HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shmulcl Structured version   Visualization version   GIF version

Theorem shmulcl 31147
Description: Closure of vector scalar multiplication in a subspace of a Hilbert space. (Contributed by NM, 13-Sep-1999.) (New usage is discouraged.)
Assertion
Ref Expression
shmulcl ((𝐻S𝐴 ∈ ℂ ∧ 𝐵𝐻) → (𝐴 · 𝐵) ∈ 𝐻)

Proof of Theorem shmulcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 issh2 31138 . . . . 5 (𝐻S ↔ ((𝐻 ⊆ ℋ ∧ 0𝐻) ∧ (∀𝑥𝐻𝑦𝐻 (𝑥 + 𝑦) ∈ 𝐻 ∧ ∀𝑥 ∈ ℂ ∀𝑦𝐻 (𝑥 · 𝑦) ∈ 𝐻)))
21simprbi 496 . . . 4 (𝐻S → (∀𝑥𝐻𝑦𝐻 (𝑥 + 𝑦) ∈ 𝐻 ∧ ∀𝑥 ∈ ℂ ∀𝑦𝐻 (𝑥 · 𝑦) ∈ 𝐻))
32simprd 495 . . 3 (𝐻S → ∀𝑥 ∈ ℂ ∀𝑦𝐻 (𝑥 · 𝑦) ∈ 𝐻)
4 oveq1 7394 . . . . 5 (𝑥 = 𝐴 → (𝑥 · 𝑦) = (𝐴 · 𝑦))
54eleq1d 2813 . . . 4 (𝑥 = 𝐴 → ((𝑥 · 𝑦) ∈ 𝐻 ↔ (𝐴 · 𝑦) ∈ 𝐻))
6 oveq2 7395 . . . . 5 (𝑦 = 𝐵 → (𝐴 · 𝑦) = (𝐴 · 𝐵))
76eleq1d 2813 . . . 4 (𝑦 = 𝐵 → ((𝐴 · 𝑦) ∈ 𝐻 ↔ (𝐴 · 𝐵) ∈ 𝐻))
85, 7rspc2v 3599 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵𝐻) → (∀𝑥 ∈ ℂ ∀𝑦𝐻 (𝑥 · 𝑦) ∈ 𝐻 → (𝐴 · 𝐵) ∈ 𝐻))
93, 8syl5com 31 . 2 (𝐻S → ((𝐴 ∈ ℂ ∧ 𝐵𝐻) → (𝐴 · 𝐵) ∈ 𝐻))
1093impib 1116 1 ((𝐻S𝐴 ∈ ℂ ∧ 𝐵𝐻) → (𝐴 · 𝐵) ∈ 𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wss 3914  (class class class)co 7387  cc 11066  chba 30848   + cva 30849   · csm 30850  0c0v 30853   S csh 30857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-hilex 30928  ax-hfvadd 30929  ax-hfvmul 30934
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-ov 7390  df-sh 31136
This theorem is referenced by:  shsubcl  31149  norm1exi  31179  hhssabloilem  31190  hhssnv  31193  shsel3  31244  shscli  31246  shintcli  31258  pjhthlem1  31320  h1de2bi  31483  h1de2ctlem  31484  spansni  31486  spansnmul  31493  spansnss  31500  spanunsni  31508  h1datomi  31510  pjmulii  31606  mayete3i  31657  imaelshi  31987  strlem1  32179  cdj1i  32362  cdj3lem1  32363
  Copyright terms: Public domain W3C validator