Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > limcflflem | Structured version Visualization version GIF version |
Description: Lemma for limcflf 24633. (Contributed by Mario Carneiro, 25-Dec-2016.) |
Ref | Expression |
---|---|
limcflf.f | ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
limcflf.a | ⊢ (𝜑 → 𝐴 ⊆ ℂ) |
limcflf.b | ⊢ (𝜑 → 𝐵 ∈ ((limPt‘𝐾)‘𝐴)) |
limcflf.k | ⊢ 𝐾 = (TopOpen‘ℂfld) |
limcflf.c | ⊢ 𝐶 = (𝐴 ∖ {𝐵}) |
limcflf.l | ⊢ 𝐿 = (((nei‘𝐾)‘{𝐵}) ↾t 𝐶) |
Ref | Expression |
---|---|
limcflflem | ⊢ (𝜑 → 𝐿 ∈ (Fil‘𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limcflf.l | . 2 ⊢ 𝐿 = (((nei‘𝐾)‘{𝐵}) ↾t 𝐶) | |
2 | limcflf.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ((limPt‘𝐾)‘𝐴)) | |
3 | limcflf.k | . . . . . . 7 ⊢ 𝐾 = (TopOpen‘ℂfld) | |
4 | 3 | cnfldtop 23536 | . . . . . 6 ⊢ 𝐾 ∈ Top |
5 | limcflf.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ⊆ ℂ) | |
6 | 3 | cnfldtopon 23535 | . . . . . . . 8 ⊢ 𝐾 ∈ (TopOn‘ℂ) |
7 | 6 | toponunii 21667 | . . . . . . 7 ⊢ ℂ = ∪ 𝐾 |
8 | 7 | islp 21891 | . . . . . 6 ⊢ ((𝐾 ∈ Top ∧ 𝐴 ⊆ ℂ) → (𝐵 ∈ ((limPt‘𝐾)‘𝐴) ↔ 𝐵 ∈ ((cls‘𝐾)‘(𝐴 ∖ {𝐵})))) |
9 | 4, 5, 8 | sylancr 590 | . . . . 5 ⊢ (𝜑 → (𝐵 ∈ ((limPt‘𝐾)‘𝐴) ↔ 𝐵 ∈ ((cls‘𝐾)‘(𝐴 ∖ {𝐵})))) |
10 | 2, 9 | mpbid 235 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ((cls‘𝐾)‘(𝐴 ∖ {𝐵}))) |
11 | limcflf.c | . . . . 5 ⊢ 𝐶 = (𝐴 ∖ {𝐵}) | |
12 | 11 | fveq2i 6677 | . . . 4 ⊢ ((cls‘𝐾)‘𝐶) = ((cls‘𝐾)‘(𝐴 ∖ {𝐵})) |
13 | 10, 12 | eleqtrrdi 2844 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ((cls‘𝐾)‘𝐶)) |
14 | difss 4022 | . . . . . 6 ⊢ (𝐴 ∖ {𝐵}) ⊆ 𝐴 | |
15 | 11, 14 | eqsstri 3911 | . . . . 5 ⊢ 𝐶 ⊆ 𝐴 |
16 | 15, 5 | sstrid 3888 | . . . 4 ⊢ (𝜑 → 𝐶 ⊆ ℂ) |
17 | 7 | lpss 21893 | . . . . . 6 ⊢ ((𝐾 ∈ Top ∧ 𝐴 ⊆ ℂ) → ((limPt‘𝐾)‘𝐴) ⊆ ℂ) |
18 | 4, 5, 17 | sylancr 590 | . . . . 5 ⊢ (𝜑 → ((limPt‘𝐾)‘𝐴) ⊆ ℂ) |
19 | 18, 2 | sseldd 3878 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
20 | trnei 22643 | . . . 4 ⊢ ((𝐾 ∈ (TopOn‘ℂ) ∧ 𝐶 ⊆ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵 ∈ ((cls‘𝐾)‘𝐶) ↔ (((nei‘𝐾)‘{𝐵}) ↾t 𝐶) ∈ (Fil‘𝐶))) | |
21 | 6, 16, 19, 20 | mp3an2i 1467 | . . 3 ⊢ (𝜑 → (𝐵 ∈ ((cls‘𝐾)‘𝐶) ↔ (((nei‘𝐾)‘{𝐵}) ↾t 𝐶) ∈ (Fil‘𝐶))) |
22 | 13, 21 | mpbid 235 | . 2 ⊢ (𝜑 → (((nei‘𝐾)‘{𝐵}) ↾t 𝐶) ∈ (Fil‘𝐶)) |
23 | 1, 22 | eqeltrid 2837 | 1 ⊢ (𝜑 → 𝐿 ∈ (Fil‘𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 = wceq 1542 ∈ wcel 2114 ∖ cdif 3840 ⊆ wss 3843 {csn 4516 ⟶wf 6335 ‘cfv 6339 (class class class)co 7170 ℂcc 10613 ↾t crest 16797 TopOpenctopn 16798 ℂfldccnfld 20217 Topctop 21644 TopOnctopon 21661 clsccl 21769 neicnei 21848 limPtclp 21885 Filcfil 22596 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-rep 5154 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 ax-cnex 10671 ax-resscn 10672 ax-1cn 10673 ax-icn 10674 ax-addcl 10675 ax-addrcl 10676 ax-mulcl 10677 ax-mulrcl 10678 ax-mulcom 10679 ax-addass 10680 ax-mulass 10681 ax-distr 10682 ax-i2m1 10683 ax-1ne0 10684 ax-1rid 10685 ax-rnegex 10686 ax-rrecex 10687 ax-cnre 10688 ax-pre-lttri 10689 ax-pre-lttrn 10690 ax-pre-ltadd 10691 ax-pre-mulgt0 10692 ax-pre-sup 10693 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-int 4837 df-iun 4883 df-iin 4884 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6129 df-ord 6175 df-on 6176 df-lim 6177 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7127 df-ov 7173 df-oprab 7174 df-mpo 7175 df-om 7600 df-1st 7714 df-2nd 7715 df-wrecs 7976 df-recs 8037 df-rdg 8075 df-1o 8131 df-er 8320 df-map 8439 df-en 8556 df-dom 8557 df-sdom 8558 df-fin 8559 df-sup 8979 df-inf 8980 df-pnf 10755 df-mnf 10756 df-xr 10757 df-ltxr 10758 df-le 10759 df-sub 10950 df-neg 10951 df-div 11376 df-nn 11717 df-2 11779 df-3 11780 df-4 11781 df-5 11782 df-6 11783 df-7 11784 df-8 11785 df-9 11786 df-n0 11977 df-z 12063 df-dec 12180 df-uz 12325 df-q 12431 df-rp 12473 df-xneg 12590 df-xadd 12591 df-xmul 12592 df-fz 12982 df-seq 13461 df-exp 13522 df-cj 14548 df-re 14549 df-im 14550 df-sqrt 14684 df-abs 14685 df-struct 16588 df-ndx 16589 df-slot 16590 df-base 16592 df-plusg 16681 df-mulr 16682 df-starv 16683 df-tset 16687 df-ple 16688 df-ds 16690 df-unif 16691 df-rest 16799 df-topn 16800 df-topgen 16820 df-psmet 20209 df-xmet 20210 df-met 20211 df-bl 20212 df-mopn 20213 df-fbas 20214 df-cnfld 20218 df-top 21645 df-topon 21662 df-topsp 21684 df-bases 21697 df-cld 21770 df-ntr 21771 df-cls 21772 df-nei 21849 df-lp 21887 df-fil 22597 df-xms 23073 df-ms 23074 |
This theorem is referenced by: limcflf 24633 limcmo 24634 |
Copyright terms: Public domain | W3C validator |