| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > shmulcl | Structured version Visualization version GIF version | ||
| Description: Closure of vector scalar multiplication in a subspace of a Hilbert space. (Contributed by NM, 13-Sep-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| shmulcl | ⊢ ((𝐻 ∈ Sℋ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝐻) → (𝐴 ·ℎ 𝐵) ∈ 𝐻) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issh2 31145 | . . . . 5 ⊢ (𝐻 ∈ Sℋ ↔ ((𝐻 ⊆ ℋ ∧ 0ℎ ∈ 𝐻) ∧ (∀𝑥 ∈ 𝐻 ∀𝑦 ∈ 𝐻 (𝑥 +ℎ 𝑦) ∈ 𝐻 ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ 𝐻 (𝑥 ·ℎ 𝑦) ∈ 𝐻))) | |
| 2 | 1 | simprbi 496 | . . . 4 ⊢ (𝐻 ∈ Sℋ → (∀𝑥 ∈ 𝐻 ∀𝑦 ∈ 𝐻 (𝑥 +ℎ 𝑦) ∈ 𝐻 ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ 𝐻 (𝑥 ·ℎ 𝑦) ∈ 𝐻)) |
| 3 | 2 | simprd 495 | . . 3 ⊢ (𝐻 ∈ Sℋ → ∀𝑥 ∈ ℂ ∀𝑦 ∈ 𝐻 (𝑥 ·ℎ 𝑦) ∈ 𝐻) |
| 4 | oveq1 7397 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ·ℎ 𝑦) = (𝐴 ·ℎ 𝑦)) | |
| 5 | 4 | eleq1d 2814 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 ·ℎ 𝑦) ∈ 𝐻 ↔ (𝐴 ·ℎ 𝑦) ∈ 𝐻)) |
| 6 | oveq2 7398 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝐴 ·ℎ 𝑦) = (𝐴 ·ℎ 𝐵)) | |
| 7 | 6 | eleq1d 2814 | . . . 4 ⊢ (𝑦 = 𝐵 → ((𝐴 ·ℎ 𝑦) ∈ 𝐻 ↔ (𝐴 ·ℎ 𝐵) ∈ 𝐻)) |
| 8 | 5, 7 | rspc2v 3602 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝐻) → (∀𝑥 ∈ ℂ ∀𝑦 ∈ 𝐻 (𝑥 ·ℎ 𝑦) ∈ 𝐻 → (𝐴 ·ℎ 𝐵) ∈ 𝐻)) |
| 9 | 3, 8 | syl5com 31 | . 2 ⊢ (𝐻 ∈ Sℋ → ((𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝐻) → (𝐴 ·ℎ 𝐵) ∈ 𝐻)) |
| 10 | 9 | 3impib 1116 | 1 ⊢ ((𝐻 ∈ Sℋ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝐻) → (𝐴 ·ℎ 𝐵) ∈ 𝐻) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ⊆ wss 3917 (class class class)co 7390 ℂcc 11073 ℋchba 30855 +ℎ cva 30856 ·ℎ csm 30857 0ℎc0v 30860 Sℋ csh 30864 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-hilex 30935 ax-hfvadd 30936 ax-hfvmul 30941 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-ov 7393 df-sh 31143 |
| This theorem is referenced by: shsubcl 31156 norm1exi 31186 hhssabloilem 31197 hhssnv 31200 shsel3 31251 shscli 31253 shintcli 31265 pjhthlem1 31327 h1de2bi 31490 h1de2ctlem 31491 spansni 31493 spansnmul 31500 spansnss 31507 spanunsni 31515 h1datomi 31517 pjmulii 31613 mayete3i 31664 imaelshi 31994 strlem1 32186 cdj1i 32369 cdj3lem1 32370 |
| Copyright terms: Public domain | W3C validator |