Step | Hyp | Ref
| Expression |
1 | | eqidd 2733 |
. 2
β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β (Scalarβπ) = (Scalarβπ)) |
2 | | diclss.h |
. . . . 5
β’ π» = (LHypβπΎ) |
3 | | eqid 2732 |
. . . . 5
β’
((TEndoβπΎ)βπ) = ((TEndoβπΎ)βπ) |
4 | | diclss.u |
. . . . 5
β’ π = ((DVecHβπΎ)βπ) |
5 | | eqid 2732 |
. . . . 5
β’
(Scalarβπ) =
(Scalarβπ) |
6 | | eqid 2732 |
. . . . 5
β’
(Baseβ(Scalarβπ)) = (Baseβ(Scalarβπ)) |
7 | 2, 3, 4, 5, 6 | dvhbase 40257 |
. . . 4
β’ ((πΎ β HL β§ π β π») β (Baseβ(Scalarβπ)) = ((TEndoβπΎ)βπ)) |
8 | 7 | eqcomd 2738 |
. . 3
β’ ((πΎ β HL β§ π β π») β ((TEndoβπΎ)βπ) = (Baseβ(Scalarβπ))) |
9 | 8 | adantr 481 |
. 2
β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β ((TEndoβπΎ)βπ) = (Baseβ(Scalarβπ))) |
10 | | eqid 2732 |
. . . . 5
β’
((LTrnβπΎ)βπ) = ((LTrnβπΎ)βπ) |
11 | | eqid 2732 |
. . . . 5
β’
(Baseβπ) =
(Baseβπ) |
12 | 2, 10, 3, 4, 11 | dvhvbase 40261 |
. . . 4
β’ ((πΎ β HL β§ π β π») β (Baseβπ) = (((LTrnβπΎ)βπ) Γ ((TEndoβπΎ)βπ))) |
13 | 12 | eqcomd 2738 |
. . 3
β’ ((πΎ β HL β§ π β π») β (((LTrnβπΎ)βπ) Γ ((TEndoβπΎ)βπ)) = (Baseβπ)) |
14 | 13 | adantr 481 |
. 2
β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β (((LTrnβπΎ)βπ) Γ ((TEndoβπΎ)βπ)) = (Baseβπ)) |
15 | | eqidd 2733 |
. 2
β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β (+gβπ) = (+gβπ)) |
16 | | eqidd 2733 |
. 2
β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β (
Β·π βπ) = ( Β·π
βπ)) |
17 | | diclss.s |
. . 3
β’ π = (LSubSpβπ) |
18 | 17 | a1i 11 |
. 2
β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β π = (LSubSpβπ)) |
19 | | diclss.l |
. . . 4
β’ β€ =
(leβπΎ) |
20 | | diclss.a |
. . . 4
β’ π΄ = (AtomsβπΎ) |
21 | | diclss.i |
. . . 4
β’ πΌ = ((DIsoCβπΎ)βπ) |
22 | 19, 20, 2, 21, 4, 11 | dicssdvh 40360 |
. . 3
β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β (πΌβπ) β (Baseβπ)) |
23 | 22, 14 | sseqtrrd 4023 |
. 2
β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β (πΌβπ) β (((LTrnβπΎ)βπ) Γ ((TEndoβπΎ)βπ))) |
24 | 19, 20, 2, 21 | dicn0 40366 |
. 2
β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β (πΌβπ) β β
) |
25 | | simpll 765 |
. . 3
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π₯ β ((TEndoβπΎ)βπ) β§ π β (πΌβπ) β§ π β (πΌβπ))) β (πΎ β HL β§ π β π»)) |
26 | | simplr 767 |
. . 3
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π₯ β ((TEndoβπΎ)βπ) β§ π β (πΌβπ) β§ π β (πΌβπ))) β (π β π΄ β§ Β¬ π β€ π)) |
27 | | simpr1 1194 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π₯ β ((TEndoβπΎ)βπ) β§ π β (πΌβπ) β§ π β (πΌβπ))) β π₯ β ((TEndoβπΎ)βπ)) |
28 | | simpr2 1195 |
. . . 4
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π₯ β ((TEndoβπΎ)βπ) β§ π β (πΌβπ) β§ π β (πΌβπ))) β π β (πΌβπ)) |
29 | | eqid 2732 |
. . . . 5
β’ (
Β·π βπ) = ( Β·π
βπ) |
30 | 19, 20, 2, 3, 4, 21,
29 | dicvscacl 40365 |
. . . 4
β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π₯ β ((TEndoβπΎ)βπ) β§ π β (πΌβπ))) β (π₯( Β·π
βπ)π) β (πΌβπ)) |
31 | 25, 26, 27, 28, 30 | syl112anc 1374 |
. . 3
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π₯ β ((TEndoβπΎ)βπ) β§ π β (πΌβπ) β§ π β (πΌβπ))) β (π₯( Β·π
βπ)π) β (πΌβπ)) |
32 | | simpr3 1196 |
. . 3
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π₯ β ((TEndoβπΎ)βπ) β§ π β (πΌβπ) β§ π β (πΌβπ))) β π β (πΌβπ)) |
33 | | eqid 2732 |
. . . 4
β’
(+gβπ) = (+gβπ) |
34 | 19, 20, 2, 4, 21, 33 | dicvaddcl 40364 |
. . 3
β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ ((π₯( Β·π
βπ)π) β (πΌβπ) β§ π β (πΌβπ))) β ((π₯( Β·π
βπ)π)(+gβπ)π) β (πΌβπ)) |
35 | 25, 26, 31, 32, 34 | syl112anc 1374 |
. 2
β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π₯ β ((TEndoβπΎ)βπ) β§ π β (πΌβπ) β§ π β (πΌβπ))) β ((π₯( Β·π
βπ)π)(+gβπ)π) β (πΌβπ)) |
36 | 1, 9, 14, 15, 16, 18, 23, 24, 35 | islssd 20690 |
1
β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π)) β (πΌβπ) β π) |