| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dimpropd | Structured version Visualization version GIF version | ||
| Description: If two structures have the same components (properties), they have the same dimension. (Contributed by Thierry Arnoux, 18-May-2023.) |
| Ref | Expression |
|---|---|
| dimpropd.b1 | ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) |
| dimpropd.b2 | ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) |
| dimpropd.w | ⊢ (𝜑 → 𝐵 ⊆ 𝑊) |
| dimpropd.p | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
| dimpropd.s1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝐾)𝑦) ∈ 𝑊) |
| dimpropd.s2 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝐾)𝑦) = (𝑥( ·𝑠 ‘𝐿)𝑦)) |
| dimpropd.f | ⊢ 𝐹 = (Scalar‘𝐾) |
| dimpropd.g | ⊢ 𝐺 = (Scalar‘𝐿) |
| dimpropd.p1 | ⊢ (𝜑 → 𝑃 = (Base‘𝐹)) |
| dimpropd.p2 | ⊢ (𝜑 → 𝑃 = (Base‘𝐺)) |
| dimpropd.a | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃)) → (𝑥(+g‘𝐹)𝑦) = (𝑥(+g‘𝐺)𝑦)) |
| dimpropd.v1 | ⊢ (𝜑 → 𝐾 ∈ LVec) |
| dimpropd.v2 | ⊢ (𝜑 → 𝐿 ∈ LVec) |
| Ref | Expression |
|---|---|
| dimpropd | ⊢ (𝜑 → (dim‘𝐾) = (dim‘𝐿)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dimpropd.v1 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ LVec) | |
| 2 | eqid 2734 | . . . . 5 ⊢ (LBasis‘𝐾) = (LBasis‘𝐾) | |
| 3 | 2 | lbsex 21136 | . . . 4 ⊢ (𝐾 ∈ LVec → (LBasis‘𝐾) ≠ ∅) |
| 4 | 1, 3 | syl 17 | . . 3 ⊢ (𝜑 → (LBasis‘𝐾) ≠ ∅) |
| 5 | n0 4333 | . . 3 ⊢ ((LBasis‘𝐾) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (LBasis‘𝐾)) | |
| 6 | 4, 5 | sylib 218 | . 2 ⊢ (𝜑 → ∃𝑥 𝑥 ∈ (LBasis‘𝐾)) |
| 7 | 2 | dimval 33591 | . . . 4 ⊢ ((𝐾 ∈ LVec ∧ 𝑥 ∈ (LBasis‘𝐾)) → (dim‘𝐾) = (♯‘𝑥)) |
| 8 | 1, 7 | sylan 580 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐾)) → (dim‘𝐾) = (♯‘𝑥)) |
| 9 | dimpropd.v2 | . . . 4 ⊢ (𝜑 → 𝐿 ∈ LVec) | |
| 10 | dimpropd.b1 | . . . . . . 7 ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) | |
| 11 | dimpropd.b2 | . . . . . . 7 ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) | |
| 12 | dimpropd.w | . . . . . . 7 ⊢ (𝜑 → 𝐵 ⊆ 𝑊) | |
| 13 | dimpropd.p | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) | |
| 14 | dimpropd.s1 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝐾)𝑦) ∈ 𝑊) | |
| 15 | dimpropd.s2 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝐾)𝑦) = (𝑥( ·𝑠 ‘𝐿)𝑦)) | |
| 16 | dimpropd.f | . . . . . . 7 ⊢ 𝐹 = (Scalar‘𝐾) | |
| 17 | dimpropd.g | . . . . . . 7 ⊢ 𝐺 = (Scalar‘𝐿) | |
| 18 | dimpropd.p1 | . . . . . . 7 ⊢ (𝜑 → 𝑃 = (Base‘𝐹)) | |
| 19 | dimpropd.p2 | . . . . . . 7 ⊢ (𝜑 → 𝑃 = (Base‘𝐺)) | |
| 20 | dimpropd.a | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃)) → (𝑥(+g‘𝐹)𝑦) = (𝑥(+g‘𝐺)𝑦)) | |
| 21 | 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 1, 9 | lbspropd 21067 | . . . . . 6 ⊢ (𝜑 → (LBasis‘𝐾) = (LBasis‘𝐿)) |
| 22 | 21 | eleq2d 2819 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ (LBasis‘𝐾) ↔ 𝑥 ∈ (LBasis‘𝐿))) |
| 23 | 22 | biimpa 476 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐾)) → 𝑥 ∈ (LBasis‘𝐿)) |
| 24 | eqid 2734 | . . . . 5 ⊢ (LBasis‘𝐿) = (LBasis‘𝐿) | |
| 25 | 24 | dimval 33591 | . . . 4 ⊢ ((𝐿 ∈ LVec ∧ 𝑥 ∈ (LBasis‘𝐿)) → (dim‘𝐿) = (♯‘𝑥)) |
| 26 | 9, 23, 25 | syl2an2r 685 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐾)) → (dim‘𝐿) = (♯‘𝑥)) |
| 27 | 8, 26 | eqtr4d 2772 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐾)) → (dim‘𝐾) = (dim‘𝐿)) |
| 28 | 6, 27 | exlimddv 1934 | 1 ⊢ (𝜑 → (dim‘𝐾) = (dim‘𝐿)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∃wex 1778 ∈ wcel 2107 ≠ wne 2931 ⊆ wss 3931 ∅c0 4313 ‘cfv 6541 (class class class)co 7413 ♯chash 14352 Basecbs 17230 +gcplusg 17274 Scalarcsca 17277 ·𝑠 cvsca 17278 LBasisclbs 21042 LVecclvec 21070 dimcldim 33589 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-reg 9614 ax-inf2 9663 ax-ac2 10485 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-iin 4974 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-se 5618 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-isom 6550 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-rpss 7725 df-om 7870 df-1st 7996 df-2nd 7997 df-tpos 8233 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-2o 8489 df-oadd 8492 df-er 8727 df-map 8850 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-oi 9532 df-r1 9786 df-rank 9787 df-dju 9923 df-card 9961 df-acn 9964 df-ac 10138 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-7 12316 df-8 12317 df-9 12318 df-n0 12510 df-xnn0 12583 df-z 12597 df-dec 12717 df-uz 12861 df-fz 13530 df-hash 14353 df-struct 17167 df-sets 17184 df-slot 17202 df-ndx 17214 df-base 17231 df-ress 17254 df-plusg 17287 df-mulr 17288 df-tset 17293 df-ple 17294 df-ocomp 17295 df-0g 17458 df-mre 17601 df-mrc 17602 df-mri 17603 df-acs 17604 df-proset 18311 df-drs 18312 df-poset 18330 df-ipo 18543 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-submnd 18767 df-grp 18924 df-minusg 18925 df-sbg 18926 df-subg 19111 df-cmn 19769 df-abl 19770 df-mgp 20107 df-rng 20119 df-ur 20148 df-ring 20201 df-oppr 20303 df-dvdsr 20326 df-unit 20327 df-invr 20357 df-drng 20700 df-lmod 20829 df-lss 20899 df-lsp 20939 df-lbs 21043 df-lvec 21071 df-dim 33590 |
| This theorem is referenced by: tngdim 33604 matdim 33606 algextdeglem8 33709 |
| Copyright terms: Public domain | W3C validator |