![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > shmulcl | Structured version Visualization version GIF version |
Description: Closure of vector scalar multiplication in a subspace of a Hilbert space. (Contributed by NM, 13-Sep-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
shmulcl | ⊢ ((𝐻 ∈ Sℋ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝐻) → (𝐴 ·ℎ 𝐵) ∈ 𝐻) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issh2 31237 | . . . . 5 ⊢ (𝐻 ∈ Sℋ ↔ ((𝐻 ⊆ ℋ ∧ 0ℎ ∈ 𝐻) ∧ (∀𝑥 ∈ 𝐻 ∀𝑦 ∈ 𝐻 (𝑥 +ℎ 𝑦) ∈ 𝐻 ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ 𝐻 (𝑥 ·ℎ 𝑦) ∈ 𝐻))) | |
2 | 1 | simprbi 496 | . . . 4 ⊢ (𝐻 ∈ Sℋ → (∀𝑥 ∈ 𝐻 ∀𝑦 ∈ 𝐻 (𝑥 +ℎ 𝑦) ∈ 𝐻 ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ 𝐻 (𝑥 ·ℎ 𝑦) ∈ 𝐻)) |
3 | 2 | simprd 495 | . . 3 ⊢ (𝐻 ∈ Sℋ → ∀𝑥 ∈ ℂ ∀𝑦 ∈ 𝐻 (𝑥 ·ℎ 𝑦) ∈ 𝐻) |
4 | oveq1 7437 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ·ℎ 𝑦) = (𝐴 ·ℎ 𝑦)) | |
5 | 4 | eleq1d 2823 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 ·ℎ 𝑦) ∈ 𝐻 ↔ (𝐴 ·ℎ 𝑦) ∈ 𝐻)) |
6 | oveq2 7438 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝐴 ·ℎ 𝑦) = (𝐴 ·ℎ 𝐵)) | |
7 | 6 | eleq1d 2823 | . . . 4 ⊢ (𝑦 = 𝐵 → ((𝐴 ·ℎ 𝑦) ∈ 𝐻 ↔ (𝐴 ·ℎ 𝐵) ∈ 𝐻)) |
8 | 5, 7 | rspc2v 3632 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝐻) → (∀𝑥 ∈ ℂ ∀𝑦 ∈ 𝐻 (𝑥 ·ℎ 𝑦) ∈ 𝐻 → (𝐴 ·ℎ 𝐵) ∈ 𝐻)) |
9 | 3, 8 | syl5com 31 | . 2 ⊢ (𝐻 ∈ Sℋ → ((𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝐻) → (𝐴 ·ℎ 𝐵) ∈ 𝐻)) |
10 | 9 | 3impib 1115 | 1 ⊢ ((𝐻 ∈ Sℋ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝐻) → (𝐴 ·ℎ 𝐵) ∈ 𝐻) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1536 ∈ wcel 2105 ∀wral 3058 ⊆ wss 3962 (class class class)co 7430 ℂcc 11150 ℋchba 30947 +ℎ cva 30948 ·ℎ csm 30949 0ℎc0v 30952 Sℋ csh 30956 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 ax-hilex 31027 ax-hfvadd 31028 ax-hfvmul 31033 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-fv 6570 df-ov 7433 df-sh 31235 |
This theorem is referenced by: shsubcl 31248 norm1exi 31278 hhssabloilem 31289 hhssnv 31292 shsel3 31343 shscli 31345 shintcli 31357 pjhthlem1 31419 h1de2bi 31582 h1de2ctlem 31583 spansni 31585 spansnmul 31592 spansnss 31599 spanunsni 31607 h1datomi 31609 pjmulii 31705 mayete3i 31756 imaelshi 32086 strlem1 32278 cdj1i 32461 cdj3lem1 32462 |
Copyright terms: Public domain | W3C validator |