Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dimpropd Structured version   Visualization version   GIF version

Theorem dimpropd 33646
Description: If two structures have the same components (properties), they have the same dimension. (Contributed by Thierry Arnoux, 18-May-2023.)
Hypotheses
Ref Expression
dimpropd.b1 (𝜑𝐵 = (Base‘𝐾))
dimpropd.b2 (𝜑𝐵 = (Base‘𝐿))
dimpropd.w (𝜑𝐵𝑊)
dimpropd.p ((𝜑 ∧ (𝑥𝑊𝑦𝑊)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
dimpropd.s1 ((𝜑 ∧ (𝑥𝑃𝑦𝐵)) → (𝑥( ·𝑠𝐾)𝑦) ∈ 𝑊)
dimpropd.s2 ((𝜑 ∧ (𝑥𝑃𝑦𝐵)) → (𝑥( ·𝑠𝐾)𝑦) = (𝑥( ·𝑠𝐿)𝑦))
dimpropd.f 𝐹 = (Scalar‘𝐾)
dimpropd.g 𝐺 = (Scalar‘𝐿)
dimpropd.p1 (𝜑𝑃 = (Base‘𝐹))
dimpropd.p2 (𝜑𝑃 = (Base‘𝐺))
dimpropd.a ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → (𝑥(+g𝐹)𝑦) = (𝑥(+g𝐺)𝑦))
dimpropd.v1 (𝜑𝐾 ∈ LVec)
dimpropd.v2 (𝜑𝐿 ∈ LVec)
Assertion
Ref Expression
dimpropd (𝜑 → (dim‘𝐾) = (dim‘𝐿))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝑥,𝑃,𝑦   𝑥,𝑊,𝑦   𝜑,𝑥,𝑦

Proof of Theorem dimpropd
StepHypRef Expression
1 dimpropd.v1 . . . 4 (𝜑𝐾 ∈ LVec)
2 eqid 2736 . . . . 5 (LBasis‘𝐾) = (LBasis‘𝐾)
32lbsex 21159 . . . 4 (𝐾 ∈ LVec → (LBasis‘𝐾) ≠ ∅)
41, 3syl 17 . . 3 (𝜑 → (LBasis‘𝐾) ≠ ∅)
5 n0 4352 . . 3 ((LBasis‘𝐾) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (LBasis‘𝐾))
64, 5sylib 218 . 2 (𝜑 → ∃𝑥 𝑥 ∈ (LBasis‘𝐾))
72dimval 33638 . . . 4 ((𝐾 ∈ LVec ∧ 𝑥 ∈ (LBasis‘𝐾)) → (dim‘𝐾) = (♯‘𝑥))
81, 7sylan 580 . . 3 ((𝜑𝑥 ∈ (LBasis‘𝐾)) → (dim‘𝐾) = (♯‘𝑥))
9 dimpropd.v2 . . . 4 (𝜑𝐿 ∈ LVec)
10 dimpropd.b1 . . . . . . 7 (𝜑𝐵 = (Base‘𝐾))
11 dimpropd.b2 . . . . . . 7 (𝜑𝐵 = (Base‘𝐿))
12 dimpropd.w . . . . . . 7 (𝜑𝐵𝑊)
13 dimpropd.p . . . . . . 7 ((𝜑 ∧ (𝑥𝑊𝑦𝑊)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
14 dimpropd.s1 . . . . . . 7 ((𝜑 ∧ (𝑥𝑃𝑦𝐵)) → (𝑥( ·𝑠𝐾)𝑦) ∈ 𝑊)
15 dimpropd.s2 . . . . . . 7 ((𝜑 ∧ (𝑥𝑃𝑦𝐵)) → (𝑥( ·𝑠𝐾)𝑦) = (𝑥( ·𝑠𝐿)𝑦))
16 dimpropd.f . . . . . . 7 𝐹 = (Scalar‘𝐾)
17 dimpropd.g . . . . . . 7 𝐺 = (Scalar‘𝐿)
18 dimpropd.p1 . . . . . . 7 (𝜑𝑃 = (Base‘𝐹))
19 dimpropd.p2 . . . . . . 7 (𝜑𝑃 = (Base‘𝐺))
20 dimpropd.a . . . . . . 7 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → (𝑥(+g𝐹)𝑦) = (𝑥(+g𝐺)𝑦))
2110, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 1, 9lbspropd 21090 . . . . . 6 (𝜑 → (LBasis‘𝐾) = (LBasis‘𝐿))
2221eleq2d 2826 . . . . 5 (𝜑 → (𝑥 ∈ (LBasis‘𝐾) ↔ 𝑥 ∈ (LBasis‘𝐿)))
2322biimpa 476 . . . 4 ((𝜑𝑥 ∈ (LBasis‘𝐾)) → 𝑥 ∈ (LBasis‘𝐿))
24 eqid 2736 . . . . 5 (LBasis‘𝐿) = (LBasis‘𝐿)
2524dimval 33638 . . . 4 ((𝐿 ∈ LVec ∧ 𝑥 ∈ (LBasis‘𝐿)) → (dim‘𝐿) = (♯‘𝑥))
269, 23, 25syl2an2r 685 . . 3 ((𝜑𝑥 ∈ (LBasis‘𝐾)) → (dim‘𝐿) = (♯‘𝑥))
278, 26eqtr4d 2779 . 2 ((𝜑𝑥 ∈ (LBasis‘𝐾)) → (dim‘𝐾) = (dim‘𝐿))
286, 27exlimddv 1935 1 (𝜑 → (dim‘𝐾) = (dim‘𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2108  wne 2939  wss 3950  c0 4332  cfv 6559  (class class class)co 7429  chash 14365  Basecbs 17243  +gcplusg 17293  Scalarcsca 17296   ·𝑠 cvsca 17297  LBasisclbs 21065  LVecclvec 21093  dimcldim 33636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5277  ax-sep 5294  ax-nul 5304  ax-pow 5363  ax-pr 5430  ax-un 7751  ax-reg 9628  ax-inf2 9677  ax-ac2 10499  ax-cnex 11207  ax-resscn 11208  ax-1cn 11209  ax-icn 11210  ax-addcl 11211  ax-addrcl 11212  ax-mulcl 11213  ax-mulrcl 11214  ax-mulcom 11215  ax-addass 11216  ax-mulass 11217  ax-distr 11218  ax-i2m1 11219  ax-1ne0 11220  ax-1rid 11221  ax-rnegex 11222  ax-rrecex 11223  ax-cnre 11224  ax-pre-lttri 11225  ax-pre-lttrn 11226  ax-pre-ltadd 11227  ax-pre-mulgt0 11228
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4906  df-int 4945  df-iun 4991  df-iin 4992  df-br 5142  df-opab 5204  df-mpt 5224  df-tr 5258  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5635  df-se 5636  df-we 5637  df-xp 5689  df-rel 5690  df-cnv 5691  df-co 5692  df-dm 5693  df-rn 5694  df-res 5695  df-ima 5696  df-pred 6319  df-ord 6385  df-on 6386  df-lim 6387  df-suc 6388  df-iota 6512  df-fun 6561  df-fn 6562  df-f 6563  df-f1 6564  df-fo 6565  df-f1o 6566  df-fv 6567  df-isom 6568  df-riota 7386  df-ov 7432  df-oprab 7433  df-mpo 7434  df-rpss 7739  df-om 7884  df-1st 8010  df-2nd 8011  df-tpos 8247  df-frecs 8302  df-wrecs 8333  df-recs 8407  df-rdg 8446  df-1o 8502  df-2o 8503  df-oadd 8506  df-er 8741  df-map 8864  df-en 8982  df-dom 8983  df-sdom 8984  df-fin 8985  df-oi 9546  df-r1 9800  df-rank 9801  df-dju 9937  df-card 9975  df-acn 9978  df-ac 10152  df-pnf 11293  df-mnf 11294  df-xr 11295  df-ltxr 11296  df-le 11297  df-sub 11490  df-neg 11491  df-nn 12263  df-2 12325  df-3 12326  df-4 12327  df-5 12328  df-6 12329  df-7 12330  df-8 12331  df-9 12332  df-n0 12523  df-xnn0 12596  df-z 12610  df-dec 12730  df-uz 12875  df-fz 13544  df-hash 14366  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17244  df-ress 17271  df-plusg 17306  df-mulr 17307  df-tset 17312  df-ple 17313  df-ocomp 17314  df-0g 17482  df-mre 17625  df-mrc 17626  df-mri 17627  df-acs 17628  df-proset 18336  df-drs 18337  df-poset 18355  df-ipo 18569  df-mgm 18649  df-sgrp 18728  df-mnd 18744  df-submnd 18793  df-grp 18950  df-minusg 18951  df-sbg 18952  df-subg 19137  df-cmn 19796  df-abl 19797  df-mgp 20134  df-rng 20146  df-ur 20175  df-ring 20228  df-oppr 20326  df-dvdsr 20349  df-unit 20350  df-invr 20380  df-drng 20723  df-lmod 20852  df-lss 20922  df-lsp 20962  df-lbs 21066  df-lvec 21094  df-dim 33637
This theorem is referenced by:  tngdim  33651  matdim  33653  algextdeglem8  33746
  Copyright terms: Public domain W3C validator