Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dimpropd Structured version   Visualization version   GIF version

Theorem dimpropd 33604
Description: If two structures have the same components (properties), they have the same dimension. (Contributed by Thierry Arnoux, 18-May-2023.)
Hypotheses
Ref Expression
dimpropd.b1 (𝜑𝐵 = (Base‘𝐾))
dimpropd.b2 (𝜑𝐵 = (Base‘𝐿))
dimpropd.w (𝜑𝐵𝑊)
dimpropd.p ((𝜑 ∧ (𝑥𝑊𝑦𝑊)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
dimpropd.s1 ((𝜑 ∧ (𝑥𝑃𝑦𝐵)) → (𝑥( ·𝑠𝐾)𝑦) ∈ 𝑊)
dimpropd.s2 ((𝜑 ∧ (𝑥𝑃𝑦𝐵)) → (𝑥( ·𝑠𝐾)𝑦) = (𝑥( ·𝑠𝐿)𝑦))
dimpropd.f 𝐹 = (Scalar‘𝐾)
dimpropd.g 𝐺 = (Scalar‘𝐿)
dimpropd.p1 (𝜑𝑃 = (Base‘𝐹))
dimpropd.p2 (𝜑𝑃 = (Base‘𝐺))
dimpropd.a ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → (𝑥(+g𝐹)𝑦) = (𝑥(+g𝐺)𝑦))
dimpropd.v1 (𝜑𝐾 ∈ LVec)
dimpropd.v2 (𝜑𝐿 ∈ LVec)
Assertion
Ref Expression
dimpropd (𝜑 → (dim‘𝐾) = (dim‘𝐿))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝑥,𝑃,𝑦   𝑥,𝑊,𝑦   𝜑,𝑥,𝑦

Proof of Theorem dimpropd
StepHypRef Expression
1 dimpropd.v1 . . . 4 (𝜑𝐾 ∈ LVec)
2 eqid 2729 . . . . 5 (LBasis‘𝐾) = (LBasis‘𝐾)
32lbsex 21075 . . . 4 (𝐾 ∈ LVec → (LBasis‘𝐾) ≠ ∅)
41, 3syl 17 . . 3 (𝜑 → (LBasis‘𝐾) ≠ ∅)
5 n0 4316 . . 3 ((LBasis‘𝐾) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (LBasis‘𝐾))
64, 5sylib 218 . 2 (𝜑 → ∃𝑥 𝑥 ∈ (LBasis‘𝐾))
72dimval 33596 . . . 4 ((𝐾 ∈ LVec ∧ 𝑥 ∈ (LBasis‘𝐾)) → (dim‘𝐾) = (♯‘𝑥))
81, 7sylan 580 . . 3 ((𝜑𝑥 ∈ (LBasis‘𝐾)) → (dim‘𝐾) = (♯‘𝑥))
9 dimpropd.v2 . . . 4 (𝜑𝐿 ∈ LVec)
10 dimpropd.b1 . . . . . . 7 (𝜑𝐵 = (Base‘𝐾))
11 dimpropd.b2 . . . . . . 7 (𝜑𝐵 = (Base‘𝐿))
12 dimpropd.w . . . . . . 7 (𝜑𝐵𝑊)
13 dimpropd.p . . . . . . 7 ((𝜑 ∧ (𝑥𝑊𝑦𝑊)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
14 dimpropd.s1 . . . . . . 7 ((𝜑 ∧ (𝑥𝑃𝑦𝐵)) → (𝑥( ·𝑠𝐾)𝑦) ∈ 𝑊)
15 dimpropd.s2 . . . . . . 7 ((𝜑 ∧ (𝑥𝑃𝑦𝐵)) → (𝑥( ·𝑠𝐾)𝑦) = (𝑥( ·𝑠𝐿)𝑦))
16 dimpropd.f . . . . . . 7 𝐹 = (Scalar‘𝐾)
17 dimpropd.g . . . . . . 7 𝐺 = (Scalar‘𝐿)
18 dimpropd.p1 . . . . . . 7 (𝜑𝑃 = (Base‘𝐹))
19 dimpropd.p2 . . . . . . 7 (𝜑𝑃 = (Base‘𝐺))
20 dimpropd.a . . . . . . 7 ((𝜑 ∧ (𝑥𝑃𝑦𝑃)) → (𝑥(+g𝐹)𝑦) = (𝑥(+g𝐺)𝑦))
2110, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 1, 9lbspropd 21006 . . . . . 6 (𝜑 → (LBasis‘𝐾) = (LBasis‘𝐿))
2221eleq2d 2814 . . . . 5 (𝜑 → (𝑥 ∈ (LBasis‘𝐾) ↔ 𝑥 ∈ (LBasis‘𝐿)))
2322biimpa 476 . . . 4 ((𝜑𝑥 ∈ (LBasis‘𝐾)) → 𝑥 ∈ (LBasis‘𝐿))
24 eqid 2729 . . . . 5 (LBasis‘𝐿) = (LBasis‘𝐿)
2524dimval 33596 . . . 4 ((𝐿 ∈ LVec ∧ 𝑥 ∈ (LBasis‘𝐿)) → (dim‘𝐿) = (♯‘𝑥))
269, 23, 25syl2an2r 685 . . 3 ((𝜑𝑥 ∈ (LBasis‘𝐾)) → (dim‘𝐿) = (♯‘𝑥))
278, 26eqtr4d 2767 . 2 ((𝜑𝑥 ∈ (LBasis‘𝐾)) → (dim‘𝐾) = (dim‘𝐿))
286, 27exlimddv 1935 1 (𝜑 → (dim‘𝐾) = (dim‘𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  wne 2925  wss 3914  c0 4296  cfv 6511  (class class class)co 7387  chash 14295  Basecbs 17179  +gcplusg 17220  Scalarcsca 17223   ·𝑠 cvsca 17224  LBasisclbs 20981  LVecclvec 21009  dimcldim 33594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-reg 9545  ax-inf2 9594  ax-ac2 10416  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-rpss 7699  df-om 7843  df-1st 7968  df-2nd 7969  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-oi 9463  df-r1 9717  df-rank 9718  df-dju 9854  df-card 9892  df-acn 9895  df-ac 10069  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-xnn0 12516  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-hash 14296  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-tset 17239  df-ple 17240  df-ocomp 17241  df-0g 17404  df-mre 17547  df-mrc 17548  df-mri 17549  df-acs 17550  df-proset 18255  df-drs 18256  df-poset 18274  df-ipo 18487  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-subg 19055  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-oppr 20246  df-dvdsr 20266  df-unit 20267  df-invr 20297  df-drng 20640  df-lmod 20768  df-lss 20838  df-lsp 20878  df-lbs 20982  df-lvec 21010  df-dim 33595
This theorem is referenced by:  tngdim  33609  matdim  33611  algextdeglem8  33714
  Copyright terms: Public domain W3C validator