MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limcflflem Structured version   Visualization version   GIF version

Theorem limcflflem 25803
Description: Lemma for limcflf 25804. (Contributed by Mario Carneiro, 25-Dec-2016.)
Hypotheses
Ref Expression
limcflf.f (𝜑𝐹:𝐴⟶ℂ)
limcflf.a (𝜑𝐴 ⊆ ℂ)
limcflf.b (𝜑𝐵 ∈ ((limPt‘𝐾)‘𝐴))
limcflf.k 𝐾 = (TopOpen‘ℂfld)
limcflf.c 𝐶 = (𝐴 ∖ {𝐵})
limcflf.l 𝐿 = (((nei‘𝐾)‘{𝐵}) ↾t 𝐶)
Assertion
Ref Expression
limcflflem (𝜑𝐿 ∈ (Fil‘𝐶))

Proof of Theorem limcflflem
StepHypRef Expression
1 limcflf.l . 2 𝐿 = (((nei‘𝐾)‘{𝐵}) ↾t 𝐶)
2 limcflf.b . . . . 5 (𝜑𝐵 ∈ ((limPt‘𝐾)‘𝐴))
3 limcflf.k . . . . . . 7 𝐾 = (TopOpen‘ℂfld)
43cnfldtop 24693 . . . . . 6 𝐾 ∈ Top
5 limcflf.a . . . . . 6 (𝜑𝐴 ⊆ ℂ)
63cnfldtopon 24692 . . . . . . . 8 𝐾 ∈ (TopOn‘ℂ)
76toponunii 22826 . . . . . . 7 ℂ = 𝐾
87islp 23050 . . . . . 6 ((𝐾 ∈ Top ∧ 𝐴 ⊆ ℂ) → (𝐵 ∈ ((limPt‘𝐾)‘𝐴) ↔ 𝐵 ∈ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))))
94, 5, 8sylancr 587 . . . . 5 (𝜑 → (𝐵 ∈ ((limPt‘𝐾)‘𝐴) ↔ 𝐵 ∈ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))))
102, 9mpbid 232 . . . 4 (𝜑𝐵 ∈ ((cls‘𝐾)‘(𝐴 ∖ {𝐵})))
11 limcflf.c . . . . 5 𝐶 = (𝐴 ∖ {𝐵})
1211fveq2i 6820 . . . 4 ((cls‘𝐾)‘𝐶) = ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))
1310, 12eleqtrrdi 2842 . . 3 (𝜑𝐵 ∈ ((cls‘𝐾)‘𝐶))
14 difss 4081 . . . . . 6 (𝐴 ∖ {𝐵}) ⊆ 𝐴
1511, 14eqsstri 3976 . . . . 5 𝐶𝐴
1615, 5sstrid 3941 . . . 4 (𝜑𝐶 ⊆ ℂ)
177lpss 23052 . . . . . 6 ((𝐾 ∈ Top ∧ 𝐴 ⊆ ℂ) → ((limPt‘𝐾)‘𝐴) ⊆ ℂ)
184, 5, 17sylancr 587 . . . . 5 (𝜑 → ((limPt‘𝐾)‘𝐴) ⊆ ℂ)
1918, 2sseldd 3930 . . . 4 (𝜑𝐵 ∈ ℂ)
20 trnei 23802 . . . 4 ((𝐾 ∈ (TopOn‘ℂ) ∧ 𝐶 ⊆ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵 ∈ ((cls‘𝐾)‘𝐶) ↔ (((nei‘𝐾)‘{𝐵}) ↾t 𝐶) ∈ (Fil‘𝐶)))
216, 16, 19, 20mp3an2i 1468 . . 3 (𝜑 → (𝐵 ∈ ((cls‘𝐾)‘𝐶) ↔ (((nei‘𝐾)‘{𝐵}) ↾t 𝐶) ∈ (Fil‘𝐶)))
2213, 21mpbid 232 . 2 (𝜑 → (((nei‘𝐾)‘{𝐵}) ↾t 𝐶) ∈ (Fil‘𝐶))
231, 22eqeltrid 2835 1 (𝜑𝐿 ∈ (Fil‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2111  cdif 3894  wss 3897  {csn 4571  wf 6472  cfv 6476  (class class class)co 7341  cc 10999  t crest 17319  TopOpenctopn 17320  fldccnfld 21286  Topctop 22803  TopOnctopon 22820  clsccl 22928  neicnei 23007  limPtclp 23044  Filcfil 23755
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-iin 4939  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-map 8747  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-sup 9321  df-inf 9322  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-7 12188  df-8 12189  df-9 12190  df-n0 12377  df-z 12464  df-dec 12584  df-uz 12728  df-q 12842  df-rp 12886  df-xneg 13006  df-xadd 13007  df-xmul 13008  df-fz 13403  df-seq 13904  df-exp 13964  df-cj 15001  df-re 15002  df-im 15003  df-sqrt 15137  df-abs 15138  df-struct 17053  df-slot 17088  df-ndx 17100  df-base 17116  df-plusg 17169  df-mulr 17170  df-starv 17171  df-tset 17175  df-ple 17176  df-ds 17178  df-unif 17179  df-rest 17321  df-topn 17322  df-topgen 17342  df-psmet 21278  df-xmet 21279  df-met 21280  df-bl 21281  df-mopn 21282  df-fbas 21283  df-cnfld 21287  df-top 22804  df-topon 22821  df-topsp 22843  df-bases 22856  df-cld 22929  df-ntr 22930  df-cls 22931  df-nei 23008  df-lp 23046  df-fil 23756  df-xms 24230  df-ms 24231
This theorem is referenced by:  limcflf  25804  limcmo  25805
  Copyright terms: Public domain W3C validator