![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dimpropd | Structured version Visualization version GIF version |
Description: If two structures have the same components (properties), they have the same dimension. (Contributed by Thierry Arnoux, 18-May-2023.) |
Ref | Expression |
---|---|
dimpropd.b1 | ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) |
dimpropd.b2 | ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) |
dimpropd.w | ⊢ (𝜑 → 𝐵 ⊆ 𝑊) |
dimpropd.p | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
dimpropd.s1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝐾)𝑦) ∈ 𝑊) |
dimpropd.s2 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝐾)𝑦) = (𝑥( ·𝑠 ‘𝐿)𝑦)) |
dimpropd.f | ⊢ 𝐹 = (Scalar‘𝐾) |
dimpropd.g | ⊢ 𝐺 = (Scalar‘𝐿) |
dimpropd.p1 | ⊢ (𝜑 → 𝑃 = (Base‘𝐹)) |
dimpropd.p2 | ⊢ (𝜑 → 𝑃 = (Base‘𝐺)) |
dimpropd.a | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃)) → (𝑥(+g‘𝐹)𝑦) = (𝑥(+g‘𝐺)𝑦)) |
dimpropd.v1 | ⊢ (𝜑 → 𝐾 ∈ LVec) |
dimpropd.v2 | ⊢ (𝜑 → 𝐿 ∈ LVec) |
Ref | Expression |
---|---|
dimpropd | ⊢ (𝜑 → (dim‘𝐾) = (dim‘𝐿)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dimpropd.v1 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ LVec) | |
2 | eqid 2739 | . . . . 5 ⊢ (LBasis‘𝐾) = (LBasis‘𝐾) | |
3 | 2 | lbsex 20408 | . . . 4 ⊢ (𝐾 ∈ LVec → (LBasis‘𝐾) ≠ ∅) |
4 | 1, 3 | syl 17 | . . 3 ⊢ (𝜑 → (LBasis‘𝐾) ≠ ∅) |
5 | n0 4285 | . . 3 ⊢ ((LBasis‘𝐾) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (LBasis‘𝐾)) | |
6 | 4, 5 | sylib 217 | . 2 ⊢ (𝜑 → ∃𝑥 𝑥 ∈ (LBasis‘𝐾)) |
7 | 2 | dimval 31665 | . . . 4 ⊢ ((𝐾 ∈ LVec ∧ 𝑥 ∈ (LBasis‘𝐾)) → (dim‘𝐾) = (♯‘𝑥)) |
8 | 1, 7 | sylan 579 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐾)) → (dim‘𝐾) = (♯‘𝑥)) |
9 | dimpropd.v2 | . . . 4 ⊢ (𝜑 → 𝐿 ∈ LVec) | |
10 | dimpropd.b1 | . . . . . . 7 ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) | |
11 | dimpropd.b2 | . . . . . . 7 ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) | |
12 | dimpropd.w | . . . . . . 7 ⊢ (𝜑 → 𝐵 ⊆ 𝑊) | |
13 | dimpropd.p | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) | |
14 | dimpropd.s1 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝐾)𝑦) ∈ 𝑊) | |
15 | dimpropd.s2 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝐾)𝑦) = (𝑥( ·𝑠 ‘𝐿)𝑦)) | |
16 | dimpropd.f | . . . . . . 7 ⊢ 𝐹 = (Scalar‘𝐾) | |
17 | dimpropd.g | . . . . . . 7 ⊢ 𝐺 = (Scalar‘𝐿) | |
18 | dimpropd.p1 | . . . . . . 7 ⊢ (𝜑 → 𝑃 = (Base‘𝐹)) | |
19 | dimpropd.p2 | . . . . . . 7 ⊢ (𝜑 → 𝑃 = (Base‘𝐺)) | |
20 | dimpropd.a | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃)) → (𝑥(+g‘𝐹)𝑦) = (𝑥(+g‘𝐺)𝑦)) | |
21 | 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 1, 9 | lbspropd 20342 | . . . . . 6 ⊢ (𝜑 → (LBasis‘𝐾) = (LBasis‘𝐿)) |
22 | 21 | eleq2d 2825 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ (LBasis‘𝐾) ↔ 𝑥 ∈ (LBasis‘𝐿))) |
23 | 22 | biimpa 476 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐾)) → 𝑥 ∈ (LBasis‘𝐿)) |
24 | eqid 2739 | . . . . 5 ⊢ (LBasis‘𝐿) = (LBasis‘𝐿) | |
25 | 24 | dimval 31665 | . . . 4 ⊢ ((𝐿 ∈ LVec ∧ 𝑥 ∈ (LBasis‘𝐿)) → (dim‘𝐿) = (♯‘𝑥)) |
26 | 9, 23, 25 | syl2an2r 681 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐾)) → (dim‘𝐿) = (♯‘𝑥)) |
27 | 8, 26 | eqtr4d 2782 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐾)) → (dim‘𝐾) = (dim‘𝐿)) |
28 | 6, 27 | exlimddv 1941 | 1 ⊢ (𝜑 → (dim‘𝐾) = (dim‘𝐿)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∃wex 1785 ∈ wcel 2109 ≠ wne 2944 ⊆ wss 3891 ∅c0 4261 ‘cfv 6430 (class class class)co 7268 ♯chash 14025 Basecbs 16893 +gcplusg 16943 Scalarcsca 16946 ·𝑠 cvsca 16947 LBasisclbs 20317 LVecclvec 20345 dimcldim 31663 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-reg 9312 ax-inf2 9360 ax-ac2 10203 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-int 4885 df-iun 4931 df-iin 4932 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-se 5544 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-isom 6439 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-rpss 7567 df-om 7701 df-1st 7817 df-2nd 7818 df-tpos 8026 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-1o 8281 df-oadd 8285 df-er 8472 df-map 8591 df-en 8708 df-dom 8709 df-sdom 8710 df-fin 8711 df-oi 9230 df-r1 9506 df-rank 9507 df-dju 9643 df-card 9681 df-acn 9684 df-ac 9856 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-nn 11957 df-2 12019 df-3 12020 df-4 12021 df-5 12022 df-6 12023 df-7 12024 df-8 12025 df-9 12026 df-n0 12217 df-xnn0 12289 df-z 12303 df-dec 12420 df-uz 12565 df-fz 13222 df-hash 14026 df-struct 16829 df-sets 16846 df-slot 16864 df-ndx 16876 df-base 16894 df-ress 16923 df-plusg 16956 df-mulr 16957 df-tset 16962 df-ple 16963 df-ocomp 16964 df-0g 17133 df-mre 17276 df-mrc 17277 df-mri 17278 df-acs 17279 df-proset 17994 df-drs 17995 df-poset 18012 df-ipo 18227 df-mgm 18307 df-sgrp 18356 df-mnd 18367 df-submnd 18412 df-grp 18561 df-minusg 18562 df-sbg 18563 df-subg 18733 df-cmn 19369 df-abl 19370 df-mgp 19702 df-ur 19719 df-ring 19766 df-oppr 19843 df-dvdsr 19864 df-unit 19865 df-invr 19895 df-drng 19974 df-lmod 20106 df-lss 20175 df-lsp 20215 df-lbs 20318 df-lvec 20346 df-dim 31664 |
This theorem is referenced by: tngdim 31675 matdim 31677 |
Copyright terms: Public domain | W3C validator |