| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > diclss | Structured version Visualization version GIF version | ||
| Description: The value of partial isomorphism C is a subspace of partial vector space H. (Contributed by NM, 16-Feb-2014.) |
| Ref | Expression |
|---|---|
| diclss.l | ⊢ ≤ = (le‘𝐾) |
| diclss.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| diclss.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| diclss.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| diclss.i | ⊢ 𝐼 = ((DIsoC‘𝐾)‘𝑊) |
| diclss.s | ⊢ 𝑆 = (LSubSp‘𝑈) |
| Ref | Expression |
|---|---|
| diclss | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝐼‘𝑄) ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2738 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (Scalar‘𝑈) = (Scalar‘𝑈)) | |
| 2 | diclss.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 3 | eqid 2737 | . . . . 5 ⊢ ((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊) | |
| 4 | diclss.u | . . . . 5 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 5 | eqid 2737 | . . . . 5 ⊢ (Scalar‘𝑈) = (Scalar‘𝑈) | |
| 6 | eqid 2737 | . . . . 5 ⊢ (Base‘(Scalar‘𝑈)) = (Base‘(Scalar‘𝑈)) | |
| 7 | 2, 3, 4, 5, 6 | dvhbase 41085 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (Base‘(Scalar‘𝑈)) = ((TEndo‘𝐾)‘𝑊)) |
| 8 | 7 | eqcomd 2743 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ((TEndo‘𝐾)‘𝑊) = (Base‘(Scalar‘𝑈))) |
| 9 | 8 | adantr 480 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → ((TEndo‘𝐾)‘𝑊) = (Base‘(Scalar‘𝑈))) |
| 10 | eqid 2737 | . . . . 5 ⊢ ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊) | |
| 11 | eqid 2737 | . . . . 5 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
| 12 | 2, 10, 3, 4, 11 | dvhvbase 41089 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (Base‘𝑈) = (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊))) |
| 13 | 12 | eqcomd 2743 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) = (Base‘𝑈)) |
| 14 | 13 | adantr 480 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) = (Base‘𝑈)) |
| 15 | eqidd 2738 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (+g‘𝑈) = (+g‘𝑈)) | |
| 16 | eqidd 2738 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → ( ·𝑠 ‘𝑈) = ( ·𝑠 ‘𝑈)) | |
| 17 | diclss.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑈) | |
| 18 | 17 | a1i 11 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → 𝑆 = (LSubSp‘𝑈)) |
| 19 | diclss.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 20 | diclss.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 21 | diclss.i | . . . 4 ⊢ 𝐼 = ((DIsoC‘𝐾)‘𝑊) | |
| 22 | 19, 20, 2, 21, 4, 11 | dicssdvh 41188 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝐼‘𝑄) ⊆ (Base‘𝑈)) |
| 23 | 22, 14 | sseqtrrd 4021 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝐼‘𝑄) ⊆ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊))) |
| 24 | 19, 20, 2, 21 | dicn0 41194 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝐼‘𝑄) ≠ ∅) |
| 25 | simpll 767 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑄) ∧ 𝑏 ∈ (𝐼‘𝑄))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 26 | simplr 769 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑄) ∧ 𝑏 ∈ (𝐼‘𝑄))) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) | |
| 27 | simpr1 1195 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑄) ∧ 𝑏 ∈ (𝐼‘𝑄))) → 𝑥 ∈ ((TEndo‘𝐾)‘𝑊)) | |
| 28 | simpr2 1196 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑄) ∧ 𝑏 ∈ (𝐼‘𝑄))) → 𝑎 ∈ (𝐼‘𝑄)) | |
| 29 | eqid 2737 | . . . . 5 ⊢ ( ·𝑠 ‘𝑈) = ( ·𝑠 ‘𝑈) | |
| 30 | 19, 20, 2, 3, 4, 21, 29 | dicvscacl 41193 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑄))) → (𝑥( ·𝑠 ‘𝑈)𝑎) ∈ (𝐼‘𝑄)) |
| 31 | 25, 26, 27, 28, 30 | syl112anc 1376 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑄) ∧ 𝑏 ∈ (𝐼‘𝑄))) → (𝑥( ·𝑠 ‘𝑈)𝑎) ∈ (𝐼‘𝑄)) |
| 32 | simpr3 1197 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑄) ∧ 𝑏 ∈ (𝐼‘𝑄))) → 𝑏 ∈ (𝐼‘𝑄)) | |
| 33 | eqid 2737 | . . . 4 ⊢ (+g‘𝑈) = (+g‘𝑈) | |
| 34 | 19, 20, 2, 4, 21, 33 | dicvaddcl 41192 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ ((𝑥( ·𝑠 ‘𝑈)𝑎) ∈ (𝐼‘𝑄) ∧ 𝑏 ∈ (𝐼‘𝑄))) → ((𝑥( ·𝑠 ‘𝑈)𝑎)(+g‘𝑈)𝑏) ∈ (𝐼‘𝑄)) |
| 35 | 25, 26, 31, 32, 34 | syl112anc 1376 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑄) ∧ 𝑏 ∈ (𝐼‘𝑄))) → ((𝑥( ·𝑠 ‘𝑈)𝑎)(+g‘𝑈)𝑏) ∈ (𝐼‘𝑄)) |
| 36 | 1, 9, 14, 15, 16, 18, 23, 24, 35 | islssd 20933 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝐼‘𝑄) ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 class class class wbr 5143 × cxp 5683 ‘cfv 6561 (class class class)co 7431 Basecbs 17247 +gcplusg 17297 Scalarcsca 17300 ·𝑠 cvsca 17301 lecple 17304 LSubSpclss 20929 Atomscatm 39264 HLchlt 39351 LHypclh 39986 LTrncltrn 40103 TEndoctendo 40754 DVecHcdvh 41080 DIsoCcdic 41174 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-riotaBAD 38954 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-iun 4993 df-iin 4994 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-undef 8298 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-er 8745 df-map 8868 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-n0 12527 df-z 12614 df-uz 12879 df-fz 13548 df-struct 17184 df-slot 17219 df-ndx 17231 df-base 17248 df-plusg 17310 df-mulr 17311 df-sca 17313 df-vsca 17314 df-proset 18340 df-poset 18359 df-plt 18375 df-lub 18391 df-glb 18392 df-join 18393 df-meet 18394 df-p0 18470 df-p1 18471 df-lat 18477 df-clat 18544 df-lss 20930 df-oposet 39177 df-ol 39179 df-oml 39180 df-covers 39267 df-ats 39268 df-atl 39299 df-cvlat 39323 df-hlat 39352 df-llines 39500 df-lplanes 39501 df-lvols 39502 df-lines 39503 df-psubsp 39505 df-pmap 39506 df-padd 39798 df-lhyp 39990 df-laut 39991 df-ldil 40106 df-ltrn 40107 df-trl 40161 df-tendo 40757 df-edring 40759 df-dvech 41081 df-dic 41175 |
| This theorem is referenced by: cdlemn5pre 41202 cdlemn11c 41211 dihjustlem 41218 dihord1 41220 dihord2a 41221 dihord2b 41222 dihord11c 41226 dihlsscpre 41236 dihvalcqat 41241 dihopelvalcpre 41250 dihord6apre 41258 dihord5b 41261 dihord5apre 41264 |
| Copyright terms: Public domain | W3C validator |