Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diclss Structured version   Visualization version   GIF version

Theorem diclss 38365
 Description: The value of partial isomorphism C is a subspace of partial vector space H. (Contributed by NM, 16-Feb-2014.)
Hypotheses
Ref Expression
diclss.l = (le‘𝐾)
diclss.a 𝐴 = (Atoms‘𝐾)
diclss.h 𝐻 = (LHyp‘𝐾)
diclss.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
diclss.i 𝐼 = ((DIsoC‘𝐾)‘𝑊)
diclss.s 𝑆 = (LSubSp‘𝑈)
Assertion
Ref Expression
diclss (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐼𝑄) ∈ 𝑆)

Proof of Theorem diclss
Dummy variables 𝑎 𝑏 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2821 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (Scalar‘𝑈) = (Scalar‘𝑈))
2 diclss.h . . . . 5 𝐻 = (LHyp‘𝐾)
3 eqid 2820 . . . . 5 ((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊)
4 diclss.u . . . . 5 𝑈 = ((DVecH‘𝐾)‘𝑊)
5 eqid 2820 . . . . 5 (Scalar‘𝑈) = (Scalar‘𝑈)
6 eqid 2820 . . . . 5 (Base‘(Scalar‘𝑈)) = (Base‘(Scalar‘𝑈))
72, 3, 4, 5, 6dvhbase 38255 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (Base‘(Scalar‘𝑈)) = ((TEndo‘𝐾)‘𝑊))
87eqcomd 2826 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ((TEndo‘𝐾)‘𝑊) = (Base‘(Scalar‘𝑈)))
98adantr 483 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ((TEndo‘𝐾)‘𝑊) = (Base‘(Scalar‘𝑈)))
10 eqid 2820 . . . . 5 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
11 eqid 2820 . . . . 5 (Base‘𝑈) = (Base‘𝑈)
122, 10, 3, 4, 11dvhvbase 38259 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (Base‘𝑈) = (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)))
1312eqcomd 2826 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) = (Base‘𝑈))
1413adantr 483 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) = (Base‘𝑈))
15 eqidd 2821 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (+g𝑈) = (+g𝑈))
16 eqidd 2821 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → ( ·𝑠𝑈) = ( ·𝑠𝑈))
17 diclss.s . . 3 𝑆 = (LSubSp‘𝑈)
1817a1i 11 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → 𝑆 = (LSubSp‘𝑈))
19 diclss.l . . . 4 = (le‘𝐾)
20 diclss.a . . . 4 𝐴 = (Atoms‘𝐾)
21 diclss.i . . . 4 𝐼 = ((DIsoC‘𝐾)‘𝑊)
2219, 20, 2, 21, 4, 11dicssdvh 38358 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐼𝑄) ⊆ (Base‘𝑈))
2322, 14sseqtrrd 3987 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐼𝑄) ⊆ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)))
2419, 20, 2, 21dicn0 38364 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐼𝑄) ≠ ∅)
25 simpll 765 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑄) ∧ 𝑏 ∈ (𝐼𝑄))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
26 simplr 767 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑄) ∧ 𝑏 ∈ (𝐼𝑄))) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
27 simpr1 1190 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑄) ∧ 𝑏 ∈ (𝐼𝑄))) → 𝑥 ∈ ((TEndo‘𝐾)‘𝑊))
28 simpr2 1191 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑄) ∧ 𝑏 ∈ (𝐼𝑄))) → 𝑎 ∈ (𝐼𝑄))
29 eqid 2820 . . . . 5 ( ·𝑠𝑈) = ( ·𝑠𝑈)
3019, 20, 2, 3, 4, 21, 29dicvscacl 38363 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑄))) → (𝑥( ·𝑠𝑈)𝑎) ∈ (𝐼𝑄))
3125, 26, 27, 28, 30syl112anc 1370 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑄) ∧ 𝑏 ∈ (𝐼𝑄))) → (𝑥( ·𝑠𝑈)𝑎) ∈ (𝐼𝑄))
32 simpr3 1192 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑄) ∧ 𝑏 ∈ (𝐼𝑄))) → 𝑏 ∈ (𝐼𝑄))
33 eqid 2820 . . . 4 (+g𝑈) = (+g𝑈)
3419, 20, 2, 4, 21, 33dicvaddcl 38362 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ ((𝑥( ·𝑠𝑈)𝑎) ∈ (𝐼𝑄) ∧ 𝑏 ∈ (𝐼𝑄))) → ((𝑥( ·𝑠𝑈)𝑎)(+g𝑈)𝑏) ∈ (𝐼𝑄))
3525, 26, 31, 32, 34syl112anc 1370 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼𝑄) ∧ 𝑏 ∈ (𝐼𝑄))) → ((𝑥( ·𝑠𝑈)𝑎)(+g𝑈)𝑏) ∈ (𝐼𝑄))
361, 9, 14, 15, 16, 18, 23, 24, 35islssd 19683 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) → (𝐼𝑄) ∈ 𝑆)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 398   ∧ w3a 1083   = wceq 1537   ∈ wcel 2114   class class class wbr 5042   × cxp 5529  ‘cfv 6331  (class class class)co 7133  Basecbs 16462  +gcplusg 16544  Scalarcsca 16547   ·𝑠 cvsca 16548  lecple 16551  LSubSpclss 19679  Atomscatm 36435  HLchlt 36522  LHypclh 37156  LTrncltrn 37273  TEndoctendo 37924  DVecHcdvh 38250  DIsoCcdic 38344 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5242  ax-pr 5306  ax-un 7439  ax-cnex 10571  ax-resscn 10572  ax-1cn 10573  ax-icn 10574  ax-addcl 10575  ax-addrcl 10576  ax-mulcl 10577  ax-mulrcl 10578  ax-mulcom 10579  ax-addass 10580  ax-mulass 10581  ax-distr 10582  ax-i2m1 10583  ax-1ne0 10584  ax-1rid 10585  ax-rnegex 10586  ax-rrecex 10587  ax-cnre 10588  ax-pre-lttri 10589  ax-pre-lttrn 10590  ax-pre-ltadd 10591  ax-pre-mulgt0 10592  ax-riotaBAD 36125 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-nel 3111  df-ral 3130  df-rex 3131  df-reu 3132  df-rmo 3133  df-rab 3134  df-v 3475  df-sbc 3753  df-csb 3861  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4270  df-if 4444  df-pw 4517  df-sn 4544  df-pr 4546  df-tp 4548  df-op 4550  df-uni 4815  df-int 4853  df-iun 4897  df-iin 4898  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5436  df-eprel 5441  df-po 5450  df-so 5451  df-fr 5490  df-we 5492  df-xp 5537  df-rel 5538  df-cnv 5539  df-co 5540  df-dm 5541  df-rn 5542  df-res 5543  df-ima 5544  df-pred 6124  df-ord 6170  df-on 6171  df-lim 6172  df-suc 6173  df-iota 6290  df-fun 6333  df-fn 6334  df-f 6335  df-f1 6336  df-fo 6337  df-f1o 6338  df-fv 6339  df-riota 7091  df-ov 7136  df-oprab 7137  df-mpo 7138  df-om 7559  df-1st 7667  df-2nd 7668  df-undef 7917  df-wrecs 7925  df-recs 7986  df-rdg 8024  df-1o 8080  df-oadd 8084  df-er 8267  df-map 8386  df-en 8488  df-dom 8489  df-sdom 8490  df-fin 8491  df-pnf 10655  df-mnf 10656  df-xr 10657  df-ltxr 10658  df-le 10659  df-sub 10850  df-neg 10851  df-nn 11617  df-2 11679  df-3 11680  df-4 11681  df-5 11682  df-6 11683  df-n0 11877  df-z 11961  df-uz 12223  df-fz 12877  df-struct 16464  df-ndx 16465  df-slot 16466  df-base 16468  df-plusg 16557  df-mulr 16558  df-sca 16560  df-vsca 16561  df-proset 17517  df-poset 17535  df-plt 17547  df-lub 17563  df-glb 17564  df-join 17565  df-meet 17566  df-p0 17628  df-p1 17629  df-lat 17635  df-clat 17697  df-lss 19680  df-oposet 36348  df-ol 36350  df-oml 36351  df-covers 36438  df-ats 36439  df-atl 36470  df-cvlat 36494  df-hlat 36523  df-llines 36670  df-lplanes 36671  df-lvols 36672  df-lines 36673  df-psubsp 36675  df-pmap 36676  df-padd 36968  df-lhyp 37160  df-laut 37161  df-ldil 37276  df-ltrn 37277  df-trl 37331  df-tendo 37927  df-edring 37929  df-dvech 38251  df-dic 38345 This theorem is referenced by:  cdlemn5pre  38372  cdlemn11c  38381  dihjustlem  38388  dihord1  38390  dihord2a  38391  dihord2b  38392  dihord11c  38396  dihlsscpre  38406  dihvalcqat  38411  dihopelvalcpre  38420  dihord6apre  38428  dihord5b  38431  dihord5apre  38434
 Copyright terms: Public domain W3C validator