| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > diclss | Structured version Visualization version GIF version | ||
| Description: The value of partial isomorphism C is a subspace of partial vector space H. (Contributed by NM, 16-Feb-2014.) |
| Ref | Expression |
|---|---|
| diclss.l | ⊢ ≤ = (le‘𝐾) |
| diclss.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| diclss.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| diclss.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| diclss.i | ⊢ 𝐼 = ((DIsoC‘𝐾)‘𝑊) |
| diclss.s | ⊢ 𝑆 = (LSubSp‘𝑈) |
| Ref | Expression |
|---|---|
| diclss | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝐼‘𝑄) ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2730 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (Scalar‘𝑈) = (Scalar‘𝑈)) | |
| 2 | diclss.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 3 | eqid 2729 | . . . . 5 ⊢ ((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊) | |
| 4 | diclss.u | . . . . 5 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 5 | eqid 2729 | . . . . 5 ⊢ (Scalar‘𝑈) = (Scalar‘𝑈) | |
| 6 | eqid 2729 | . . . . 5 ⊢ (Base‘(Scalar‘𝑈)) = (Base‘(Scalar‘𝑈)) | |
| 7 | 2, 3, 4, 5, 6 | dvhbase 41077 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (Base‘(Scalar‘𝑈)) = ((TEndo‘𝐾)‘𝑊)) |
| 8 | 7 | eqcomd 2735 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ((TEndo‘𝐾)‘𝑊) = (Base‘(Scalar‘𝑈))) |
| 9 | 8 | adantr 480 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → ((TEndo‘𝐾)‘𝑊) = (Base‘(Scalar‘𝑈))) |
| 10 | eqid 2729 | . . . . 5 ⊢ ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊) | |
| 11 | eqid 2729 | . . . . 5 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
| 12 | 2, 10, 3, 4, 11 | dvhvbase 41081 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (Base‘𝑈) = (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊))) |
| 13 | 12 | eqcomd 2735 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) = (Base‘𝑈)) |
| 14 | 13 | adantr 480 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊)) = (Base‘𝑈)) |
| 15 | eqidd 2730 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (+g‘𝑈) = (+g‘𝑈)) | |
| 16 | eqidd 2730 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → ( ·𝑠 ‘𝑈) = ( ·𝑠 ‘𝑈)) | |
| 17 | diclss.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑈) | |
| 18 | 17 | a1i 11 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → 𝑆 = (LSubSp‘𝑈)) |
| 19 | diclss.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 20 | diclss.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 21 | diclss.i | . . . 4 ⊢ 𝐼 = ((DIsoC‘𝐾)‘𝑊) | |
| 22 | 19, 20, 2, 21, 4, 11 | dicssdvh 41180 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝐼‘𝑄) ⊆ (Base‘𝑈)) |
| 23 | 22, 14 | sseqtrrd 3984 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝐼‘𝑄) ⊆ (((LTrn‘𝐾)‘𝑊) × ((TEndo‘𝐾)‘𝑊))) |
| 24 | 19, 20, 2, 21 | dicn0 41186 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝐼‘𝑄) ≠ ∅) |
| 25 | simpll 766 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑄) ∧ 𝑏 ∈ (𝐼‘𝑄))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 26 | simplr 768 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑄) ∧ 𝑏 ∈ (𝐼‘𝑄))) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) | |
| 27 | simpr1 1195 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑄) ∧ 𝑏 ∈ (𝐼‘𝑄))) → 𝑥 ∈ ((TEndo‘𝐾)‘𝑊)) | |
| 28 | simpr2 1196 | . . . 4 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑄) ∧ 𝑏 ∈ (𝐼‘𝑄))) → 𝑎 ∈ (𝐼‘𝑄)) | |
| 29 | eqid 2729 | . . . . 5 ⊢ ( ·𝑠 ‘𝑈) = ( ·𝑠 ‘𝑈) | |
| 30 | 19, 20, 2, 3, 4, 21, 29 | dicvscacl 41185 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑄))) → (𝑥( ·𝑠 ‘𝑈)𝑎) ∈ (𝐼‘𝑄)) |
| 31 | 25, 26, 27, 28, 30 | syl112anc 1376 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑄) ∧ 𝑏 ∈ (𝐼‘𝑄))) → (𝑥( ·𝑠 ‘𝑈)𝑎) ∈ (𝐼‘𝑄)) |
| 32 | simpr3 1197 | . . 3 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑄) ∧ 𝑏 ∈ (𝐼‘𝑄))) → 𝑏 ∈ (𝐼‘𝑄)) | |
| 33 | eqid 2729 | . . . 4 ⊢ (+g‘𝑈) = (+g‘𝑈) | |
| 34 | 19, 20, 2, 4, 21, 33 | dicvaddcl 41184 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ ((𝑥( ·𝑠 ‘𝑈)𝑎) ∈ (𝐼‘𝑄) ∧ 𝑏 ∈ (𝐼‘𝑄))) → ((𝑥( ·𝑠 ‘𝑈)𝑎)(+g‘𝑈)𝑏) ∈ (𝐼‘𝑄)) |
| 35 | 25, 26, 31, 32, 34 | syl112anc 1376 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑥 ∈ ((TEndo‘𝐾)‘𝑊) ∧ 𝑎 ∈ (𝐼‘𝑄) ∧ 𝑏 ∈ (𝐼‘𝑄))) → ((𝑥( ·𝑠 ‘𝑈)𝑎)(+g‘𝑈)𝑏) ∈ (𝐼‘𝑄)) |
| 36 | 1, 9, 14, 15, 16, 18, 23, 24, 35 | islssd 20841 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝐼‘𝑄) ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5107 × cxp 5636 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 +gcplusg 17220 Scalarcsca 17223 ·𝑠 cvsca 17224 lecple 17227 LSubSpclss 20837 Atomscatm 39256 HLchlt 39343 LHypclh 39978 LTrncltrn 40095 TEndoctendo 40746 DVecHcdvh 41072 DIsoCcdic 41166 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-riotaBAD 38946 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-undef 8252 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-n0 12443 df-z 12530 df-uz 12794 df-fz 13469 df-struct 17117 df-slot 17152 df-ndx 17164 df-base 17180 df-plusg 17233 df-mulr 17234 df-sca 17236 df-vsca 17237 df-proset 18255 df-poset 18274 df-plt 18289 df-lub 18305 df-glb 18306 df-join 18307 df-meet 18308 df-p0 18384 df-p1 18385 df-lat 18391 df-clat 18458 df-lss 20838 df-oposet 39169 df-ol 39171 df-oml 39172 df-covers 39259 df-ats 39260 df-atl 39291 df-cvlat 39315 df-hlat 39344 df-llines 39492 df-lplanes 39493 df-lvols 39494 df-lines 39495 df-psubsp 39497 df-pmap 39498 df-padd 39790 df-lhyp 39982 df-laut 39983 df-ldil 40098 df-ltrn 40099 df-trl 40153 df-tendo 40749 df-edring 40751 df-dvech 41073 df-dic 41167 |
| This theorem is referenced by: cdlemn5pre 41194 cdlemn11c 41203 dihjustlem 41210 dihord1 41212 dihord2a 41213 dihord2b 41214 dihord11c 41218 dihlsscpre 41228 dihvalcqat 41233 dihopelvalcpre 41242 dihord6apre 41250 dihord5b 41253 dihord5apre 41256 |
| Copyright terms: Public domain | W3C validator |