MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subsubg Structured version   Visualization version   GIF version

Theorem subsubg 19064
Description: A subgroup of a subgroup is a subgroup. (Contributed by Mario Carneiro, 19-Jan-2015.)
Hypothesis
Ref Expression
subsubg.h 𝐻 = (𝐺s 𝑆)
Assertion
Ref Expression
subsubg (𝑆 ∈ (SubGrp‘𝐺) → (𝐴 ∈ (SubGrp‘𝐻) ↔ (𝐴 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑆)))

Proof of Theorem subsubg
StepHypRef Expression
1 subgrcl 19046 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
21adantr 480 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ (SubGrp‘𝐻)) → 𝐺 ∈ Grp)
3 eqid 2733 . . . . . . . 8 (Base‘𝐻) = (Base‘𝐻)
43subgss 19042 . . . . . . 7 (𝐴 ∈ (SubGrp‘𝐻) → 𝐴 ⊆ (Base‘𝐻))
54adantl 481 . . . . . 6 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ (SubGrp‘𝐻)) → 𝐴 ⊆ (Base‘𝐻))
6 subsubg.h . . . . . . . 8 𝐻 = (𝐺s 𝑆)
76subgbas 19045 . . . . . . 7 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘𝐻))
87adantr 480 . . . . . 6 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ (SubGrp‘𝐻)) → 𝑆 = (Base‘𝐻))
95, 8sseqtrrd 3968 . . . . 5 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ (SubGrp‘𝐻)) → 𝐴𝑆)
10 eqid 2733 . . . . . . 7 (Base‘𝐺) = (Base‘𝐺)
1110subgss 19042 . . . . . 6 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺))
1211adantr 480 . . . . 5 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ (SubGrp‘𝐻)) → 𝑆 ⊆ (Base‘𝐺))
139, 12sstrd 3941 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ (SubGrp‘𝐻)) → 𝐴 ⊆ (Base‘𝐺))
146oveq1i 7362 . . . . . . 7 (𝐻s 𝐴) = ((𝐺s 𝑆) ↾s 𝐴)
15 ressabs 17161 . . . . . . 7 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑆) → ((𝐺s 𝑆) ↾s 𝐴) = (𝐺s 𝐴))
1614, 15eqtrid 2780 . . . . . 6 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑆) → (𝐻s 𝐴) = (𝐺s 𝐴))
179, 16syldan 591 . . . . 5 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ (SubGrp‘𝐻)) → (𝐻s 𝐴) = (𝐺s 𝐴))
18 eqid 2733 . . . . . . 7 (𝐻s 𝐴) = (𝐻s 𝐴)
1918subggrp 19044 . . . . . 6 (𝐴 ∈ (SubGrp‘𝐻) → (𝐻s 𝐴) ∈ Grp)
2019adantl 481 . . . . 5 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ (SubGrp‘𝐻)) → (𝐻s 𝐴) ∈ Grp)
2117, 20eqeltrrd 2834 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ (SubGrp‘𝐻)) → (𝐺s 𝐴) ∈ Grp)
2210issubg 19041 . . . 4 (𝐴 ∈ (SubGrp‘𝐺) ↔ (𝐺 ∈ Grp ∧ 𝐴 ⊆ (Base‘𝐺) ∧ (𝐺s 𝐴) ∈ Grp))
232, 13, 21, 22syl3anbrc 1344 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ (SubGrp‘𝐻)) → 𝐴 ∈ (SubGrp‘𝐺))
2423, 9jca 511 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ (SubGrp‘𝐻)) → (𝐴 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑆))
256subggrp 19044 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp)
2625adantr 480 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝐴 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑆)) → 𝐻 ∈ Grp)
27 simprr 772 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝐴 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑆)) → 𝐴𝑆)
287adantr 480 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝐴 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑆)) → 𝑆 = (Base‘𝐻))
2927, 28sseqtrd 3967 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝐴 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑆)) → 𝐴 ⊆ (Base‘𝐻))
3016adantrl 716 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝐴 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑆)) → (𝐻s 𝐴) = (𝐺s 𝐴))
31 eqid 2733 . . . . . 6 (𝐺s 𝐴) = (𝐺s 𝐴)
3231subggrp 19044 . . . . 5 (𝐴 ∈ (SubGrp‘𝐺) → (𝐺s 𝐴) ∈ Grp)
3332ad2antrl 728 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝐴 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑆)) → (𝐺s 𝐴) ∈ Grp)
3430, 33eqeltrd 2833 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝐴 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑆)) → (𝐻s 𝐴) ∈ Grp)
353issubg 19041 . . 3 (𝐴 ∈ (SubGrp‘𝐻) ↔ (𝐻 ∈ Grp ∧ 𝐴 ⊆ (Base‘𝐻) ∧ (𝐻s 𝐴) ∈ Grp))
3626, 29, 34, 35syl3anbrc 1344 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝐴 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑆)) → 𝐴 ∈ (SubGrp‘𝐻))
3724, 36impbida 800 1 (𝑆 ∈ (SubGrp‘𝐺) → (𝐴 ∈ (SubGrp‘𝐻) ↔ (𝐴 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wss 3898  cfv 6486  (class class class)co 7352  Basecbs 17122  s cress 17143  Grpcgrp 18848  SubGrpcsubg 19035
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-1cn 11071  ax-addcl 11073
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-nn 12133  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-subg 19038
This theorem is referenced by:  nmznsg  19082  subgslw  19530  subgdmdprd  19950  subgdprd  19951  ablfac1c  19987  pgpfaclem1  19997  pgpfaclem2  19998  ablfaclem3  20003
  Copyright terms: Public domain W3C validator