| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dimpropd | Structured version Visualization version GIF version | ||
| Description: If two structures have the same components (properties), they have the same dimension. (Contributed by Thierry Arnoux, 18-May-2023.) |
| Ref | Expression |
|---|---|
| dimpropd.b1 | ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) |
| dimpropd.b2 | ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) |
| dimpropd.w | ⊢ (𝜑 → 𝐵 ⊆ 𝑊) |
| dimpropd.p | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
| dimpropd.s1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝐾)𝑦) ∈ 𝑊) |
| dimpropd.s2 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝐾)𝑦) = (𝑥( ·𝑠 ‘𝐿)𝑦)) |
| dimpropd.f | ⊢ 𝐹 = (Scalar‘𝐾) |
| dimpropd.g | ⊢ 𝐺 = (Scalar‘𝐿) |
| dimpropd.p1 | ⊢ (𝜑 → 𝑃 = (Base‘𝐹)) |
| dimpropd.p2 | ⊢ (𝜑 → 𝑃 = (Base‘𝐺)) |
| dimpropd.a | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃)) → (𝑥(+g‘𝐹)𝑦) = (𝑥(+g‘𝐺)𝑦)) |
| dimpropd.v1 | ⊢ (𝜑 → 𝐾 ∈ LVec) |
| dimpropd.v2 | ⊢ (𝜑 → 𝐿 ∈ LVec) |
| Ref | Expression |
|---|---|
| dimpropd | ⊢ (𝜑 → (dim‘𝐾) = (dim‘𝐿)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dimpropd.v1 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ LVec) | |
| 2 | eqid 2729 | . . . . 5 ⊢ (LBasis‘𝐾) = (LBasis‘𝐾) | |
| 3 | 2 | lbsex 21090 | . . . 4 ⊢ (𝐾 ∈ LVec → (LBasis‘𝐾) ≠ ∅) |
| 4 | 1, 3 | syl 17 | . . 3 ⊢ (𝜑 → (LBasis‘𝐾) ≠ ∅) |
| 5 | n0 4306 | . . 3 ⊢ ((LBasis‘𝐾) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (LBasis‘𝐾)) | |
| 6 | 4, 5 | sylib 218 | . 2 ⊢ (𝜑 → ∃𝑥 𝑥 ∈ (LBasis‘𝐾)) |
| 7 | 2 | dimval 33575 | . . . 4 ⊢ ((𝐾 ∈ LVec ∧ 𝑥 ∈ (LBasis‘𝐾)) → (dim‘𝐾) = (♯‘𝑥)) |
| 8 | 1, 7 | sylan 580 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐾)) → (dim‘𝐾) = (♯‘𝑥)) |
| 9 | dimpropd.v2 | . . . 4 ⊢ (𝜑 → 𝐿 ∈ LVec) | |
| 10 | dimpropd.b1 | . . . . . . 7 ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) | |
| 11 | dimpropd.b2 | . . . . . . 7 ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) | |
| 12 | dimpropd.w | . . . . . . 7 ⊢ (𝜑 → 𝐵 ⊆ 𝑊) | |
| 13 | dimpropd.p | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) | |
| 14 | dimpropd.s1 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝐾)𝑦) ∈ 𝑊) | |
| 15 | dimpropd.s2 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝐾)𝑦) = (𝑥( ·𝑠 ‘𝐿)𝑦)) | |
| 16 | dimpropd.f | . . . . . . 7 ⊢ 𝐹 = (Scalar‘𝐾) | |
| 17 | dimpropd.g | . . . . . . 7 ⊢ 𝐺 = (Scalar‘𝐿) | |
| 18 | dimpropd.p1 | . . . . . . 7 ⊢ (𝜑 → 𝑃 = (Base‘𝐹)) | |
| 19 | dimpropd.p2 | . . . . . . 7 ⊢ (𝜑 → 𝑃 = (Base‘𝐺)) | |
| 20 | dimpropd.a | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃)) → (𝑥(+g‘𝐹)𝑦) = (𝑥(+g‘𝐺)𝑦)) | |
| 21 | 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 1, 9 | lbspropd 21021 | . . . . . 6 ⊢ (𝜑 → (LBasis‘𝐾) = (LBasis‘𝐿)) |
| 22 | 21 | eleq2d 2814 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ (LBasis‘𝐾) ↔ 𝑥 ∈ (LBasis‘𝐿))) |
| 23 | 22 | biimpa 476 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐾)) → 𝑥 ∈ (LBasis‘𝐿)) |
| 24 | eqid 2729 | . . . . 5 ⊢ (LBasis‘𝐿) = (LBasis‘𝐿) | |
| 25 | 24 | dimval 33575 | . . . 4 ⊢ ((𝐿 ∈ LVec ∧ 𝑥 ∈ (LBasis‘𝐿)) → (dim‘𝐿) = (♯‘𝑥)) |
| 26 | 9, 23, 25 | syl2an2r 685 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐾)) → (dim‘𝐿) = (♯‘𝑥)) |
| 27 | 8, 26 | eqtr4d 2767 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐾)) → (dim‘𝐾) = (dim‘𝐿)) |
| 28 | 6, 27 | exlimddv 1935 | 1 ⊢ (𝜑 → (dim‘𝐾) = (dim‘𝐿)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2925 ⊆ wss 3905 ∅c0 4286 ‘cfv 6486 (class class class)co 7353 ♯chash 14255 Basecbs 17138 +gcplusg 17179 Scalarcsca 17182 ·𝑠 cvsca 17183 LBasisclbs 20996 LVecclvec 21024 dimcldim 33573 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-reg 9503 ax-inf2 9556 ax-ac2 10376 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-rpss 7663 df-om 7807 df-1st 7931 df-2nd 7932 df-tpos 8166 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-oadd 8399 df-er 8632 df-map 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-oi 9421 df-r1 9679 df-rank 9680 df-dju 9816 df-card 9854 df-acn 9857 df-ac 10029 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-xnn0 12476 df-z 12490 df-dec 12610 df-uz 12754 df-fz 13429 df-hash 14256 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-tset 17198 df-ple 17199 df-ocomp 17200 df-0g 17363 df-mre 17506 df-mrc 17507 df-mri 17508 df-acs 17509 df-proset 18218 df-drs 18219 df-poset 18237 df-ipo 18452 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-submnd 18676 df-grp 18833 df-minusg 18834 df-sbg 18835 df-subg 19020 df-cmn 19679 df-abl 19680 df-mgp 20044 df-rng 20056 df-ur 20085 df-ring 20138 df-oppr 20240 df-dvdsr 20260 df-unit 20261 df-invr 20291 df-drng 20634 df-lmod 20783 df-lss 20853 df-lsp 20893 df-lbs 20997 df-lvec 21025 df-dim 33574 |
| This theorem is referenced by: tngdim 33588 matdim 33590 algextdeglem8 33693 |
| Copyright terms: Public domain | W3C validator |