MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restlp Structured version   Visualization version   GIF version

Theorem restlp 23086
Description: The limit points of a subset restrict naturally in a subspace. (Contributed by Mario Carneiro, 25-Dec-2016.)
Hypotheses
Ref Expression
restcls.1 𝑋 = 𝐽
restcls.2 𝐾 = (𝐽t 𝑌)
Assertion
Ref Expression
restlp ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → ((limPt‘𝐾)‘𝑆) = (((limPt‘𝐽)‘𝑆) ∩ 𝑌))

Proof of Theorem restlp
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simp3 1138 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → 𝑆𝑌)
21ssdifssd 4100 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → (𝑆 ∖ {𝑥}) ⊆ 𝑌)
3 restcls.1 . . . . . . 7 𝑋 = 𝐽
4 restcls.2 . . . . . . 7 𝐾 = (𝐽t 𝑌)
53, 4restcls 23084 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑌𝑋 ∧ (𝑆 ∖ {𝑥}) ⊆ 𝑌) → ((cls‘𝐾)‘(𝑆 ∖ {𝑥})) = (((cls‘𝐽)‘(𝑆 ∖ {𝑥})) ∩ 𝑌))
62, 5syld3an3 1411 . . . . 5 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → ((cls‘𝐾)‘(𝑆 ∖ {𝑥})) = (((cls‘𝐽)‘(𝑆 ∖ {𝑥})) ∩ 𝑌))
76eleq2d 2814 . . . 4 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → (𝑥 ∈ ((cls‘𝐾)‘(𝑆 ∖ {𝑥})) ↔ 𝑥 ∈ (((cls‘𝐽)‘(𝑆 ∖ {𝑥})) ∩ 𝑌)))
8 elin 3921 . . . 4 (𝑥 ∈ (((cls‘𝐽)‘(𝑆 ∖ {𝑥})) ∩ 𝑌) ↔ (𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥})) ∧ 𝑥𝑌))
97, 8bitrdi 287 . . 3 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → (𝑥 ∈ ((cls‘𝐾)‘(𝑆 ∖ {𝑥})) ↔ (𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥})) ∧ 𝑥𝑌)))
10 simp1 1136 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → 𝐽 ∈ Top)
113toptopon 22820 . . . . . . . 8 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
1210, 11sylib 218 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → 𝐽 ∈ (TopOn‘𝑋))
13 simp2 1137 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → 𝑌𝑋)
14 resttopon 23064 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌𝑋) → (𝐽t 𝑌) ∈ (TopOn‘𝑌))
1512, 13, 14syl2anc 584 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → (𝐽t 𝑌) ∈ (TopOn‘𝑌))
164, 15eqeltrid 2832 . . . . 5 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → 𝐾 ∈ (TopOn‘𝑌))
17 topontop 22816 . . . . 5 (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top)
1816, 17syl 17 . . . 4 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → 𝐾 ∈ Top)
19 toponuni 22817 . . . . . 6 (𝐾 ∈ (TopOn‘𝑌) → 𝑌 = 𝐾)
2016, 19syl 17 . . . . 5 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → 𝑌 = 𝐾)
211, 20sseqtrd 3974 . . . 4 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → 𝑆 𝐾)
22 eqid 2729 . . . . 5 𝐾 = 𝐾
2322islp 23043 . . . 4 ((𝐾 ∈ Top ∧ 𝑆 𝐾) → (𝑥 ∈ ((limPt‘𝐾)‘𝑆) ↔ 𝑥 ∈ ((cls‘𝐾)‘(𝑆 ∖ {𝑥}))))
2418, 21, 23syl2anc 584 . . 3 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → (𝑥 ∈ ((limPt‘𝐾)‘𝑆) ↔ 𝑥 ∈ ((cls‘𝐾)‘(𝑆 ∖ {𝑥}))))
25 elin 3921 . . . 4 (𝑥 ∈ (((limPt‘𝐽)‘𝑆) ∩ 𝑌) ↔ (𝑥 ∈ ((limPt‘𝐽)‘𝑆) ∧ 𝑥𝑌))
261, 13sstrd 3948 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → 𝑆𝑋)
273islp 23043 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑥 ∈ ((limPt‘𝐽)‘𝑆) ↔ 𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))))
2810, 26, 27syl2anc 584 . . . . 5 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → (𝑥 ∈ ((limPt‘𝐽)‘𝑆) ↔ 𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥}))))
2928anbi1d 631 . . . 4 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → ((𝑥 ∈ ((limPt‘𝐽)‘𝑆) ∧ 𝑥𝑌) ↔ (𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥})) ∧ 𝑥𝑌)))
3025, 29bitrid 283 . . 3 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → (𝑥 ∈ (((limPt‘𝐽)‘𝑆) ∩ 𝑌) ↔ (𝑥 ∈ ((cls‘𝐽)‘(𝑆 ∖ {𝑥})) ∧ 𝑥𝑌)))
319, 24, 303bitr4d 311 . 2 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → (𝑥 ∈ ((limPt‘𝐾)‘𝑆) ↔ 𝑥 ∈ (((limPt‘𝐽)‘𝑆) ∩ 𝑌)))
3231eqrdv 2727 1 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → ((limPt‘𝐾)‘𝑆) = (((limPt‘𝐽)‘𝑆) ∩ 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  cdif 3902  cin 3904  wss 3905  {csn 4579   cuni 4861  cfv 6486  (class class class)co 7353  t crest 17342  Topctop 22796  TopOnctopon 22813  clsccl 22921  limPtclp 23037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-en 8880  df-fin 8883  df-fi 9320  df-rest 17344  df-topgen 17365  df-top 22797  df-topon 22814  df-bases 22849  df-cld 22922  df-cls 22924  df-lp 23039
This theorem is referenced by:  restperf  23087  lptioo2cn  45627  lptioo1cn  45628  limclner  45633  fourierdlem42  46131
  Copyright terms: Public domain W3C validator