![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > limcflflem | Structured version Visualization version GIF version |
Description: Lemma for limcflf 25936. (Contributed by Mario Carneiro, 25-Dec-2016.) |
Ref | Expression |
---|---|
limcflf.f | ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
limcflf.a | ⊢ (𝜑 → 𝐴 ⊆ ℂ) |
limcflf.b | ⊢ (𝜑 → 𝐵 ∈ ((limPt‘𝐾)‘𝐴)) |
limcflf.k | ⊢ 𝐾 = (TopOpen‘ℂfld) |
limcflf.c | ⊢ 𝐶 = (𝐴 ∖ {𝐵}) |
limcflf.l | ⊢ 𝐿 = (((nei‘𝐾)‘{𝐵}) ↾t 𝐶) |
Ref | Expression |
---|---|
limcflflem | ⊢ (𝜑 → 𝐿 ∈ (Fil‘𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limcflf.l | . 2 ⊢ 𝐿 = (((nei‘𝐾)‘{𝐵}) ↾t 𝐶) | |
2 | limcflf.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ((limPt‘𝐾)‘𝐴)) | |
3 | limcflf.k | . . . . . . 7 ⊢ 𝐾 = (TopOpen‘ℂfld) | |
4 | 3 | cnfldtop 24825 | . . . . . 6 ⊢ 𝐾 ∈ Top |
5 | limcflf.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ⊆ ℂ) | |
6 | 3 | cnfldtopon 24824 | . . . . . . . 8 ⊢ 𝐾 ∈ (TopOn‘ℂ) |
7 | 6 | toponunii 22943 | . . . . . . 7 ⊢ ℂ = ∪ 𝐾 |
8 | 7 | islp 23169 | . . . . . 6 ⊢ ((𝐾 ∈ Top ∧ 𝐴 ⊆ ℂ) → (𝐵 ∈ ((limPt‘𝐾)‘𝐴) ↔ 𝐵 ∈ ((cls‘𝐾)‘(𝐴 ∖ {𝐵})))) |
9 | 4, 5, 8 | sylancr 586 | . . . . 5 ⊢ (𝜑 → (𝐵 ∈ ((limPt‘𝐾)‘𝐴) ↔ 𝐵 ∈ ((cls‘𝐾)‘(𝐴 ∖ {𝐵})))) |
10 | 2, 9 | mpbid 232 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) |
11 | limcflf.c | . . . . 5 ⊢ 𝐶 = (𝐴 ∖ {𝐵}) | |
12 | 11 | fveq2i 6923 | . . . 4 ⊢ ((cls‘𝐾)‘𝐶) = ((cls‘𝐾)‘(𝐴 ∖ {𝐵})) |
13 | 10, 12 | eleqtrrdi 2855 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ((cls‘𝐾)‘𝐶)) |
14 | difss 4159 | . . . . . 6 ⊢ (𝐴 ∖ {𝐵}) ⊆ 𝐴 | |
15 | 11, 14 | eqsstri 4043 | . . . . 5 ⊢ 𝐶 ⊆ 𝐴 |
16 | 15, 5 | sstrid 4020 | . . . 4 ⊢ (𝜑 → 𝐶 ⊆ ℂ) |
17 | 7 | lpss 23171 | . . . . . 6 ⊢ ((𝐾 ∈ Top ∧ 𝐴 ⊆ ℂ) → ((limPt‘𝐾)‘𝐴) ⊆ ℂ) |
18 | 4, 5, 17 | sylancr 586 | . . . . 5 ⊢ (𝜑 → ((limPt‘𝐾)‘𝐴) ⊆ ℂ) |
19 | 18, 2 | sseldd 4009 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
20 | trnei 23921 | . . . 4 ⊢ ((𝐾 ∈ (TopOn‘ℂ) ∧ 𝐶 ⊆ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵 ∈ ((cls‘𝐾)‘𝐶) ↔ (((nei‘𝐾)‘{𝐵}) ↾t 𝐶) ∈ (Fil‘𝐶))) | |
21 | 6, 16, 19, 20 | mp3an2i 1466 | . . 3 ⊢ (𝜑 → (𝐵 ∈ ((cls‘𝐾)‘𝐶) ↔ (((nei‘𝐾)‘{𝐵}) ↾t 𝐶) ∈ (Fil‘𝐶))) |
22 | 13, 21 | mpbid 232 | . 2 ⊢ (𝜑 → (((nei‘𝐾)‘{𝐵}) ↾t 𝐶) ∈ (Fil‘𝐶)) |
23 | 1, 22 | eqeltrid 2848 | 1 ⊢ (𝜑 → 𝐿 ∈ (Fil‘𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 ∖ cdif 3973 ⊆ wss 3976 {csn 4648 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 ℂcc 11182 ↾t crest 17480 TopOpenctopn 17481 ℂfldccnfld 21387 Topctop 22920 TopOnctopon 22937 clsccl 23047 neicnei 23126 limPtclp 23163 Filcfil 23874 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-inf 9512 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-q 13014 df-rp 13058 df-xneg 13175 df-xadd 13176 df-xmul 13177 df-fz 13568 df-seq 14053 df-exp 14113 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-struct 17194 df-slot 17229 df-ndx 17241 df-base 17259 df-plusg 17324 df-mulr 17325 df-starv 17326 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-rest 17482 df-topn 17483 df-topgen 17503 df-psmet 21379 df-xmet 21380 df-met 21381 df-bl 21382 df-mopn 21383 df-fbas 21384 df-cnfld 21388 df-top 22921 df-topon 22938 df-topsp 22960 df-bases 22974 df-cld 23048 df-ntr 23049 df-cls 23050 df-nei 23127 df-lp 23165 df-fil 23875 df-xms 24351 df-ms 24352 |
This theorem is referenced by: limcflf 25936 limcmo 25937 |
Copyright terms: Public domain | W3C validator |