ∈ 𝑉 → (℩𝑒(𝑒 ∈ (Base‘𝐺) ∧ ∀𝑥 ∈ (Base‘𝐺)((𝑒(.r‘𝐺)𝑥) = 𝑥 ∧ (𝑥(.r‘𝐺)𝑒) = 𝑥))) = (℩𝑒(𝑒 ∈ (Base‘𝐻) ∧ ∀𝑥 ∈ (Base‘𝐻)((𝑒(.r‘𝐻)𝑥) = 𝑥 ∧ (𝑥(.r‘𝐻)𝑒) = 𝑥)))) |
15 | resv1r.2 | . . 3 ⊢ 1 = (1r‘𝐺) | |
16 | 2, 5, 15 | dfur2 20080 | . 2 ⊢ 1 = (℩𝑒(𝑒 ∈ (Base‘𝐺) ∧ ∀𝑥 ∈ (Base‘𝐺)((𝑒(.r‘𝐺)𝑥) = 𝑥 ∧ (𝑥(.r‘𝐺)𝑒) = 𝑥))) |
17 | eqid 2730 | . . 3 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
18 | eqid 2730 | . . 3 ⊢ (.r‘𝐻) = (.r‘𝐻) | |
19 | eqid 2730 | . . 3 ⊢ (1r‘𝐻) = (1r‘𝐻) | |
20 | 17, 18, 19 | dfur2 20080 | . 2 ⊢ (1r‘𝐻) = (℩𝑒(𝑒 ∈ (Base‘𝐻) ∧ ∀𝑥 ∈ (Base‘𝐻)((𝑒(.r‘𝐻)𝑥) = 𝑥 ∧ (𝑥(.r‘𝐻)𝑒) = 𝑥))) |
21 | 14, 16, 20 | 3eqtr4g 2795 | 1 ⊢ (𝐴 ∈ 𝑉 → 1 = (1r‘𝐻)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1539 ∈ wcel 2104 ∀wral 3059 ℩cio 6494 ‘cfv 6544 (class class class)co 7413 Basecbs 17150 .rcmulr 17204 1rcur 20077 ↾v cresv 32706 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7860 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-er 8707 df-en 8944 df-dom 8945 df-sdom 8946 df-pnf 11256 df-mnf 11257 df-xr 11258 df-ltxr 11259 df-le 11260 df-sub 11452 df-neg 11453 df-nn 12219 df-2 12281 df-3 12282 df-4 12283 df-5 12284 df-sets 17103 df-slot 17121 df-ndx 17133 df-base 17151 df-plusg 17216 df-mulr 17217 df-sca 17219 df-0g 17393 df-mgp 20031 df-ur 20078 df-resv 32707 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |