| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > limcflflem | Structured version Visualization version GIF version | ||
| Description: Lemma for limcflf 25780. (Contributed by Mario Carneiro, 25-Dec-2016.) |
| Ref | Expression |
|---|---|
| limcflf.f | ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
| limcflf.a | ⊢ (𝜑 → 𝐴 ⊆ ℂ) |
| limcflf.b | ⊢ (𝜑 → 𝐵 ∈ ((limPt‘𝐾)‘𝐴)) |
| limcflf.k | ⊢ 𝐾 = (TopOpen‘ℂfld) |
| limcflf.c | ⊢ 𝐶 = (𝐴 ∖ {𝐵}) |
| limcflf.l | ⊢ 𝐿 = (((nei‘𝐾)‘{𝐵}) ↾t 𝐶) |
| Ref | Expression |
|---|---|
| limcflflem | ⊢ (𝜑 → 𝐿 ∈ (Fil‘𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limcflf.l | . 2 ⊢ 𝐿 = (((nei‘𝐾)‘{𝐵}) ↾t 𝐶) | |
| 2 | limcflf.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ((limPt‘𝐾)‘𝐴)) | |
| 3 | limcflf.k | . . . . . . 7 ⊢ 𝐾 = (TopOpen‘ℂfld) | |
| 4 | 3 | cnfldtop 24669 | . . . . . 6 ⊢ 𝐾 ∈ Top |
| 5 | limcflf.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ⊆ ℂ) | |
| 6 | 3 | cnfldtopon 24668 | . . . . . . . 8 ⊢ 𝐾 ∈ (TopOn‘ℂ) |
| 7 | 6 | toponunii 22801 | . . . . . . 7 ⊢ ℂ = ∪ 𝐾 |
| 8 | 7 | islp 23025 | . . . . . 6 ⊢ ((𝐾 ∈ Top ∧ 𝐴 ⊆ ℂ) → (𝐵 ∈ ((limPt‘𝐾)‘𝐴) ↔ 𝐵 ∈ ((cls‘𝐾)‘(𝐴 ∖ {𝐵})))) |
| 9 | 4, 5, 8 | sylancr 587 | . . . . 5 ⊢ (𝜑 → (𝐵 ∈ ((limPt‘𝐾)‘𝐴) ↔ 𝐵 ∈ ((cls‘𝐾)‘(𝐴 ∖ {𝐵})))) |
| 10 | 2, 9 | mpbid 232 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) |
| 11 | limcflf.c | . . . . 5 ⊢ 𝐶 = (𝐴 ∖ {𝐵}) | |
| 12 | 11 | fveq2i 6825 | . . . 4 ⊢ ((cls‘𝐾)‘𝐶) = ((cls‘𝐾)‘(𝐴 ∖ {𝐵})) |
| 13 | 10, 12 | eleqtrrdi 2839 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ((cls‘𝐾)‘𝐶)) |
| 14 | difss 4087 | . . . . . 6 ⊢ (𝐴 ∖ {𝐵}) ⊆ 𝐴 | |
| 15 | 11, 14 | eqsstri 3982 | . . . . 5 ⊢ 𝐶 ⊆ 𝐴 |
| 16 | 15, 5 | sstrid 3947 | . . . 4 ⊢ (𝜑 → 𝐶 ⊆ ℂ) |
| 17 | 7 | lpss 23027 | . . . . . 6 ⊢ ((𝐾 ∈ Top ∧ 𝐴 ⊆ ℂ) → ((limPt‘𝐾)‘𝐴) ⊆ ℂ) |
| 18 | 4, 5, 17 | sylancr 587 | . . . . 5 ⊢ (𝜑 → ((limPt‘𝐾)‘𝐴) ⊆ ℂ) |
| 19 | 18, 2 | sseldd 3936 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| 20 | trnei 23777 | . . . 4 ⊢ ((𝐾 ∈ (TopOn‘ℂ) ∧ 𝐶 ⊆ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵 ∈ ((cls‘𝐾)‘𝐶) ↔ (((nei‘𝐾)‘{𝐵}) ↾t 𝐶) ∈ (Fil‘𝐶))) | |
| 21 | 6, 16, 19, 20 | mp3an2i 1468 | . . 3 ⊢ (𝜑 → (𝐵 ∈ ((cls‘𝐾)‘𝐶) ↔ (((nei‘𝐾)‘{𝐵}) ↾t 𝐶) ∈ (Fil‘𝐶))) |
| 22 | 13, 21 | mpbid 232 | . 2 ⊢ (𝜑 → (((nei‘𝐾)‘{𝐵}) ↾t 𝐶) ∈ (Fil‘𝐶)) |
| 23 | 1, 22 | eqeltrid 2832 | 1 ⊢ (𝜑 → 𝐿 ∈ (Fil‘𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∖ cdif 3900 ⊆ wss 3903 {csn 4577 ⟶wf 6478 ‘cfv 6482 (class class class)co 7349 ℂcc 11007 ↾t crest 17324 TopOpenctopn 17325 ℂfldccnfld 21261 Topctop 22778 TopOnctopon 22795 clsccl 22903 neicnei 22982 limPtclp 23019 Filcfil 23730 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-map 8755 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-sup 9332 df-inf 9333 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-q 12850 df-rp 12894 df-xneg 13014 df-xadd 13015 df-xmul 13016 df-fz 13411 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-struct 17058 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-mulr 17175 df-starv 17176 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-rest 17326 df-topn 17327 df-topgen 17347 df-psmet 21253 df-xmet 21254 df-met 21255 df-bl 21256 df-mopn 21257 df-fbas 21258 df-cnfld 21262 df-top 22779 df-topon 22796 df-topsp 22818 df-bases 22831 df-cld 22904 df-ntr 22905 df-cls 22906 df-nei 22983 df-lp 23021 df-fil 23731 df-xms 24206 df-ms 24207 |
| This theorem is referenced by: limcflf 25780 limcmo 25781 |
| Copyright terms: Public domain | W3C validator |