![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > shmulcl | Structured version Visualization version GIF version |
Description: Closure of vector scalar multiplication in a subspace of a Hilbert space. (Contributed by NM, 13-Sep-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
shmulcl | ⊢ ((𝐻 ∈ Sℋ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝐻) → (𝐴 ·ℎ 𝐵) ∈ 𝐻) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issh2 28590 | . . . . 5 ⊢ (𝐻 ∈ Sℋ ↔ ((𝐻 ⊆ ℋ ∧ 0ℎ ∈ 𝐻) ∧ (∀𝑥 ∈ 𝐻 ∀𝑦 ∈ 𝐻 (𝑥 +ℎ 𝑦) ∈ 𝐻 ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ 𝐻 (𝑥 ·ℎ 𝑦) ∈ 𝐻))) | |
2 | 1 | simprbi 491 | . . . 4 ⊢ (𝐻 ∈ Sℋ → (∀𝑥 ∈ 𝐻 ∀𝑦 ∈ 𝐻 (𝑥 +ℎ 𝑦) ∈ 𝐻 ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ 𝐻 (𝑥 ·ℎ 𝑦) ∈ 𝐻)) |
3 | 2 | simprd 490 | . . 3 ⊢ (𝐻 ∈ Sℋ → ∀𝑥 ∈ ℂ ∀𝑦 ∈ 𝐻 (𝑥 ·ℎ 𝑦) ∈ 𝐻) |
4 | oveq1 6886 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ·ℎ 𝑦) = (𝐴 ·ℎ 𝑦)) | |
5 | 4 | eleq1d 2864 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 ·ℎ 𝑦) ∈ 𝐻 ↔ (𝐴 ·ℎ 𝑦) ∈ 𝐻)) |
6 | oveq2 6887 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝐴 ·ℎ 𝑦) = (𝐴 ·ℎ 𝐵)) | |
7 | 6 | eleq1d 2864 | . . . 4 ⊢ (𝑦 = 𝐵 → ((𝐴 ·ℎ 𝑦) ∈ 𝐻 ↔ (𝐴 ·ℎ 𝐵) ∈ 𝐻)) |
8 | 5, 7 | rspc2v 3511 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝐻) → (∀𝑥 ∈ ℂ ∀𝑦 ∈ 𝐻 (𝑥 ·ℎ 𝑦) ∈ 𝐻 → (𝐴 ·ℎ 𝐵) ∈ 𝐻)) |
9 | 3, 8 | syl5com 31 | . 2 ⊢ (𝐻 ∈ Sℋ → ((𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝐻) → (𝐴 ·ℎ 𝐵) ∈ 𝐻)) |
10 | 9 | 3impib 1145 | 1 ⊢ ((𝐻 ∈ Sℋ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝐻) → (𝐴 ·ℎ 𝐵) ∈ 𝐻) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 ∀wral 3090 ⊆ wss 3770 (class class class)co 6879 ℂcc 10223 ℋchba 28300 +ℎ cva 28301 ·ℎ csm 28302 0ℎc0v 28305 Sℋ csh 28309 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 ax-sep 4976 ax-nul 4984 ax-pr 5098 ax-hilex 28380 ax-hfvadd 28381 ax-hfvmul 28386 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2592 df-eu 2610 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3388 df-sbc 3635 df-csb 3730 df-dif 3773 df-un 3775 df-in 3777 df-ss 3784 df-nul 4117 df-if 4279 df-pw 4352 df-sn 4370 df-pr 4372 df-op 4376 df-uni 4630 df-iun 4713 df-br 4845 df-opab 4907 df-id 5221 df-xp 5319 df-rel 5320 df-cnv 5321 df-co 5322 df-dm 5323 df-rn 5324 df-res 5325 df-ima 5326 df-iota 6065 df-fun 6104 df-fn 6105 df-f 6106 df-fv 6110 df-ov 6882 df-sh 28588 |
This theorem is referenced by: shsubcl 28601 norm1exi 28631 hhssabloilem 28642 hhssnv 28645 shsel3 28698 shscli 28700 shintcli 28712 pjhthlem1 28774 h1de2bi 28937 h1de2ctlem 28938 spansni 28940 spansnmul 28947 spansnss 28954 spanunsni 28962 h1datomi 28964 pjmulii 29060 mayete3i 29111 imaelshi 29441 strlem1 29633 cdj1i 29816 cdj3lem1 29817 |
Copyright terms: Public domain | W3C validator |