![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > diclss | Structured version Visualization version GIF version |
Description: The value of partial isomorphism C is a subspace of partial vector space H. (Contributed by NM, 16-Feb-2014.) |
Ref | Expression |
---|---|
diclss.l | ⊢ ≤ = (le‘𝐾) |
diclss.a | ⊢ 𝐴 = (Atoms‘𝐾) |
diclss.h | ⊢ 𝐻 = (LHyp‘𝐾) |
diclss.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
diclss.i | ⊢ 𝐼 = ((DIsoC‘𝐾)‘𝑊) |
diclss.s | ⊢ 𝑆 = (LSubSp‘𝑈) |
Ref | Expression |
---|---|
diclss | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝐼‘𝑄) ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2725 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (Scalar‘𝑈) = (Scalar‘𝑈)) | |
2 | diclss.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
3 | eqid 2724 | . . . . 5 ⊢ ((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊) | |
4 | diclss.u | . . . . 5 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
5 | eqid 2724 | . . . . 5 ⊢ (Scalar‘𝑈) = (Scalar‘𝑈) | |
6 | eqid 2724 | . . . . 5 ⊢ (Base‘(Scalar‘𝑈)) = (Base‘(Scalar‘𝑈)) | |
7 | 2, 3, 4, 5, 6 | dvhbase 40410 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (Base‘(Scalar‘𝑈)) = ((TEndo‘𝐾)‘𝑊)) |
8 | 7 | eqcomd 2730 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ((TEndo‘𝐾)‘𝑊) = (Base‘(Scalar‘𝑈))) |
9 | 8 | adantr 480 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → ((TEndo‘𝐾)‘𝑊) = (Base‘(Scalar‘𝑈))) |
10 | eqid 2724 | . . . . 5 ⊢ ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊) | |
11 | eqid 2724 | . . . . 5 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
12 | 2, 10, 3, 4, 11 | dvhvbase 40414 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (Base‘𝑈) = (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊))) |
13 | 12 | eqcomd 2730 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) = (Base‘𝑈)) |
14 | 13 | adantr 480 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) = (Base‘𝑈)) |
15 | eqidd 2725 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (+g‘𝑈) = (+g‘𝑈)) | |
16 | eqidd 2725 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → ( ·𝑠 ‘𝑈) = ( ·𝑠 ‘𝑈)) | |
17 | diclss.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑈) | |
18 | 17 | a1i 11 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → 𝑆 = (LSubSp‘𝑈)) |
19 | diclss.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
20 | diclss.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
21 | diclss.i | . . . 4 ⊢ 𝐼 = ((DIsoC‘𝐾)‘𝑊) | |
22 | 19, 20, 2, 21, 4, 11 | dicssdvh 40513 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝐼‘𝑄) ⊆ (Base‘𝑈)) |
23 | 22, 14 | sseqtrrd 4015 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝐼‘𝑄) ⊆ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊))) |
24 | 19, 20, 2, 21 | dicn0 40519 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝐼‘𝑄) ≠ ∅) |
25 | simpll 764 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑄) ∧ 𝑏 ∈ (𝐼‘𝑄))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
26 | simplr 766 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑄) ∧ 𝑏 ∈ (𝐼‘𝑄))) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) | |
27 | simpr1 1191 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑄) ∧ 𝑏 ∈ (𝐼‘𝑄))) → 𝑥 ∈ ((TEndo‘𝐾)‘𝑊)) | |
28 | simpr2 1192 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑄) ∧ 𝑏 ∈ (𝐼‘𝑄))) → 𝑎 ∈ (𝐼‘𝑄)) | |
29 | eqid 2724 | . . . . 5 ⊢ ( ·𝑠 ‘𝑈) = ( ·𝑠 ‘𝑈) | |
30 | 19, 20, 2, 3, 4, 21, 29 | dicvscacl 40518 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑄))) → (𝑥( ·𝑠 ‘𝑈)𝑎) ∈ (𝐼‘𝑄)) |
31 | 25, 26, 27, 28, 30 | syl112anc 1371 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑄) ∧ 𝑏 ∈ (𝐼‘𝑄))) → (𝑥( ·𝑠 ‘𝑈)𝑎) ∈ (𝐼‘𝑄)) |
32 | simpr3 1193 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑄) ∧ 𝑏 ∈ (𝐼‘𝑄))) → 𝑏 ∈ (𝐼‘𝑄)) | |
33 | eqid 2724 | . . . 4 ⊢ (+g‘𝑈) = (+g‘𝑈) | |
34 | 19, 20, 2, 4, 21, 33 | dicvaddcl 40517 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ ((𝑥( ·𝑠 ‘𝑈)𝑎) ∈ (𝐼‘𝑄) ∧ 𝑏 ∈ (𝐼‘𝑄))) → ((𝑥( ·𝑠 ‘𝑈)𝑎)(+g‘𝑈)𝑏) ∈ (𝐼‘𝑄)) |
35 | 25, 26, 31, 32, 34 | syl112anc 1371 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑄) ∧ 𝑏 ∈ (𝐼‘𝑄))) → ((𝑥( ·𝑠 ‘𝑈)𝑎)(+g‘𝑈)𝑏) ∈ (𝐼‘𝑄)) |
36 | 1, 9, 14, 15, 16, 18, 23, 24, 35 | islssd 20767 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝐼‘𝑄) ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 class class class wbr 5138 × cxp 5664 ‘cfv 6533 (class class class)co 7401 Basecbs 17140 +gcplusg 17193 Scalarcsca 17196 ·𝑠 cvsca 17197 lecple 17200 LSubSpclss 20763 Atomscatm 38589 HLchlt 38676 LHypclh 39311 LTrncltrn 39428 TEndoctendo 40079 DVecHcdvh 40405 DIsoCcdic 40499 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11161 ax-resscn 11162 ax-1cn 11163 ax-icn 11164 ax-addcl 11165 ax-addrcl 11166 ax-mulcl 11167 ax-mulrcl 11168 ax-mulcom 11169 ax-addass 11170 ax-mulass 11171 ax-distr 11172 ax-i2m1 11173 ax-1ne0 11174 ax-1rid 11175 ax-rnegex 11176 ax-rrecex 11177 ax-cnre 11178 ax-pre-lttri 11179 ax-pre-lttrn 11180 ax-pre-ltadd 11181 ax-pre-mulgt0 11182 ax-riotaBAD 38279 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-tp 4625 df-op 4627 df-uni 4900 df-iun 4989 df-iin 4990 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-1st 7968 df-2nd 7969 df-undef 8253 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-er 8698 df-map 8817 df-en 8935 df-dom 8936 df-sdom 8937 df-fin 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-n0 12469 df-z 12555 df-uz 12819 df-fz 13481 df-struct 17076 df-slot 17111 df-ndx 17123 df-base 17141 df-plusg 17206 df-mulr 17207 df-sca 17209 df-vsca 17210 df-proset 18247 df-poset 18265 df-plt 18282 df-lub 18298 df-glb 18299 df-join 18300 df-meet 18301 df-p0 18377 df-p1 18378 df-lat 18384 df-clat 18451 df-lss 20764 df-oposet 38502 df-ol 38504 df-oml 38505 df-covers 38592 df-ats 38593 df-atl 38624 df-cvlat 38648 df-hlat 38677 df-llines 38825 df-lplanes 38826 df-lvols 38827 df-lines 38828 df-psubsp 38830 df-pmap 38831 df-padd 39123 df-lhyp 39315 df-laut 39316 df-ldil 39431 df-ltrn 39432 df-trl 39486 df-tendo 40082 df-edring 40084 df-dvech 40406 df-dic 40500 |
This theorem is referenced by: cdlemn5pre 40527 cdlemn11c 40536 dihjustlem 40543 dihord1 40545 dihord2a 40546 dihord2b 40547 dihord11c 40551 dihlsscpre 40561 dihvalcqat 40566 dihopelvalcpre 40575 dihord6apre 40583 dihord5b 40586 dihord5apre 40589 |
Copyright terms: Public domain | W3C validator |