MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restlp Structured version   Visualization version   GIF version

Theorem restlp 23121
Description: The limit points of a subset restrict naturally in a subspace. (Contributed by Mario Carneiro, 25-Dec-2016.)
Hypotheses
Ref Expression
restcls.1 𝑋 = 𝐽
restcls.2 𝐾 = (𝐽t 𝑌)
Assertion
Ref Expression
restlp ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → ((limPt‘𝐾)‘𝑆) = (((limPt‘𝐽)‘𝑆) ∩ 𝑌))

Proof of Theorem restlp
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simp3 1138 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → 𝑆𝑌)
21ssdifssd 4122 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → (𝑆 ∖ {𝑥}) ⊆ 𝑌)
3 restcls.1 . . . . . . 7 𝑋 = 𝐽
4 restcls.2 . . . . . . 7 𝐾 = (𝐽t 𝑌)
53, 4restcls 23119 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑌𝑋 ∧ (𝑆 ∖ {𝑥}) ⊆ 𝑌) → ((cls‘𝐾)‘(𝑆 ∖ {𝑥})) = (((cls‘𝐽)‘(𝑆 ∖ {𝑥})) ∩ 𝑌))
62, 5syld3an3 1411 . . . . 5 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → ((cls‘𝐾)‘(𝑆 ∖ {𝑥})) = (((cls‘𝐽)‘(𝑆 ∖ {𝑥})) ∩ 𝑌))
76eleq2d 2820 . . . 4 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → (𝑥 ∈ ((cls‘𝐾)‘(𝑆 ∖ {𝑥})) ↔ 𝑥 ∈ (((cls‘𝐽)‘(𝑆 ∖ {𝑥})) ∩ 𝑌)))
8 elin 3942 . . . 4 (𝑥 ∈ (((cls‘𝐽)‘(𝑆 ∖ {𝑥})) ∩ 𝑌) ↔ (𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥})) ∧ 𝑥𝑌))
97, 8bitrdi 287 . . 3 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → (𝑥 ∈ ((cls‘𝐾)‘(𝑆 ∖ {𝑥})) ↔ (𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥})) ∧ 𝑥𝑌)))
10 simp1 1136 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → 𝐽 ∈ Top)
113toptopon 22855 . . . . . . . 8 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
1210, 11sylib 218 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → 𝐽 ∈ (TopOn‘𝑋))
13 simp2 1137 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → 𝑌𝑋)
14 resttopon 23099 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌𝑋) → (𝐽t 𝑌) ∈ (TopOn‘𝑌))
1512, 13, 14syl2anc 584 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → (𝐽t 𝑌) ∈ (TopOn‘𝑌))
164, 15eqeltrid 2838 . . . . 5 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → 𝐾 ∈ (TopOn‘𝑌))
17 topontop 22851 . . . . 5 (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top)
1816, 17syl 17 . . . 4 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → 𝐾 ∈ Top)
19 toponuni 22852 . . . . . 6 (𝐾 ∈ (TopOn‘𝑌) → 𝑌 = 𝐾)
2016, 19syl 17 . . . . 5 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → 𝑌 = 𝐾)
211, 20sseqtrd 3995 . . . 4 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → 𝑆 𝐾)
22 eqid 2735 . . . . 5 𝐾 = 𝐾
2322islp 23078 . . . 4 ((𝐾 ∈ Top ∧ 𝑆 𝐾) → (𝑥 ∈ ((limPt‘𝐾)‘𝑆) ↔ 𝑥 ∈ ((cls‘𝐾)‘(𝑆 ∖ {𝑥}))))
2418, 21, 23syl2anc 584 . . 3 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → (𝑥 ∈ ((limPt‘𝐾)‘𝑆) ↔ 𝑥 ∈ ((cls‘𝐾)‘(𝑆 ∖ {𝑥}))))
25 elin 3942 . . . 4 (𝑥 ∈ (((limPt‘𝐽)‘𝑆) ∩ 𝑌) ↔ (𝑥 ∈ ((limPt‘𝐽)‘𝑆) ∧ 𝑥𝑌))
261, 13sstrd 3969 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → 𝑆𝑋)
273islp 23078 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑥 ∈ ((limPt‘𝐽)‘𝑆) ↔ 𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))))
2810, 26, 27syl2anc 584 . . . . 5 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → (𝑥 ∈ ((limPt‘𝐽)‘𝑆) ↔ 𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))))
2928anbi1d 631 . . . 4 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → ((𝑥 ∈ ((limPt‘𝐽)‘𝑆) ∧ 𝑥𝑌) ↔ (𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥})) ∧ 𝑥𝑌)))
3025, 29bitrid 283 . . 3 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → (𝑥 ∈ (((limPt‘𝐽)‘𝑆) ∩ 𝑌) ↔ (𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥})) ∧ 𝑥𝑌)))
319, 24, 303bitr4d 311 . 2 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → (𝑥 ∈ ((limPt‘𝐾)‘𝑆) ↔ 𝑥 ∈ (((limPt‘𝐽)‘𝑆) ∩ 𝑌)))
3231eqrdv 2733 1 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → ((limPt‘𝐾)‘𝑆) = (((limPt‘𝐽)‘𝑆) ∩ 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  cdif 3923  cin 3925  wss 3926  {csn 4601   cuni 4883  cfv 6531  (class class class)co 7405  t crest 17434  Topctop 22831  TopOnctopon 22848  clsccl 22956  limPtclp 23072
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-en 8960  df-fin 8963  df-fi 9423  df-rest 17436  df-topgen 17457  df-top 22832  df-topon 22849  df-bases 22884  df-cld 22957  df-cls 22959  df-lp 23074
This theorem is referenced by:  restperf  23122  lptioo2cn  45674  lptioo1cn  45675  limclner  45680  fourierdlem42  46178
  Copyright terms: Public domain W3C validator