MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restlp Structured version   Visualization version   GIF version

Theorem restlp 22414
Description: The limit points of a subset restrict naturally in a subspace. (Contributed by Mario Carneiro, 25-Dec-2016.)
Hypotheses
Ref Expression
restcls.1 𝑋 = 𝐽
restcls.2 𝐾 = (𝐽t 𝑌)
Assertion
Ref Expression
restlp ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → ((limPt‘𝐾)‘𝑆) = (((limPt‘𝐽)‘𝑆) ∩ 𝑌))

Proof of Theorem restlp
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simp3 1137 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → 𝑆𝑌)
21ssdifssd 4087 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → (𝑆 ∖ {𝑥}) ⊆ 𝑌)
3 restcls.1 . . . . . . 7 𝑋 = 𝐽
4 restcls.2 . . . . . . 7 𝐾 = (𝐽t 𝑌)
53, 4restcls 22412 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑌𝑋 ∧ (𝑆 ∖ {𝑥}) ⊆ 𝑌) → ((cls‘𝐾)‘(𝑆 ∖ {𝑥})) = (((cls‘𝐽)‘(𝑆 ∖ {𝑥})) ∩ 𝑌))
62, 5syld3an3 1408 . . . . 5 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → ((cls‘𝐾)‘(𝑆 ∖ {𝑥})) = (((cls‘𝐽)‘(𝑆 ∖ {𝑥})) ∩ 𝑌))
76eleq2d 2822 . . . 4 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → (𝑥 ∈ ((cls‘𝐾)‘(𝑆 ∖ {𝑥})) ↔ 𝑥 ∈ (((cls‘𝐽)‘(𝑆 ∖ {𝑥})) ∩ 𝑌)))
8 elin 3912 . . . 4 (𝑥 ∈ (((cls‘𝐽)‘(𝑆 ∖ {𝑥})) ∩ 𝑌) ↔ (𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥})) ∧ 𝑥𝑌))
97, 8bitrdi 286 . . 3 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → (𝑥 ∈ ((cls‘𝐾)‘(𝑆 ∖ {𝑥})) ↔ (𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥})) ∧ 𝑥𝑌)))
10 simp1 1135 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → 𝐽 ∈ Top)
113toptopon 22146 . . . . . . . 8 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
1210, 11sylib 217 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → 𝐽 ∈ (TopOn‘𝑋))
13 simp2 1136 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → 𝑌𝑋)
14 resttopon 22392 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌𝑋) → (𝐽t 𝑌) ∈ (TopOn‘𝑌))
1512, 13, 14syl2anc 584 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → (𝐽t 𝑌) ∈ (TopOn‘𝑌))
164, 15eqeltrid 2841 . . . . 5 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → 𝐾 ∈ (TopOn‘𝑌))
17 topontop 22142 . . . . 5 (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top)
1816, 17syl 17 . . . 4 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → 𝐾 ∈ Top)
19 toponuni 22143 . . . . . 6 (𝐾 ∈ (TopOn‘𝑌) → 𝑌 = 𝐾)
2016, 19syl 17 . . . . 5 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → 𝑌 = 𝐾)
211, 20sseqtrd 3970 . . . 4 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → 𝑆 𝐾)
22 eqid 2736 . . . . 5 𝐾 = 𝐾
2322islp 22371 . . . 4 ((𝐾 ∈ Top ∧ 𝑆 𝐾) → (𝑥 ∈ ((limPt‘𝐾)‘𝑆) ↔ 𝑥 ∈ ((cls‘𝐾)‘(𝑆 ∖ {𝑥}))))
2418, 21, 23syl2anc 584 . . 3 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → (𝑥 ∈ ((limPt‘𝐾)‘𝑆) ↔ 𝑥 ∈ ((cls‘𝐾)‘(𝑆 ∖ {𝑥}))))
25 elin 3912 . . . 4 (𝑥 ∈ (((limPt‘𝐽)‘𝑆) ∩ 𝑌) ↔ (𝑥 ∈ ((limPt‘𝐽)‘𝑆) ∧ 𝑥𝑌))
261, 13sstrd 3940 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → 𝑆𝑋)
273islp 22371 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑥 ∈ ((limPt‘𝐽)‘𝑆) ↔ 𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))))
2810, 26, 27syl2anc 584 . . . . 5 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → (𝑥 ∈ ((limPt‘𝐽)‘𝑆) ↔ 𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))))
2928anbi1d 630 . . . 4 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → ((𝑥 ∈ ((limPt‘𝐽)‘𝑆) ∧ 𝑥𝑌) ↔ (𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥})) ∧ 𝑥𝑌)))
3025, 29bitrid 282 . . 3 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → (𝑥 ∈ (((limPt‘𝐽)‘𝑆) ∩ 𝑌) ↔ (𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥})) ∧ 𝑥𝑌)))
319, 24, 303bitr4d 310 . 2 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → (𝑥 ∈ ((limPt‘𝐾)‘𝑆) ↔ 𝑥 ∈ (((limPt‘𝐽)‘𝑆) ∩ 𝑌)))
3231eqrdv 2734 1 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → ((limPt‘𝐾)‘𝑆) = (((limPt‘𝐽)‘𝑆) ∩ 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1540  wcel 2105  cdif 3893  cin 3895  wss 3896  {csn 4570   cuni 4849  cfv 6465  (class class class)co 7316  t crest 17205  Topctop 22122  TopOnctopon 22139  clsccl 22249  limPtclp 22365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5223  ax-sep 5237  ax-nul 5244  ax-pow 5302  ax-pr 5366  ax-un 7629
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3442  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-pss 3915  df-nul 4267  df-if 4471  df-pw 4546  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4850  df-int 4892  df-iun 4938  df-iin 4939  df-br 5087  df-opab 5149  df-mpt 5170  df-tr 5204  df-id 5506  df-eprel 5512  df-po 5520  df-so 5521  df-fr 5562  df-we 5564  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-ord 6291  df-on 6292  df-lim 6293  df-suc 6294  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-fv 6473  df-ov 7319  df-oprab 7320  df-mpo 7321  df-om 7759  df-1st 7877  df-2nd 7878  df-en 8783  df-fin 8786  df-fi 9246  df-rest 17207  df-topgen 17228  df-top 22123  df-topon 22140  df-bases 22176  df-cld 22250  df-cls 22252  df-lp 22367
This theorem is referenced by:  restperf  22415  lptioo2cn  43441  lptioo1cn  43442  limclner  43447  fourierdlem42  43945
  Copyright terms: Public domain W3C validator