MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subsubg Structured version   Visualization version   GIF version

Theorem subsubg 18766
Description: A subgroup of a subgroup is a subgroup. (Contributed by Mario Carneiro, 19-Jan-2015.)
Hypothesis
Ref Expression
subsubg.h 𝐻 = (𝐺s 𝑆)
Assertion
Ref Expression
subsubg (𝑆 ∈ (SubGrp‘𝐺) → (𝐴 ∈ (SubGrp‘𝐻) ↔ (𝐴 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑆)))

Proof of Theorem subsubg
StepHypRef Expression
1 subgrcl 18748 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
21adantr 481 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ (SubGrp‘𝐻)) → 𝐺 ∈ Grp)
3 eqid 2738 . . . . . . . 8 (Base‘𝐻) = (Base‘𝐻)
43subgss 18744 . . . . . . 7 (𝐴 ∈ (SubGrp‘𝐻) → 𝐴 ⊆ (Base‘𝐻))
54adantl 482 . . . . . 6 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ (SubGrp‘𝐻)) → 𝐴 ⊆ (Base‘𝐻))
6 subsubg.h . . . . . . . 8 𝐻 = (𝐺s 𝑆)
76subgbas 18747 . . . . . . 7 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘𝐻))
87adantr 481 . . . . . 6 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ (SubGrp‘𝐻)) → 𝑆 = (Base‘𝐻))
95, 8sseqtrrd 3962 . . . . 5 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ (SubGrp‘𝐻)) → 𝐴𝑆)
10 eqid 2738 . . . . . . 7 (Base‘𝐺) = (Base‘𝐺)
1110subgss 18744 . . . . . 6 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺))
1211adantr 481 . . . . 5 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ (SubGrp‘𝐻)) → 𝑆 ⊆ (Base‘𝐺))
139, 12sstrd 3931 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ (SubGrp‘𝐻)) → 𝐴 ⊆ (Base‘𝐺))
146oveq1i 7278 . . . . . . 7 (𝐻s 𝐴) = ((𝐺s 𝑆) ↾s 𝐴)
15 ressabs 16947 . . . . . . 7 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑆) → ((𝐺s 𝑆) ↾s 𝐴) = (𝐺s 𝐴))
1614, 15eqtrid 2790 . . . . . 6 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑆) → (𝐻s 𝐴) = (𝐺s 𝐴))
179, 16syldan 591 . . . . 5 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ (SubGrp‘𝐻)) → (𝐻s 𝐴) = (𝐺s 𝐴))
18 eqid 2738 . . . . . . 7 (𝐻s 𝐴) = (𝐻s 𝐴)
1918subggrp 18746 . . . . . 6 (𝐴 ∈ (SubGrp‘𝐻) → (𝐻s 𝐴) ∈ Grp)
2019adantl 482 . . . . 5 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ (SubGrp‘𝐻)) → (𝐻s 𝐴) ∈ Grp)
2117, 20eqeltrrd 2840 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ (SubGrp‘𝐻)) → (𝐺s 𝐴) ∈ Grp)
2210issubg 18743 . . . 4 (𝐴 ∈ (SubGrp‘𝐺) ↔ (𝐺 ∈ Grp ∧ 𝐴 ⊆ (Base‘𝐺) ∧ (𝐺s 𝐴) ∈ Grp))
232, 13, 21, 22syl3anbrc 1342 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ (SubGrp‘𝐻)) → 𝐴 ∈ (SubGrp‘𝐺))
2423, 9jca 512 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ (SubGrp‘𝐻)) → (𝐴 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑆))
256subggrp 18746 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp)
2625adantr 481 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝐴 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑆)) → 𝐻 ∈ Grp)
27 simprr 770 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝐴 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑆)) → 𝐴𝑆)
287adantr 481 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝐴 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑆)) → 𝑆 = (Base‘𝐻))
2927, 28sseqtrd 3961 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝐴 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑆)) → 𝐴 ⊆ (Base‘𝐻))
3016adantrl 713 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝐴 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑆)) → (𝐻s 𝐴) = (𝐺s 𝐴))
31 eqid 2738 . . . . . 6 (𝐺s 𝐴) = (𝐺s 𝐴)
3231subggrp 18746 . . . . 5 (𝐴 ∈ (SubGrp‘𝐺) → (𝐺s 𝐴) ∈ Grp)
3332ad2antrl 725 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝐴 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑆)) → (𝐺s 𝐴) ∈ Grp)
3430, 33eqeltrd 2839 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝐴 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑆)) → (𝐻s 𝐴) ∈ Grp)
353issubg 18743 . . 3 (𝐴 ∈ (SubGrp‘𝐻) ↔ (𝐻 ∈ Grp ∧ 𝐴 ⊆ (Base‘𝐻) ∧ (𝐻s 𝐴) ∈ Grp))
3626, 29, 34, 35syl3anbrc 1342 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ (𝐴 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑆)) → 𝐴 ∈ (SubGrp‘𝐻))
3724, 36impbida 798 1 (𝑆 ∈ (SubGrp‘𝐺) → (𝐴 ∈ (SubGrp‘𝐻) ↔ (𝐴 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wss 3887  cfv 6427  (class class class)co 7268  Basecbs 16900  s cress 16929  Grpcgrp 18565  SubGrpcsubg 18737
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5222  ax-nul 5229  ax-pow 5287  ax-pr 5351  ax-un 7579  ax-cnex 10915  ax-1cn 10917  ax-addcl 10919
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3071  df-rab 3073  df-v 3432  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-iun 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5485  df-eprel 5491  df-po 5499  df-so 5500  df-fr 5540  df-we 5542  df-xp 5591  df-rel 5592  df-cnv 5593  df-co 5594  df-dm 5595  df-rn 5596  df-res 5597  df-ima 5598  df-pred 6196  df-ord 6263  df-on 6264  df-lim 6265  df-suc 6266  df-iota 6385  df-fun 6429  df-fn 6430  df-f 6431  df-f1 6432  df-fo 6433  df-f1o 6434  df-fv 6435  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7704  df-2nd 7822  df-frecs 8085  df-wrecs 8116  df-recs 8190  df-rdg 8229  df-nn 11962  df-sets 16853  df-slot 16871  df-ndx 16883  df-base 16901  df-ress 16930  df-subg 18740
This theorem is referenced by:  nmznsg  18784  subgslw  19209  subgdmdprd  19625  subgdprd  19626  ablfac1c  19662  pgpfaclem1  19672  pgpfaclem2  19673  ablfaclem3  19678
  Copyright terms: Public domain W3C validator