![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > resgrpisgrp | Structured version Visualization version GIF version |
Description: If the base set of a group is contained in the base set of another group, and the group operation of the group is the restriction of the group operation of the other group to its base set, then the other group restricted to the base set of the group is a group. (Contributed by AV, 14-Mar-2019.) |
Ref | Expression |
---|---|
grpissubg.b | ⊢ 𝐵 = (Base‘𝐺) |
grpissubg.s | ⊢ 𝑆 = (Base‘𝐻) |
Ref | Expression |
---|---|
resgrpisgrp | ⊢ ((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) → ((𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) → (𝐺 ↾s 𝑆) ∈ Grp)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpissubg.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
2 | grpissubg.s | . . . . 5 ⊢ 𝑆 = (Base‘𝐻) | |
3 | 1, 2 | grpissubg 18053 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) → ((𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) → 𝑆 ∈ (SubGrp‘𝐺))) |
4 | 3 | imp 407 | . . 3 ⊢ (((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) → 𝑆 ∈ (SubGrp‘𝐺)) |
5 | ibar 529 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝑆 ⊆ 𝐵) → ((𝐺 ↾s 𝑆) ∈ Grp ↔ ((𝐺 ∈ Grp ∧ 𝑆 ⊆ 𝐵) ∧ (𝐺 ↾s 𝑆) ∈ Grp))) | |
6 | 5 | ad2ant2r 743 | . . . . 5 ⊢ (((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) → ((𝐺 ↾s 𝑆) ∈ Grp ↔ ((𝐺 ∈ Grp ∧ 𝑆 ⊆ 𝐵) ∧ (𝐺 ↾s 𝑆) ∈ Grp))) |
7 | df-3an 1082 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ∧ (𝐺 ↾s 𝑆) ∈ Grp) ↔ ((𝐺 ∈ Grp ∧ 𝑆 ⊆ 𝐵) ∧ (𝐺 ↾s 𝑆) ∈ Grp)) | |
8 | 6, 7 | syl6bbr 290 | . . . 4 ⊢ (((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) → ((𝐺 ↾s 𝑆) ∈ Grp ↔ (𝐺 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ∧ (𝐺 ↾s 𝑆) ∈ Grp))) |
9 | 1 | issubg 18033 | . . . 4 ⊢ (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝐺 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ∧ (𝐺 ↾s 𝑆) ∈ Grp)) |
10 | 8, 9 | syl6bbr 290 | . . 3 ⊢ (((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) → ((𝐺 ↾s 𝑆) ∈ Grp ↔ 𝑆 ∈ (SubGrp‘𝐺))) |
11 | 4, 10 | mpbird 258 | . 2 ⊢ (((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) ∧ (𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆)))) → (𝐺 ↾s 𝑆) ∈ Grp) |
12 | 11 | ex 413 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) → ((𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) → (𝐺 ↾s 𝑆) ∈ Grp)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∧ wa 396 ∧ w3a 1080 = wceq 1522 ∈ wcel 2081 ⊆ wss 3859 × cxp 5441 ↾ cres 5445 ‘cfv 6225 (class class class)co 7016 Basecbs 16312 ↾s cress 16313 +gcplusg 16394 Grpcgrp 17861 SubGrpcsubg 18027 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 ax-un 7319 ax-cnex 10439 ax-resscn 10440 ax-1cn 10441 ax-icn 10442 ax-addcl 10443 ax-addrcl 10444 ax-mulcl 10445 ax-mulrcl 10446 ax-mulcom 10447 ax-addass 10448 ax-mulass 10449 ax-distr 10450 ax-i2m1 10451 ax-1ne0 10452 ax-1rid 10453 ax-rnegex 10454 ax-rrecex 10455 ax-cnre 10456 ax-pre-lttri 10457 ax-pre-lttrn 10458 ax-pre-ltadd 10459 ax-pre-mulgt0 10460 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-nel 3091 df-ral 3110 df-rex 3111 df-reu 3112 df-rmo 3113 df-rab 3114 df-v 3439 df-sbc 3707 df-csb 3812 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-pss 3876 df-nul 4212 df-if 4382 df-pw 4455 df-sn 4473 df-pr 4475 df-tp 4477 df-op 4479 df-uni 4746 df-iun 4827 df-br 4963 df-opab 5025 df-mpt 5042 df-tr 5064 df-id 5348 df-eprel 5353 df-po 5362 df-so 5363 df-fr 5402 df-we 5404 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 df-pred 6023 df-ord 6069 df-on 6070 df-lim 6071 df-suc 6072 df-iota 6189 df-fun 6227 df-fn 6228 df-f 6229 df-f1 6230 df-fo 6231 df-f1o 6232 df-fv 6233 df-riota 6977 df-ov 7019 df-oprab 7020 df-mpo 7021 df-om 7437 df-wrecs 7798 df-recs 7860 df-rdg 7898 df-er 8139 df-en 8358 df-dom 8359 df-sdom 8360 df-pnf 10523 df-mnf 10524 df-xr 10525 df-ltxr 10526 df-le 10527 df-sub 10719 df-neg 10720 df-nn 11487 df-2 11548 df-ndx 16315 df-slot 16316 df-base 16318 df-sets 16319 df-ress 16320 df-plusg 16407 df-0g 16544 df-mgm 17681 df-sgrp 17723 df-mnd 17734 df-grp 17864 df-minusg 17865 df-subg 18030 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |