Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > limcflflem | Structured version Visualization version GIF version |
Description: Lemma for limcflf 24950. (Contributed by Mario Carneiro, 25-Dec-2016.) |
Ref | Expression |
---|---|
limcflf.f | ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
limcflf.a | ⊢ (𝜑 → 𝐴 ⊆ ℂ) |
limcflf.b | ⊢ (𝜑 → 𝐵 ∈ ((limPt‘𝐾)‘𝐴)) |
limcflf.k | ⊢ 𝐾 = (TopOpen‘ℂfld) |
limcflf.c | ⊢ 𝐶 = (𝐴 ∖ {𝐵}) |
limcflf.l | ⊢ 𝐿 = (((nei‘𝐾)‘{𝐵}) ↾t 𝐶) |
Ref | Expression |
---|---|
limcflflem | ⊢ (𝜑 → 𝐿 ∈ (Fil‘𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limcflf.l | . 2 ⊢ 𝐿 = (((nei‘𝐾)‘{𝐵}) ↾t 𝐶) | |
2 | limcflf.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ((limPt‘𝐾)‘𝐴)) | |
3 | limcflf.k | . . . . . . 7 ⊢ 𝐾 = (TopOpen‘ℂfld) | |
4 | 3 | cnfldtop 23853 | . . . . . 6 ⊢ 𝐾 ∈ Top |
5 | limcflf.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ⊆ ℂ) | |
6 | 3 | cnfldtopon 23852 | . . . . . . . 8 ⊢ 𝐾 ∈ (TopOn‘ℂ) |
7 | 6 | toponunii 21973 | . . . . . . 7 ⊢ ℂ = ∪ 𝐾 |
8 | 7 | islp 22199 | . . . . . 6 ⊢ ((𝐾 ∈ Top ∧ 𝐴 ⊆ ℂ) → (𝐵 ∈ ((limPt‘𝐾)‘𝐴) ↔ 𝐵 ∈ ((cls‘𝐾)‘(𝐴 ∖ {𝐵})))) |
9 | 4, 5, 8 | sylancr 586 | . . . . 5 ⊢ (𝜑 → (𝐵 ∈ ((limPt‘𝐾)‘𝐴) ↔ 𝐵 ∈ ((cls‘𝐾)‘(𝐴 ∖ {𝐵})))) |
10 | 2, 9 | mpbid 231 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) |
11 | limcflf.c | . . . . 5 ⊢ 𝐶 = (𝐴 ∖ {𝐵}) | |
12 | 11 | fveq2i 6759 | . . . 4 ⊢ ((cls‘𝐾)‘𝐶) = ((cls‘𝐾)‘(𝐴 ∖ {𝐵})) |
13 | 10, 12 | eleqtrrdi 2850 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ((cls‘𝐾)‘𝐶)) |
14 | difss 4062 | . . . . . 6 ⊢ (𝐴 ∖ {𝐵}) ⊆ 𝐴 | |
15 | 11, 14 | eqsstri 3951 | . . . . 5 ⊢ 𝐶 ⊆ 𝐴 |
16 | 15, 5 | sstrid 3928 | . . . 4 ⊢ (𝜑 → 𝐶 ⊆ ℂ) |
17 | 7 | lpss 22201 | . . . . . 6 ⊢ ((𝐾 ∈ Top ∧ 𝐴 ⊆ ℂ) → ((limPt‘𝐾)‘𝐴) ⊆ ℂ) |
18 | 4, 5, 17 | sylancr 586 | . . . . 5 ⊢ (𝜑 → ((limPt‘𝐾)‘𝐴) ⊆ ℂ) |
19 | 18, 2 | sseldd 3918 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
20 | trnei 22951 | . . . 4 ⊢ ((𝐾 ∈ (TopOn‘ℂ) ∧ 𝐶 ⊆ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵 ∈ ((cls‘𝐾)‘𝐶) ↔ (((nei‘𝐾)‘{𝐵}) ↾t 𝐶) ∈ (Fil‘𝐶))) | |
21 | 6, 16, 19, 20 | mp3an2i 1464 | . . 3 ⊢ (𝜑 → (𝐵 ∈ ((cls‘𝐾)‘𝐶) ↔ (((nei‘𝐾)‘{𝐵}) ↾t 𝐶) ∈ (Fil‘𝐶))) |
22 | 13, 21 | mpbid 231 | . 2 ⊢ (𝜑 → (((nei‘𝐾)‘{𝐵}) ↾t 𝐶) ∈ (Fil‘𝐶)) |
23 | 1, 22 | eqeltrid 2843 | 1 ⊢ (𝜑 → 𝐿 ∈ (Fil‘𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2108 ∖ cdif 3880 ⊆ wss 3883 {csn 4558 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ℂcc 10800 ↾t crest 17048 TopOpenctopn 17049 ℂfldccnfld 20510 Topctop 21950 TopOnctopon 21967 clsccl 22077 neicnei 22156 limPtclp 22193 Filcfil 22904 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-q 12618 df-rp 12660 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-fz 13169 df-seq 13650 df-exp 13711 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-struct 16776 df-slot 16811 df-ndx 16823 df-base 16841 df-plusg 16901 df-mulr 16902 df-starv 16903 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-rest 17050 df-topn 17051 df-topgen 17071 df-psmet 20502 df-xmet 20503 df-met 20504 df-bl 20505 df-mopn 20506 df-fbas 20507 df-cnfld 20511 df-top 21951 df-topon 21968 df-topsp 21990 df-bases 22004 df-cld 22078 df-ntr 22079 df-cls 22080 df-nei 22157 df-lp 22195 df-fil 22905 df-xms 23381 df-ms 23382 |
This theorem is referenced by: limcflf 24950 limcmo 24951 |
Copyright terms: Public domain | W3C validator |