| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > diclss | Structured version Visualization version GIF version | ||
| Description: The value of partial isomorphism C is a subspace of partial vector space H. (Contributed by NM, 16-Feb-2014.) |
| Ref | Expression |
|---|---|
| diclss.l | ⊢ ≤ = (le‘𝐾) |
| diclss.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| diclss.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| diclss.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| diclss.i | ⊢ 𝐼 = ((DIsoC‘𝐾)‘𝑊) |
| diclss.s | ⊢ 𝑆 = (LSubSp‘𝑈) |
| Ref | Expression |
|---|---|
| diclss | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝐼‘𝑄) ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2734 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (Scalar‘𝑈) = (Scalar‘𝑈)) | |
| 2 | diclss.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 3 | eqid 2733 | . . . . 5 ⊢ ((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊) | |
| 4 | diclss.u | . . . . 5 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 5 | eqid 2733 | . . . . 5 ⊢ (Scalar‘𝑈) = (Scalar‘𝑈) | |
| 6 | eqid 2733 | . . . . 5 ⊢ (Base‘(Scalar‘𝑈)) = (Base‘(Scalar‘𝑈)) | |
| 7 | 2, 3, 4, 5, 6 | dvhbase 41255 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (Base‘(Scalar‘𝑈)) = ((TEndo‘𝐾)‘𝑊)) |
| 8 | 7 | eqcomd 2739 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ((TEndo‘𝐾)‘𝑊) = (Base‘(Scalar‘𝑈))) |
| 9 | 8 | adantr 480 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → ((TEndo‘𝐾)‘𝑊) = (Base‘(Scalar‘𝑈))) |
| 10 | eqid 2733 | . . . . 5 ⊢ ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊) | |
| 11 | eqid 2733 | . . . . 5 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
| 12 | 2, 10, 3, 4, 11 | dvhvbase 41259 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (Base‘𝑈) = (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊))) |
| 13 | 12 | eqcomd 2739 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) = (Base‘𝑈)) |
| 14 | 13 | adantr 480 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) = (Base‘𝑈)) |
| 15 | eqidd 2734 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (+g‘𝑈) = (+g‘𝑈)) | |
| 16 | eqidd 2734 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → ( ·𝑠 ‘𝑈) = ( ·𝑠 ‘𝑈)) | |
| 17 | diclss.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑈) | |
| 18 | 17 | a1i 11 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → 𝑆 = (LSubSp‘𝑈)) |
| 19 | diclss.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 20 | diclss.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 21 | diclss.i | . . . 4 ⊢ 𝐼 = ((DIsoC‘𝐾)‘𝑊) | |
| 22 | 19, 20, 2, 21, 4, 11 | dicssdvh 41358 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝐼‘𝑄) ⊆ (Base‘𝑈)) |
| 23 | 22, 14 | sseqtrrd 3968 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝐼‘𝑄) ⊆ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊))) |
| 24 | 19, 20, 2, 21 | dicn0 41364 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝐼‘𝑄) ≠ ∅) |
| 25 | simpll 766 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑄) ∧ 𝑏 ∈ (𝐼‘𝑄))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 26 | simplr 768 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑄) ∧ 𝑏 ∈ (𝐼‘𝑄))) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) | |
| 27 | simpr1 1195 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑄) ∧ 𝑏 ∈ (𝐼‘𝑄))) → 𝑥 ∈ ((TEndo‘𝐾)‘𝑊)) | |
| 28 | simpr2 1196 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑄) ∧ 𝑏 ∈ (𝐼‘𝑄))) → 𝑎 ∈ (𝐼‘𝑄)) | |
| 29 | eqid 2733 | . . . . 5 ⊢ ( ·𝑠 ‘𝑈) = ( ·𝑠 ‘𝑈) | |
| 30 | 19, 20, 2, 3, 4, 21, 29 | dicvscacl 41363 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑄))) → (𝑥( ·𝑠 ‘𝑈)𝑎) ∈ (𝐼‘𝑄)) |
| 31 | 25, 26, 27, 28, 30 | syl112anc 1376 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑄) ∧ 𝑏 ∈ (𝐼‘𝑄))) → (𝑥( ·𝑠 ‘𝑈)𝑎) ∈ (𝐼‘𝑄)) |
| 32 | simpr3 1197 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑄) ∧ 𝑏 ∈ (𝐼‘𝑄))) → 𝑏 ∈ (𝐼‘𝑄)) | |
| 33 | eqid 2733 | . . . 4 ⊢ (+g‘𝑈) = (+g‘𝑈) | |
| 34 | 19, 20, 2, 4, 21, 33 | dicvaddcl 41362 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ ((𝑥( ·𝑠 ‘𝑈)𝑎) ∈ (𝐼‘𝑄) ∧ 𝑏 ∈ (𝐼‘𝑄))) → ((𝑥( ·𝑠 ‘𝑈)𝑎)(+g‘𝑈)𝑏) ∈ (𝐼‘𝑄)) |
| 35 | 25, 26, 31, 32, 34 | syl112anc 1376 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑄) ∧ 𝑏 ∈ (𝐼‘𝑄))) → ((𝑥( ·𝑠 ‘𝑈)𝑎)(+g‘𝑈)𝑏) ∈ (𝐼‘𝑄)) |
| 36 | 1, 9, 14, 15, 16, 18, 23, 24, 35 | islssd 20877 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝐼‘𝑄) ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 class class class wbr 5095 × cxp 5619 ‘cfv 6489 (class class class)co 7355 Basecbs 17127 +gcplusg 17168 Scalarcsca 17171 ·𝑠 cvsca 17172 lecple 17175 LSubSpclss 20873 Atomscatm 39435 HLchlt 39522 LHypclh 40156 LTrncltrn 40273 TEndoctendo 40924 DVecHcdvh 41250 DIsoCcdic 41344 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 ax-riotaBAD 39125 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-iun 4945 df-iin 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-undef 8212 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-er 8631 df-map 8761 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-2 12199 df-3 12200 df-4 12201 df-5 12202 df-6 12203 df-n0 12393 df-z 12480 df-uz 12743 df-fz 13415 df-struct 17065 df-slot 17100 df-ndx 17112 df-base 17128 df-plusg 17181 df-mulr 17182 df-sca 17184 df-vsca 17185 df-proset 18208 df-poset 18227 df-plt 18242 df-lub 18258 df-glb 18259 df-join 18260 df-meet 18261 df-p0 18337 df-p1 18338 df-lat 18346 df-clat 18413 df-lss 20874 df-oposet 39348 df-ol 39350 df-oml 39351 df-covers 39438 df-ats 39439 df-atl 39470 df-cvlat 39494 df-hlat 39523 df-llines 39670 df-lplanes 39671 df-lvols 39672 df-lines 39673 df-psubsp 39675 df-pmap 39676 df-padd 39968 df-lhyp 40160 df-laut 40161 df-ldil 40276 df-ltrn 40277 df-trl 40331 df-tendo 40927 df-edring 40929 df-dvech 41251 df-dic 41345 |
| This theorem is referenced by: cdlemn5pre 41372 cdlemn11c 41381 dihjustlem 41388 dihord1 41390 dihord2a 41391 dihord2b 41392 dihord11c 41396 dihlsscpre 41406 dihvalcqat 41411 dihopelvalcpre 41420 dihord6apre 41428 dihord5b 41431 dihord5apre 41434 |
| Copyright terms: Public domain | W3C validator |