HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shmulcl Structured version   Visualization version   GIF version

Theorem shmulcl 31196
Description: Closure of vector scalar multiplication in a subspace of a Hilbert space. (Contributed by NM, 13-Sep-1999.) (New usage is discouraged.)
Assertion
Ref Expression
shmulcl ((𝐻S𝐴 ∈ ℂ ∧ 𝐵𝐻) → (𝐴 · 𝐵) ∈ 𝐻)

Proof of Theorem shmulcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 issh2 31187 . . . . 5 (𝐻S ↔ ((𝐻 ⊆ ℋ ∧ 0𝐻) ∧ (∀𝑥𝐻𝑦𝐻 (𝑥 + 𝑦) ∈ 𝐻 ∧ ∀𝑥 ∈ ℂ ∀𝑦𝐻 (𝑥 · 𝑦) ∈ 𝐻)))
21simprbi 496 . . . 4 (𝐻S → (∀𝑥𝐻𝑦𝐻 (𝑥 + 𝑦) ∈ 𝐻 ∧ ∀𝑥 ∈ ℂ ∀𝑦𝐻 (𝑥 · 𝑦) ∈ 𝐻))
32simprd 495 . . 3 (𝐻S → ∀𝑥 ∈ ℂ ∀𝑦𝐻 (𝑥 · 𝑦) ∈ 𝐻)
4 oveq1 7353 . . . . 5 (𝑥 = 𝐴 → (𝑥 · 𝑦) = (𝐴 · 𝑦))
54eleq1d 2816 . . . 4 (𝑥 = 𝐴 → ((𝑥 · 𝑦) ∈ 𝐻 ↔ (𝐴 · 𝑦) ∈ 𝐻))
6 oveq2 7354 . . . . 5 (𝑦 = 𝐵 → (𝐴 · 𝑦) = (𝐴 · 𝐵))
76eleq1d 2816 . . . 4 (𝑦 = 𝐵 → ((𝐴 · 𝑦) ∈ 𝐻 ↔ (𝐴 · 𝐵) ∈ 𝐻))
85, 7rspc2v 3588 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵𝐻) → (∀𝑥 ∈ ℂ ∀𝑦𝐻 (𝑥 · 𝑦) ∈ 𝐻 → (𝐴 · 𝐵) ∈ 𝐻))
93, 8syl5com 31 . 2 (𝐻S → ((𝐴 ∈ ℂ ∧ 𝐵𝐻) → (𝐴 · 𝐵) ∈ 𝐻))
1093impib 1116 1 ((𝐻S𝐴 ∈ ℂ ∧ 𝐵𝐻) → (𝐴 · 𝐵) ∈ 𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  wss 3902  (class class class)co 7346  cc 11004  chba 30897   + cva 30898   · csm 30899  0c0v 30902   S csh 30906
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-hilex 30977  ax-hfvadd 30978  ax-hfvmul 30983
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-ov 7349  df-sh 31185
This theorem is referenced by:  shsubcl  31198  norm1exi  31228  hhssabloilem  31239  hhssnv  31242  shsel3  31293  shscli  31295  shintcli  31307  pjhthlem1  31369  h1de2bi  31532  h1de2ctlem  31533  spansni  31535  spansnmul  31542  spansnss  31549  spanunsni  31557  h1datomi  31559  pjmulii  31655  mayete3i  31706  imaelshi  32036  strlem1  32228  cdj1i  32411  cdj3lem1  32412
  Copyright terms: Public domain W3C validator