MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subsubg Structured version   Visualization version   GIF version

Theorem subsubg 19189
Description: A subgroup of a subgroup is a subgroup. (Contributed by Mario Carneiro, 19-Jan-2015.)
Hypothesis
Ref Expression
subsubg.h 𝐻 = (𝐺s 𝑆)
Assertion
Ref Expression
subsubg (𝑆 ∈ (SubGrp‘𝐺) → (𝐴 ∈ (SubGrp‘𝐻) ↔ (𝐴 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑆)))

Proof of Theorem subsubg
StepHypRef Expression
1 subgrcl 19171 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
21adantr 480 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ (SubGrp‘𝐻)) → 𝐺 ∈ Grp)
3 eqid 2740 . . . . . . . 8 (Base‘𝐻) = (Base‘𝐻)
43subgss 19167 . . . . . . 7 (𝐴 ∈ (SubGrp‘𝐻) → 𝐴 ⊆ (Base‘𝐻))
54adantl 481 . . . . . 6 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ (SubGrp‘𝐻)) → 𝐴 ⊆ (Base‘𝐻))
6 subsubg.h . . . . . . . 8 𝐻 = (𝐺s 𝑆)
76subgbas 19170 . . . . . . 7 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘𝐻))
87adantr 480 . . . . . 6 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ (SubGrp‘𝐻)) → 𝑆 = (Base‘𝐻))
95, 8sseqtrrd 4050 . . . . 5 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ (SubGrp‘𝐻)) → 𝐴𝑆)
10 eqid 2740 . . . . . . 7 (Base‘𝐺) = (Base‘𝐺)
1110subgss 19167 . . . . . 6 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺))
1211adantr 480 . . . . 5 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ (SubGrp‘𝐻)) → 𝑆 ⊆ (Base‘𝐺))
139, 12sstrd 4019 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ (SubGrp‘𝐻)) → 𝐴 ⊆ (Base‘𝐺))
146oveq1i 7458 . . . . . . 7 (𝐻s 𝐴) = ((𝐺s 𝑆) ↾s 𝐴)
15 ressabs 17308 . . . . . . 7 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑆) → ((𝐺s 𝑆) ↾s 𝐴) = (𝐺s 𝐴))
1614, 15eqtrid 2792 . . . . . 6 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑆) → (𝐻s 𝐴) = (𝐺s 𝐴))
179, 16syldan 590 . . . . 5 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ (SubGrp‘𝐻)) → (𝐻s 𝐴) = (𝐺s 𝐴))
18 eqid 2740 . . . . . . 7 (𝐻s 𝐴) = (𝐻s 𝐴)
1918subggrp 19169 . . . . . 6 (𝐴 ∈ (SubGrp‘𝐻) → (𝐻s 𝐴) ∈ Grp)
2019adantl 481 . . . . 5 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ (SubGrp‘𝐻)) → (𝐻s 𝐴) ∈ Grp)
2117, 20eqeltrrd 2845 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ (SubGrp‘𝐻)) → (𝐺s 𝐴) ∈ Grp)
2210issubg 19166 . . . 4 (𝐴 ∈ (SubGrp‘𝐺) ↔ (𝐺 ∈ Grp ∧ 𝐴 ⊆ (Base‘𝐺) ∧ (𝐺s 𝐴) ∈ Grp))
232, 13, 21, 22syl3anbrc 1343 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ (SubGrp‘𝐻)) → 𝐴 ∈ (SubGrp‘𝐺))
2423, 9jca 511 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ (SubGrp‘𝐻)) → (𝐴 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑆))
256subggrp 19169 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp)
2625adantr 480 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝐴 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑆)) → 𝐻 ∈ Grp)
27 simprr 772 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝐴 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑆)) → 𝐴𝑆)
287adantr 480 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝐴 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑆)) → 𝑆 = (Base‘𝐻))
2927, 28sseqtrd 4049 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝐴 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑆)) → 𝐴 ⊆ (Base‘𝐻))
3016adantrl 715 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝐴 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑆)) → (𝐻s 𝐴) = (𝐺s 𝐴))
31 eqid 2740 . . . . . 6 (𝐺s 𝐴) = (𝐺s 𝐴)
3231subggrp 19169 . . . . 5 (𝐴 ∈ (SubGrp‘𝐺) → (𝐺s 𝐴) ∈ Grp)
3332ad2antrl 727 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝐴 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑆)) → (𝐺s 𝐴) ∈ Grp)
3430, 33eqeltrd 2844 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝐴 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑆)) → (𝐻s 𝐴) ∈ Grp)
353issubg 19166 . . 3 (𝐴 ∈ (SubGrp‘𝐻) ↔ (𝐻 ∈ Grp ∧ 𝐴 ⊆ (Base‘𝐻) ∧ (𝐻s 𝐴) ∈ Grp))
3626, 29, 34, 35syl3anbrc 1343 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝐴 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑆)) → 𝐴 ∈ (SubGrp‘𝐻))
3724, 36impbida 800 1 (𝑆 ∈ (SubGrp‘𝐺) → (𝐴 ∈ (SubGrp‘𝐻) ↔ (𝐴 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wss 3976  cfv 6573  (class class class)co 7448  Basecbs 17258  s cress 17287  Grpcgrp 18973  SubGrpcsubg 19160
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-1cn 11242  ax-addcl 11244
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-nn 12294  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-subg 19163
This theorem is referenced by:  nmznsg  19208  subgslw  19658  subgdmdprd  20078  subgdprd  20079  ablfac1c  20115  pgpfaclem1  20125  pgpfaclem2  20126  ablfaclem3  20131
  Copyright terms: Public domain W3C validator