HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shmulcl Structured version   Visualization version   GIF version

Theorem shmulcl 29937
Description: Closure of vector scalar multiplication in a subspace of a Hilbert space. (Contributed by NM, 13-Sep-1999.) (New usage is discouraged.)
Assertion
Ref Expression
shmulcl ((𝐻S𝐴 ∈ ℂ ∧ 𝐵𝐻) → (𝐴 · 𝐵) ∈ 𝐻)

Proof of Theorem shmulcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 issh2 29928 . . . . 5 (𝐻S ↔ ((𝐻 ⊆ ℋ ∧ 0𝐻) ∧ (∀𝑥𝐻𝑦𝐻 (𝑥 + 𝑦) ∈ 𝐻 ∧ ∀𝑥 ∈ ℂ ∀𝑦𝐻 (𝑥 · 𝑦) ∈ 𝐻)))
21simprbi 498 . . . 4 (𝐻S → (∀𝑥𝐻𝑦𝐻 (𝑥 + 𝑦) ∈ 𝐻 ∧ ∀𝑥 ∈ ℂ ∀𝑦𝐻 (𝑥 · 𝑦) ∈ 𝐻))
32simprd 497 . . 3 (𝐻S → ∀𝑥 ∈ ℂ ∀𝑦𝐻 (𝑥 · 𝑦) ∈ 𝐻)
4 oveq1 7356 . . . . 5 (𝑥 = 𝐴 → (𝑥 · 𝑦) = (𝐴 · 𝑦))
54eleq1d 2822 . . . 4 (𝑥 = 𝐴 → ((𝑥 · 𝑦) ∈ 𝐻 ↔ (𝐴 · 𝑦) ∈ 𝐻))
6 oveq2 7357 . . . . 5 (𝑦 = 𝐵 → (𝐴 · 𝑦) = (𝐴 · 𝐵))
76eleq1d 2822 . . . 4 (𝑦 = 𝐵 → ((𝐴 · 𝑦) ∈ 𝐻 ↔ (𝐴 · 𝐵) ∈ 𝐻))
85, 7rspc2v 3588 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵𝐻) → (∀𝑥 ∈ ℂ ∀𝑦𝐻 (𝑥 · 𝑦) ∈ 𝐻 → (𝐴 · 𝐵) ∈ 𝐻))
93, 8syl5com 31 . 2 (𝐻S → ((𝐴 ∈ ℂ ∧ 𝐵𝐻) → (𝐴 · 𝐵) ∈ 𝐻))
1093impib 1116 1 ((𝐻S𝐴 ∈ ℂ ∧ 𝐵𝐻) → (𝐴 · 𝐵) ∈ 𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1087   = wceq 1541  wcel 2106  wral 3062  wss 3908  (class class class)co 7349  cc 10982  chba 29638   + cva 29639   · csm 29640  0c0v 29643   S csh 29647
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5254  ax-nul 5261  ax-pr 5382  ax-hilex 29718  ax-hfvadd 29719  ax-hfvmul 29724
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3406  df-v 3445  df-sbc 3738  df-csb 3854  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4281  df-if 4485  df-pw 4560  df-sn 4585  df-pr 4587  df-op 4591  df-uni 4864  df-iun 4954  df-br 5104  df-opab 5166  df-id 5528  df-xp 5636  df-rel 5637  df-cnv 5638  df-co 5639  df-dm 5640  df-rn 5641  df-res 5642  df-ima 5643  df-iota 6443  df-fun 6493  df-fn 6494  df-f 6495  df-fv 6499  df-ov 7352  df-sh 29926
This theorem is referenced by:  shsubcl  29939  norm1exi  29969  hhssabloilem  29980  hhssnv  29983  shsel3  30034  shscli  30036  shintcli  30048  pjhthlem1  30110  h1de2bi  30273  h1de2ctlem  30274  spansni  30276  spansnmul  30283  spansnss  30290  spanunsni  30298  h1datomi  30300  pjmulii  30396  mayete3i  30447  imaelshi  30777  strlem1  30969  cdj1i  31152  cdj3lem1  31153
  Copyright terms: Public domain W3C validator