![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > diclss | Structured version Visualization version GIF version |
Description: The value of partial isomorphism C is a subspace of partial vector space H. (Contributed by NM, 16-Feb-2014.) |
Ref | Expression |
---|---|
diclss.l | ⊢ ≤ = (le‘𝐾) |
diclss.a | ⊢ 𝐴 = (Atoms‘𝐾) |
diclss.h | ⊢ 𝐻 = (LHyp‘𝐾) |
diclss.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
diclss.i | ⊢ 𝐼 = ((DIsoC‘𝐾)‘𝑊) |
diclss.s | ⊢ 𝑆 = (LSubSp‘𝑈) |
Ref | Expression |
---|---|
diclss | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝐼‘𝑄) ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2779 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (Scalar‘𝑈) = (Scalar‘𝑈)) | |
2 | diclss.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
3 | eqid 2778 | . . . . 5 ⊢ ((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊) | |
4 | diclss.u | . . . . 5 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
5 | eqid 2778 | . . . . 5 ⊢ (Scalar‘𝑈) = (Scalar‘𝑈) | |
6 | eqid 2778 | . . . . 5 ⊢ (Base‘(Scalar‘𝑈)) = (Base‘(Scalar‘𝑈)) | |
7 | 2, 3, 4, 5, 6 | dvhbase 37237 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (Base‘(Scalar‘𝑈)) = ((TEndo‘𝐾)‘𝑊)) |
8 | 7 | eqcomd 2784 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ((TEndo‘𝐾)‘𝑊) = (Base‘(Scalar‘𝑈))) |
9 | 8 | adantr 474 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → ((TEndo‘𝐾)‘𝑊) = (Base‘(Scalar‘𝑈))) |
10 | eqid 2778 | . . . . 5 ⊢ ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊) | |
11 | eqid 2778 | . . . . 5 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
12 | 2, 10, 3, 4, 11 | dvhvbase 37241 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (Base‘𝑈) = (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊))) |
13 | 12 | eqcomd 2784 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) = (Base‘𝑈)) |
14 | 13 | adantr 474 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) = (Base‘𝑈)) |
15 | eqidd 2779 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (+g‘𝑈) = (+g‘𝑈)) | |
16 | eqidd 2779 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → ( ·𝑠 ‘𝑈) = ( ·𝑠 ‘𝑈)) | |
17 | diclss.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑈) | |
18 | 17 | a1i 11 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → 𝑆 = (LSubSp‘𝑈)) |
19 | diclss.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
20 | diclss.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
21 | diclss.i | . . . 4 ⊢ 𝐼 = ((DIsoC‘𝐾)‘𝑊) | |
22 | 19, 20, 2, 21, 4, 11 | dicssdvh 37340 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝐼‘𝑄) ⊆ (Base‘𝑈)) |
23 | 22, 14 | sseqtr4d 3861 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝐼‘𝑄) ⊆ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊))) |
24 | 19, 20, 2, 21 | dicn0 37346 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝐼‘𝑄) ≠ ∅) |
25 | simpll 757 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑄) ∧ 𝑏 ∈ (𝐼‘𝑄))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
26 | simplr 759 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑄) ∧ 𝑏 ∈ (𝐼‘𝑄))) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) | |
27 | simpr1 1205 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑄) ∧ 𝑏 ∈ (𝐼‘𝑄))) → 𝑥 ∈ ((TEndo‘𝐾)‘𝑊)) | |
28 | simpr2 1207 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑄) ∧ 𝑏 ∈ (𝐼‘𝑄))) → 𝑎 ∈ (𝐼‘𝑄)) | |
29 | eqid 2778 | . . . . 5 ⊢ ( ·𝑠 ‘𝑈) = ( ·𝑠 ‘𝑈) | |
30 | 19, 20, 2, 3, 4, 21, 29 | dicvscacl 37345 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑄))) → (𝑥( ·𝑠 ‘𝑈)𝑎) ∈ (𝐼‘𝑄)) |
31 | 25, 26, 27, 28, 30 | syl112anc 1442 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑄) ∧ 𝑏 ∈ (𝐼‘𝑄))) → (𝑥( ·𝑠 ‘𝑈)𝑎) ∈ (𝐼‘𝑄)) |
32 | simpr3 1209 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑄) ∧ 𝑏 ∈ (𝐼‘𝑄))) → 𝑏 ∈ (𝐼‘𝑄)) | |
33 | eqid 2778 | . . . 4 ⊢ (+g‘𝑈) = (+g‘𝑈) | |
34 | 19, 20, 2, 4, 21, 33 | dicvaddcl 37344 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ ((𝑥( ·𝑠 ‘𝑈)𝑎) ∈ (𝐼‘𝑄) ∧ 𝑏 ∈ (𝐼‘𝑄))) → ((𝑥( ·𝑠 ‘𝑈)𝑎)(+g‘𝑈)𝑏) ∈ (𝐼‘𝑄)) |
35 | 25, 26, 31, 32, 34 | syl112anc 1442 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑄) ∧ 𝑏 ∈ (𝐼‘𝑄))) → ((𝑥( ·𝑠 ‘𝑈)𝑎)(+g‘𝑈)𝑏) ∈ (𝐼‘𝑄)) |
36 | 1, 9, 14, 15, 16, 18, 23, 24, 35 | islssd 19328 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝐼‘𝑄) ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 386 ∧ w3a 1071 = wceq 1601 ∈ wcel 2107 class class class wbr 4886 × cxp 5353 ‘cfv 6135 (class class class)co 6922 Basecbs 16255 +gcplusg 16338 Scalarcsca 16341 ·𝑠 cvsca 16342 lecple 16345 LSubSpclss 19324 Atomscatm 35417 HLchlt 35504 LHypclh 36138 LTrncltrn 36255 TEndoctendo 36906 DVecHcdvh 37232 DIsoCcdic 37326 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-cnex 10328 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-pre-mulgt0 10349 ax-riotaBAD 35107 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4672 df-int 4711 df-iun 4755 df-iin 4756 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-om 7344 df-1st 7445 df-2nd 7446 df-undef 7681 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-1o 7843 df-oadd 7847 df-er 8026 df-map 8142 df-en 8242 df-dom 8243 df-sdom 8244 df-fin 8245 df-pnf 10413 df-mnf 10414 df-xr 10415 df-ltxr 10416 df-le 10417 df-sub 10608 df-neg 10609 df-nn 11375 df-2 11438 df-3 11439 df-4 11440 df-5 11441 df-6 11442 df-n0 11643 df-z 11729 df-uz 11993 df-fz 12644 df-struct 16257 df-ndx 16258 df-slot 16259 df-base 16261 df-plusg 16351 df-mulr 16352 df-sca 16354 df-vsca 16355 df-proset 17314 df-poset 17332 df-plt 17344 df-lub 17360 df-glb 17361 df-join 17362 df-meet 17363 df-p0 17425 df-p1 17426 df-lat 17432 df-clat 17494 df-lss 19325 df-oposet 35330 df-ol 35332 df-oml 35333 df-covers 35420 df-ats 35421 df-atl 35452 df-cvlat 35476 df-hlat 35505 df-llines 35652 df-lplanes 35653 df-lvols 35654 df-lines 35655 df-psubsp 35657 df-pmap 35658 df-padd 35950 df-lhyp 36142 df-laut 36143 df-ldil 36258 df-ltrn 36259 df-trl 36313 df-tendo 36909 df-edring 36911 df-dvech 37233 df-dic 37327 |
This theorem is referenced by: cdlemn5pre 37354 cdlemn11c 37363 dihjustlem 37370 dihord1 37372 dihord2a 37373 dihord2b 37374 dihord11c 37378 dihlsscpre 37388 dihvalcqat 37393 dihopelvalcpre 37402 dihord6apre 37410 dihord5b 37413 dihord5apre 37416 |
Copyright terms: Public domain | W3C validator |