| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > shmulcl | Structured version Visualization version GIF version | ||
| Description: Closure of vector scalar multiplication in a subspace of a Hilbert space. (Contributed by NM, 13-Sep-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| shmulcl | ⊢ ((𝐻 ∈ Sℋ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝐻) → (𝐴 ·ℎ 𝐵) ∈ 𝐻) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issh2 31136 | . . . . 5 ⊢ (𝐻 ∈ Sℋ ↔ ((𝐻 ⊆ ℋ ∧ 0ℎ ∈ 𝐻) ∧ (∀𝑥 ∈ 𝐻 ∀𝑦 ∈ 𝐻 (𝑥 +ℎ 𝑦) ∈ 𝐻 ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ 𝐻 (𝑥 ·ℎ 𝑦) ∈ 𝐻))) | |
| 2 | 1 | simprbi 496 | . . . 4 ⊢ (𝐻 ∈ Sℋ → (∀𝑥 ∈ 𝐻 ∀𝑦 ∈ 𝐻 (𝑥 +ℎ 𝑦) ∈ 𝐻 ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ 𝐻 (𝑥 ·ℎ 𝑦) ∈ 𝐻)) |
| 3 | 2 | simprd 495 | . . 3 ⊢ (𝐻 ∈ Sℋ → ∀𝑥 ∈ ℂ ∀𝑦 ∈ 𝐻 (𝑥 ·ℎ 𝑦) ∈ 𝐻) |
| 4 | oveq1 7410 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ·ℎ 𝑦) = (𝐴 ·ℎ 𝑦)) | |
| 5 | 4 | eleq1d 2819 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 ·ℎ 𝑦) ∈ 𝐻 ↔ (𝐴 ·ℎ 𝑦) ∈ 𝐻)) |
| 6 | oveq2 7411 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝐴 ·ℎ 𝑦) = (𝐴 ·ℎ 𝐵)) | |
| 7 | 6 | eleq1d 2819 | . . . 4 ⊢ (𝑦 = 𝐵 → ((𝐴 ·ℎ 𝑦) ∈ 𝐻 ↔ (𝐴 ·ℎ 𝐵) ∈ 𝐻)) |
| 8 | 5, 7 | rspc2v 3612 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝐻) → (∀𝑥 ∈ ℂ ∀𝑦 ∈ 𝐻 (𝑥 ·ℎ 𝑦) ∈ 𝐻 → (𝐴 ·ℎ 𝐵) ∈ 𝐻)) |
| 9 | 3, 8 | syl5com 31 | . 2 ⊢ (𝐻 ∈ Sℋ → ((𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝐻) → (𝐴 ·ℎ 𝐵) ∈ 𝐻)) |
| 10 | 9 | 3impib 1116 | 1 ⊢ ((𝐻 ∈ Sℋ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝐻) → (𝐴 ·ℎ 𝐵) ∈ 𝐻) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ⊆ wss 3926 (class class class)co 7403 ℂcc 11125 ℋchba 30846 +ℎ cva 30847 ·ℎ csm 30848 0ℎc0v 30851 Sℋ csh 30855 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-hilex 30926 ax-hfvadd 30927 ax-hfvmul 30932 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-fv 6538 df-ov 7406 df-sh 31134 |
| This theorem is referenced by: shsubcl 31147 norm1exi 31177 hhssabloilem 31188 hhssnv 31191 shsel3 31242 shscli 31244 shintcli 31256 pjhthlem1 31318 h1de2bi 31481 h1de2ctlem 31482 spansni 31484 spansnmul 31491 spansnss 31498 spanunsni 31506 h1datomi 31508 pjmulii 31604 mayete3i 31655 imaelshi 31985 strlem1 32177 cdj1i 32360 cdj3lem1 32361 |
| Copyright terms: Public domain | W3C validator |