HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shmulcl Structured version   Visualization version   GIF version

Theorem shmulcl 31154
Description: Closure of vector scalar multiplication in a subspace of a Hilbert space. (Contributed by NM, 13-Sep-1999.) (New usage is discouraged.)
Assertion
Ref Expression
shmulcl ((𝐻S𝐴 ∈ ℂ ∧ 𝐵𝐻) → (𝐴 · 𝐵) ∈ 𝐻)

Proof of Theorem shmulcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 issh2 31145 . . . . 5 (𝐻S ↔ ((𝐻 ⊆ ℋ ∧ 0𝐻) ∧ (∀𝑥𝐻𝑦𝐻 (𝑥 + 𝑦) ∈ 𝐻 ∧ ∀𝑥 ∈ ℂ ∀𝑦𝐻 (𝑥 · 𝑦) ∈ 𝐻)))
21simprbi 496 . . . 4 (𝐻S → (∀𝑥𝐻𝑦𝐻 (𝑥 + 𝑦) ∈ 𝐻 ∧ ∀𝑥 ∈ ℂ ∀𝑦𝐻 (𝑥 · 𝑦) ∈ 𝐻))
32simprd 495 . . 3 (𝐻S → ∀𝑥 ∈ ℂ ∀𝑦𝐻 (𝑥 · 𝑦) ∈ 𝐻)
4 oveq1 7397 . . . . 5 (𝑥 = 𝐴 → (𝑥 · 𝑦) = (𝐴 · 𝑦))
54eleq1d 2814 . . . 4 (𝑥 = 𝐴 → ((𝑥 · 𝑦) ∈ 𝐻 ↔ (𝐴 · 𝑦) ∈ 𝐻))
6 oveq2 7398 . . . . 5 (𝑦 = 𝐵 → (𝐴 · 𝑦) = (𝐴 · 𝐵))
76eleq1d 2814 . . . 4 (𝑦 = 𝐵 → ((𝐴 · 𝑦) ∈ 𝐻 ↔ (𝐴 · 𝐵) ∈ 𝐻))
85, 7rspc2v 3602 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵𝐻) → (∀𝑥 ∈ ℂ ∀𝑦𝐻 (𝑥 · 𝑦) ∈ 𝐻 → (𝐴 · 𝐵) ∈ 𝐻))
93, 8syl5com 31 . 2 (𝐻S → ((𝐴 ∈ ℂ ∧ 𝐵𝐻) → (𝐴 · 𝐵) ∈ 𝐻))
1093impib 1116 1 ((𝐻S𝐴 ∈ ℂ ∧ 𝐵𝐻) → (𝐴 · 𝐵) ∈ 𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  wss 3917  (class class class)co 7390  cc 11073  chba 30855   + cva 30856   · csm 30857  0c0v 30860   S csh 30864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-hilex 30935  ax-hfvadd 30936  ax-hfvmul 30941
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-ov 7393  df-sh 31143
This theorem is referenced by:  shsubcl  31156  norm1exi  31186  hhssabloilem  31197  hhssnv  31200  shsel3  31251  shscli  31253  shintcli  31265  pjhthlem1  31327  h1de2bi  31490  h1de2ctlem  31491  spansni  31493  spansnmul  31500  spansnss  31507  spanunsni  31515  h1datomi  31517  pjmulii  31613  mayete3i  31664  imaelshi  31994  strlem1  32186  cdj1i  32369  cdj3lem1  32370
  Copyright terms: Public domain W3C validator