MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restlp Structured version   Visualization version   GIF version

Theorem restlp 22242
Description: The limit points of a subset restrict naturally in a subspace. (Contributed by Mario Carneiro, 25-Dec-2016.)
Hypotheses
Ref Expression
restcls.1 𝑋 = 𝐽
restcls.2 𝐾 = (𝐽t 𝑌)
Assertion
Ref Expression
restlp ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → ((limPt‘𝐾)‘𝑆) = (((limPt‘𝐽)‘𝑆) ∩ 𝑌))

Proof of Theorem restlp
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simp3 1136 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → 𝑆𝑌)
21ssdifssd 4073 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → (𝑆 ∖ {𝑥}) ⊆ 𝑌)
3 restcls.1 . . . . . . 7 𝑋 = 𝐽
4 restcls.2 . . . . . . 7 𝐾 = (𝐽t 𝑌)
53, 4restcls 22240 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑌𝑋 ∧ (𝑆 ∖ {𝑥}) ⊆ 𝑌) → ((cls‘𝐾)‘(𝑆 ∖ {𝑥})) = (((cls‘𝐽)‘(𝑆 ∖ {𝑥})) ∩ 𝑌))
62, 5syld3an3 1407 . . . . 5 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → ((cls‘𝐾)‘(𝑆 ∖ {𝑥})) = (((cls‘𝐽)‘(𝑆 ∖ {𝑥})) ∩ 𝑌))
76eleq2d 2824 . . . 4 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → (𝑥 ∈ ((cls‘𝐾)‘(𝑆 ∖ {𝑥})) ↔ 𝑥 ∈ (((cls‘𝐽)‘(𝑆 ∖ {𝑥})) ∩ 𝑌)))
8 elin 3899 . . . 4 (𝑥 ∈ (((cls‘𝐽)‘(𝑆 ∖ {𝑥})) ∩ 𝑌) ↔ (𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥})) ∧ 𝑥𝑌))
97, 8bitrdi 286 . . 3 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → (𝑥 ∈ ((cls‘𝐾)‘(𝑆 ∖ {𝑥})) ↔ (𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥})) ∧ 𝑥𝑌)))
10 simp1 1134 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → 𝐽 ∈ Top)
113toptopon 21974 . . . . . . . 8 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
1210, 11sylib 217 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → 𝐽 ∈ (TopOn‘𝑋))
13 simp2 1135 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → 𝑌𝑋)
14 resttopon 22220 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌𝑋) → (𝐽t 𝑌) ∈ (TopOn‘𝑌))
1512, 13, 14syl2anc 583 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → (𝐽t 𝑌) ∈ (TopOn‘𝑌))
164, 15eqeltrid 2843 . . . . 5 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → 𝐾 ∈ (TopOn‘𝑌))
17 topontop 21970 . . . . 5 (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top)
1816, 17syl 17 . . . 4 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → 𝐾 ∈ Top)
19 toponuni 21971 . . . . . 6 (𝐾 ∈ (TopOn‘𝑌) → 𝑌 = 𝐾)
2016, 19syl 17 . . . . 5 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → 𝑌 = 𝐾)
211, 20sseqtrd 3957 . . . 4 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → 𝑆 𝐾)
22 eqid 2738 . . . . 5 𝐾 = 𝐾
2322islp 22199 . . . 4 ((𝐾 ∈ Top ∧ 𝑆 𝐾) → (𝑥 ∈ ((limPt‘𝐾)‘𝑆) ↔ 𝑥 ∈ ((cls‘𝐾)‘(𝑆 ∖ {𝑥}))))
2418, 21, 23syl2anc 583 . . 3 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → (𝑥 ∈ ((limPt‘𝐾)‘𝑆) ↔ 𝑥 ∈ ((cls‘𝐾)‘(𝑆 ∖ {𝑥}))))
25 elin 3899 . . . 4 (𝑥 ∈ (((limPt‘𝐽)‘𝑆) ∩ 𝑌) ↔ (𝑥 ∈ ((limPt‘𝐽)‘𝑆) ∧ 𝑥𝑌))
261, 13sstrd 3927 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → 𝑆𝑋)
273islp 22199 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑥 ∈ ((limPt‘𝐽)‘𝑆) ↔ 𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))))
2810, 26, 27syl2anc 583 . . . . 5 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → (𝑥 ∈ ((limPt‘𝐽)‘𝑆) ↔ 𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))))
2928anbi1d 629 . . . 4 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → ((𝑥 ∈ ((limPt‘𝐽)‘𝑆) ∧ 𝑥𝑌) ↔ (𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥})) ∧ 𝑥𝑌)))
3025, 29syl5bb 282 . . 3 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → (𝑥 ∈ (((limPt‘𝐽)‘𝑆) ∩ 𝑌) ↔ (𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥})) ∧ 𝑥𝑌)))
319, 24, 303bitr4d 310 . 2 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → (𝑥 ∈ ((limPt‘𝐾)‘𝑆) ↔ 𝑥 ∈ (((limPt‘𝐽)‘𝑆) ∩ 𝑌)))
3231eqrdv 2736 1 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → ((limPt‘𝐾)‘𝑆) = (((limPt‘𝐽)‘𝑆) ∩ 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  cdif 3880  cin 3882  wss 3883  {csn 4558   cuni 4836  cfv 6418  (class class class)co 7255  t crest 17048  Topctop 21950  TopOnctopon 21967  clsccl 22077  limPtclp 22193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-en 8692  df-fin 8695  df-fi 9100  df-rest 17050  df-topgen 17071  df-top 21951  df-topon 21968  df-bases 22004  df-cld 22078  df-cls 22080  df-lp 22195
This theorem is referenced by:  restperf  22243  lptioo2cn  43076  lptioo1cn  43077  limclner  43082  fourierdlem42  43580
  Copyright terms: Public domain W3C validator