Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dimpropd Structured version   Visualization version   GIF version

Theorem dimpropd 33610
Description: If two structures have the same components (properties), they have the same dimension. (Contributed by Thierry Arnoux, 18-May-2023.)
Hypotheses
Ref Expression
dimpropd.b1 (𝜑𝐵 = (Base‘𝐾))
dimpropd.b2 (𝜑𝐵 = (Base‘𝐿))
dimpropd.w (𝜑𝐵𝑊)
dimpropd.p ((𝜑 ∧ (𝑥𝑊𝑦𝑊)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
dimpropd.s1 ((𝜑 ∧ (𝑥𝑃𝑦𝐵)) → (𝑥( ·𝑠𝐾)𝑦) ∈ 𝑊)
dimpropd.s2 ((𝜑 ∧ (𝑥𝑃𝑦𝐵)) → (𝑥( ·𝑠𝐾)𝑦) = (𝑥( ·𝑠𝐿)𝑦))
dimpropd.f 𝐹 = (Scalar‘𝐾)
dimpropd.g 𝐺 = (Scalar‘𝐿)
dimpropd.p1 (𝜑𝑃 = (Base‘𝐹))
dimpropd.p2 (𝜑𝑃 = (Base‘𝐺))
dimpropd.a ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → (𝑥(+g𝐹)𝑦) = (𝑥(+g𝐺)𝑦))
dimpropd.v1 (𝜑𝐾 ∈ LVec)
dimpropd.v2 (𝜑𝐿 ∈ LVec)
Assertion
Ref Expression
dimpropd (𝜑 → (dim‘𝐾) = (dim‘𝐿))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝑥,𝑃,𝑦   𝑥,𝑊,𝑦   𝜑,𝑥,𝑦

Proof of Theorem dimpropd
StepHypRef Expression
1 dimpropd.v1 . . . 4 (𝜑𝐾 ∈ LVec)
2 eqid 2730 . . . . 5 (LBasis‘𝐾) = (LBasis‘𝐾)
32lbsex 21081 . . . 4 (𝐾 ∈ LVec → (LBasis‘𝐾) ≠ ∅)
41, 3syl 17 . . 3 (𝜑 → (LBasis‘𝐾) ≠ ∅)
5 n0 4318 . . 3 ((LBasis‘𝐾) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (LBasis‘𝐾))
64, 5sylib 218 . 2 (𝜑 → ∃𝑥 𝑥 ∈ (LBasis‘𝐾))
72dimval 33602 . . . 4 ((𝐾 ∈ LVec ∧ 𝑥 ∈ (LBasis‘𝐾)) → (dim‘𝐾) = (♯‘𝑥))
81, 7sylan 580 . . 3 ((𝜑𝑥 ∈ (LBasis‘𝐾)) → (dim‘𝐾) = (♯‘𝑥))
9 dimpropd.v2 . . . 4 (𝜑𝐿 ∈ LVec)
10 dimpropd.b1 . . . . . . 7 (𝜑𝐵 = (Base‘𝐾))
11 dimpropd.b2 . . . . . . 7 (𝜑𝐵 = (Base‘𝐿))
12 dimpropd.w . . . . . . 7 (𝜑𝐵𝑊)
13 dimpropd.p . . . . . . 7 ((𝜑 ∧ (𝑥𝑊𝑦𝑊)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
14 dimpropd.s1 . . . . . . 7 ((𝜑 ∧ (𝑥𝑃𝑦𝐵)) → (𝑥( ·𝑠𝐾)𝑦) ∈ 𝑊)
15 dimpropd.s2 . . . . . . 7 ((𝜑 ∧ (𝑥𝑃𝑦𝐵)) → (𝑥( ·𝑠𝐾)𝑦) = (𝑥( ·𝑠𝐿)𝑦))
16 dimpropd.f . . . . . . 7 𝐹 = (Scalar‘𝐾)
17 dimpropd.g . . . . . . 7 𝐺 = (Scalar‘𝐿)
18 dimpropd.p1 . . . . . . 7 (𝜑𝑃 = (Base‘𝐹))
19 dimpropd.p2 . . . . . . 7 (𝜑𝑃 = (Base‘𝐺))
20 dimpropd.a . . . . . . 7 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → (𝑥(+g𝐹)𝑦) = (𝑥(+g𝐺)𝑦))
2110, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 1, 9lbspropd 21012 . . . . . 6 (𝜑 → (LBasis‘𝐾) = (LBasis‘𝐿))
2221eleq2d 2815 . . . . 5 (𝜑 → (𝑥 ∈ (LBasis‘𝐾) ↔ 𝑥 ∈ (LBasis‘𝐿)))
2322biimpa 476 . . . 4 ((𝜑𝑥 ∈ (LBasis‘𝐾)) → 𝑥 ∈ (LBasis‘𝐿))
24 eqid 2730 . . . . 5 (LBasis‘𝐿) = (LBasis‘𝐿)
2524dimval 33602 . . . 4 ((𝐿 ∈ LVec ∧ 𝑥 ∈ (LBasis‘𝐿)) → (dim‘𝐿) = (♯‘𝑥))
269, 23, 25syl2an2r 685 . . 3 ((𝜑𝑥 ∈ (LBasis‘𝐾)) → (dim‘𝐿) = (♯‘𝑥))
278, 26eqtr4d 2768 . 2 ((𝜑𝑥 ∈ (LBasis‘𝐾)) → (dim‘𝐾) = (dim‘𝐿))
286, 27exlimddv 1935 1 (𝜑 → (dim‘𝐾) = (dim‘𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  wne 2926  wss 3916  c0 4298  cfv 6513  (class class class)co 7389  chash 14301  Basecbs 17185  +gcplusg 17226  Scalarcsca 17229   ·𝑠 cvsca 17230  LBasisclbs 20987  LVecclvec 21015  dimcldim 33600
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-reg 9551  ax-inf2 9600  ax-ac2 10422  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-int 4913  df-iun 4959  df-iin 4960  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-se 5594  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-isom 6522  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-rpss 7701  df-om 7845  df-1st 7970  df-2nd 7971  df-tpos 8207  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-2o 8437  df-oadd 8440  df-er 8673  df-map 8803  df-en 8921  df-dom 8922  df-sdom 8923  df-fin 8924  df-oi 9469  df-r1 9723  df-rank 9724  df-dju 9860  df-card 9898  df-acn 9901  df-ac 10075  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-nn 12188  df-2 12250  df-3 12251  df-4 12252  df-5 12253  df-6 12254  df-7 12255  df-8 12256  df-9 12257  df-n0 12449  df-xnn0 12522  df-z 12536  df-dec 12656  df-uz 12800  df-fz 13475  df-hash 14302  df-struct 17123  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17186  df-ress 17207  df-plusg 17239  df-mulr 17240  df-tset 17245  df-ple 17246  df-ocomp 17247  df-0g 17410  df-mre 17553  df-mrc 17554  df-mri 17555  df-acs 17556  df-proset 18261  df-drs 18262  df-poset 18280  df-ipo 18493  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-submnd 18717  df-grp 18874  df-minusg 18875  df-sbg 18876  df-subg 19061  df-cmn 19718  df-abl 19719  df-mgp 20056  df-rng 20068  df-ur 20097  df-ring 20150  df-oppr 20252  df-dvdsr 20272  df-unit 20273  df-invr 20303  df-drng 20646  df-lmod 20774  df-lss 20844  df-lsp 20884  df-lbs 20988  df-lvec 21016  df-dim 33601
This theorem is referenced by:  tngdim  33615  matdim  33617  algextdeglem8  33720
  Copyright terms: Public domain W3C validator