MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subsubg Structured version   Visualization version   GIF version

Theorem subsubg 19088
Description: A subgroup of a subgroup is a subgroup. (Contributed by Mario Carneiro, 19-Jan-2015.)
Hypothesis
Ref Expression
subsubg.h 𝐻 = (𝐺s 𝑆)
Assertion
Ref Expression
subsubg (𝑆 ∈ (SubGrp‘𝐺) → (𝐴 ∈ (SubGrp‘𝐻) ↔ (𝐴 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑆)))

Proof of Theorem subsubg
StepHypRef Expression
1 subgrcl 19070 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
21adantr 480 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ (SubGrp‘𝐻)) → 𝐺 ∈ Grp)
3 eqid 2730 . . . . . . . 8 (Base‘𝐻) = (Base‘𝐻)
43subgss 19066 . . . . . . 7 (𝐴 ∈ (SubGrp‘𝐻) → 𝐴 ⊆ (Base‘𝐻))
54adantl 481 . . . . . 6 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ (SubGrp‘𝐻)) → 𝐴 ⊆ (Base‘𝐻))
6 subsubg.h . . . . . . . 8 𝐻 = (𝐺s 𝑆)
76subgbas 19069 . . . . . . 7 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘𝐻))
87adantr 480 . . . . . 6 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ (SubGrp‘𝐻)) → 𝑆 = (Base‘𝐻))
95, 8sseqtrrd 3987 . . . . 5 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ (SubGrp‘𝐻)) → 𝐴𝑆)
10 eqid 2730 . . . . . . 7 (Base‘𝐺) = (Base‘𝐺)
1110subgss 19066 . . . . . 6 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺))
1211adantr 480 . . . . 5 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ (SubGrp‘𝐻)) → 𝑆 ⊆ (Base‘𝐺))
139, 12sstrd 3960 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ (SubGrp‘𝐻)) → 𝐴 ⊆ (Base‘𝐺))
146oveq1i 7400 . . . . . . 7 (𝐻s 𝐴) = ((𝐺s 𝑆) ↾s 𝐴)
15 ressabs 17225 . . . . . . 7 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑆) → ((𝐺s 𝑆) ↾s 𝐴) = (𝐺s 𝐴))
1614, 15eqtrid 2777 . . . . . 6 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑆) → (𝐻s 𝐴) = (𝐺s 𝐴))
179, 16syldan 591 . . . . 5 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ (SubGrp‘𝐻)) → (𝐻s 𝐴) = (𝐺s 𝐴))
18 eqid 2730 . . . . . . 7 (𝐻s 𝐴) = (𝐻s 𝐴)
1918subggrp 19068 . . . . . 6 (𝐴 ∈ (SubGrp‘𝐻) → (𝐻s 𝐴) ∈ Grp)
2019adantl 481 . . . . 5 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ (SubGrp‘𝐻)) → (𝐻s 𝐴) ∈ Grp)
2117, 20eqeltrrd 2830 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ (SubGrp‘𝐻)) → (𝐺s 𝐴) ∈ Grp)
2210issubg 19065 . . . 4 (𝐴 ∈ (SubGrp‘𝐺) ↔ (𝐺 ∈ Grp ∧ 𝐴 ⊆ (Base‘𝐺) ∧ (𝐺s 𝐴) ∈ Grp))
232, 13, 21, 22syl3anbrc 1344 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ (SubGrp‘𝐻)) → 𝐴 ∈ (SubGrp‘𝐺))
2423, 9jca 511 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ (SubGrp‘𝐻)) → (𝐴 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑆))
256subggrp 19068 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp)
2625adantr 480 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝐴 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑆)) → 𝐻 ∈ Grp)
27 simprr 772 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝐴 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑆)) → 𝐴𝑆)
287adantr 480 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝐴 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑆)) → 𝑆 = (Base‘𝐻))
2927, 28sseqtrd 3986 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝐴 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑆)) → 𝐴 ⊆ (Base‘𝐻))
3016adantrl 716 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝐴 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑆)) → (𝐻s 𝐴) = (𝐺s 𝐴))
31 eqid 2730 . . . . . 6 (𝐺s 𝐴) = (𝐺s 𝐴)
3231subggrp 19068 . . . . 5 (𝐴 ∈ (SubGrp‘𝐺) → (𝐺s 𝐴) ∈ Grp)
3332ad2antrl 728 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝐴 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑆)) → (𝐺s 𝐴) ∈ Grp)
3430, 33eqeltrd 2829 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝐴 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑆)) → (𝐻s 𝐴) ∈ Grp)
353issubg 19065 . . 3 (𝐴 ∈ (SubGrp‘𝐻) ↔ (𝐻 ∈ Grp ∧ 𝐴 ⊆ (Base‘𝐻) ∧ (𝐻s 𝐴) ∈ Grp))
3626, 29, 34, 35syl3anbrc 1344 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝐴 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑆)) → 𝐴 ∈ (SubGrp‘𝐻))
3724, 36impbida 800 1 (𝑆 ∈ (SubGrp‘𝐺) → (𝐴 ∈ (SubGrp‘𝐻) ↔ (𝐴 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wss 3917  cfv 6514  (class class class)co 7390  Basecbs 17186  s cress 17207  Grpcgrp 18872  SubGrpcsubg 19059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-1cn 11133  ax-addcl 11135
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-nn 12194  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-subg 19062
This theorem is referenced by:  nmznsg  19107  subgslw  19553  subgdmdprd  19973  subgdprd  19974  ablfac1c  20010  pgpfaclem1  20020  pgpfaclem2  20021  ablfaclem3  20026
  Copyright terms: Public domain W3C validator