![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dimpropd | Structured version Visualization version GIF version |
Description: If two structures have the same components (properties), they have the same dimension. (Contributed by Thierry Arnoux, 18-May-2023.) |
Ref | Expression |
---|---|
dimpropd.b1 | ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) |
dimpropd.b2 | ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) |
dimpropd.w | ⊢ (𝜑 → 𝐵 ⊆ 𝑊) |
dimpropd.p | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) |
dimpropd.s1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝐾)𝑦) ∈ 𝑊) |
dimpropd.s2 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝐾)𝑦) = (𝑥( ·𝑠 ‘𝐿)𝑦)) |
dimpropd.f | ⊢ 𝐹 = (Scalar‘𝐾) |
dimpropd.g | ⊢ 𝐺 = (Scalar‘𝐿) |
dimpropd.p1 | ⊢ (𝜑 → 𝑃 = (Base‘𝐹)) |
dimpropd.p2 | ⊢ (𝜑 → 𝑃 = (Base‘𝐺)) |
dimpropd.a | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃)) → (𝑥(+g‘𝐹)𝑦) = (𝑥(+g‘𝐺)𝑦)) |
dimpropd.v1 | ⊢ (𝜑 → 𝐾 ∈ LVec) |
dimpropd.v2 | ⊢ (𝜑 → 𝐿 ∈ LVec) |
Ref | Expression |
---|---|
dimpropd | ⊢ (𝜑 → (dim‘𝐾) = (dim‘𝐿)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dimpropd.v1 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ LVec) | |
2 | eqid 2728 | . . . . 5 ⊢ (LBasis‘𝐾) = (LBasis‘𝐾) | |
3 | 2 | lbsex 21047 | . . . 4 ⊢ (𝐾 ∈ LVec → (LBasis‘𝐾) ≠ ∅) |
4 | 1, 3 | syl 17 | . . 3 ⊢ (𝜑 → (LBasis‘𝐾) ≠ ∅) |
5 | n0 4343 | . . 3 ⊢ ((LBasis‘𝐾) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (LBasis‘𝐾)) | |
6 | 4, 5 | sylib 217 | . 2 ⊢ (𝜑 → ∃𝑥 𝑥 ∈ (LBasis‘𝐾)) |
7 | 2 | dimval 33289 | . . . 4 ⊢ ((𝐾 ∈ LVec ∧ 𝑥 ∈ (LBasis‘𝐾)) → (dim‘𝐾) = (♯‘𝑥)) |
8 | 1, 7 | sylan 579 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐾)) → (dim‘𝐾) = (♯‘𝑥)) |
9 | dimpropd.v2 | . . . 4 ⊢ (𝜑 → 𝐿 ∈ LVec) | |
10 | dimpropd.b1 | . . . . . . 7 ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) | |
11 | dimpropd.b2 | . . . . . . 7 ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) | |
12 | dimpropd.w | . . . . . . 7 ⊢ (𝜑 → 𝐵 ⊆ 𝑊) | |
13 | dimpropd.p | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) | |
14 | dimpropd.s1 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝐾)𝑦) ∈ 𝑊) | |
15 | dimpropd.s2 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝐾)𝑦) = (𝑥( ·𝑠 ‘𝐿)𝑦)) | |
16 | dimpropd.f | . . . . . . 7 ⊢ 𝐹 = (Scalar‘𝐾) | |
17 | dimpropd.g | . . . . . . 7 ⊢ 𝐺 = (Scalar‘𝐿) | |
18 | dimpropd.p1 | . . . . . . 7 ⊢ (𝜑 → 𝑃 = (Base‘𝐹)) | |
19 | dimpropd.p2 | . . . . . . 7 ⊢ (𝜑 → 𝑃 = (Base‘𝐺)) | |
20 | dimpropd.a | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃)) → (𝑥(+g‘𝐹)𝑦) = (𝑥(+g‘𝐺)𝑦)) | |
21 | 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 1, 9 | lbspropd 20978 | . . . . . 6 ⊢ (𝜑 → (LBasis‘𝐾) = (LBasis‘𝐿)) |
22 | 21 | eleq2d 2815 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ (LBasis‘𝐾) ↔ 𝑥 ∈ (LBasis‘𝐿))) |
23 | 22 | biimpa 476 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐾)) → 𝑥 ∈ (LBasis‘𝐿)) |
24 | eqid 2728 | . . . . 5 ⊢ (LBasis‘𝐿) = (LBasis‘𝐿) | |
25 | 24 | dimval 33289 | . . . 4 ⊢ ((𝐿 ∈ LVec ∧ 𝑥 ∈ (LBasis‘𝐿)) → (dim‘𝐿) = (♯‘𝑥)) |
26 | 9, 23, 25 | syl2an2r 684 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐾)) → (dim‘𝐿) = (♯‘𝑥)) |
27 | 8, 26 | eqtr4d 2771 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (LBasis‘𝐾)) → (dim‘𝐾) = (dim‘𝐿)) |
28 | 6, 27 | exlimddv 1931 | 1 ⊢ (𝜑 → (dim‘𝐾) = (dim‘𝐿)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∃wex 1774 ∈ wcel 2099 ≠ wne 2936 ⊆ wss 3945 ∅c0 4319 ‘cfv 6543 (class class class)co 7415 ♯chash 14316 Basecbs 17174 +gcplusg 17227 Scalarcsca 17230 ·𝑠 cvsca 17231 LBasisclbs 20953 LVecclvec 20981 dimcldim 33287 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-reg 9610 ax-inf2 9659 ax-ac2 10481 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-int 4946 df-iun 4994 df-iin 4995 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-se 5629 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-rpss 7723 df-om 7866 df-1st 7988 df-2nd 7989 df-tpos 8226 df-frecs 8281 df-wrecs 8312 df-recs 8386 df-rdg 8425 df-1o 8481 df-oadd 8485 df-er 8719 df-map 8841 df-en 8959 df-dom 8960 df-sdom 8961 df-fin 8962 df-oi 9528 df-r1 9782 df-rank 9783 df-dju 9919 df-card 9957 df-acn 9960 df-ac 10134 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 df-nn 12238 df-2 12300 df-3 12301 df-4 12302 df-5 12303 df-6 12304 df-7 12305 df-8 12306 df-9 12307 df-n0 12498 df-xnn0 12570 df-z 12584 df-dec 12703 df-uz 12848 df-fz 13512 df-hash 14317 df-struct 17110 df-sets 17127 df-slot 17145 df-ndx 17157 df-base 17175 df-ress 17204 df-plusg 17240 df-mulr 17241 df-tset 17246 df-ple 17247 df-ocomp 17248 df-0g 17417 df-mre 17560 df-mrc 17561 df-mri 17562 df-acs 17563 df-proset 18281 df-drs 18282 df-poset 18299 df-ipo 18514 df-mgm 18594 df-sgrp 18673 df-mnd 18689 df-submnd 18735 df-grp 18887 df-minusg 18888 df-sbg 18889 df-subg 19072 df-cmn 19731 df-abl 19732 df-mgp 20069 df-rng 20087 df-ur 20116 df-ring 20169 df-oppr 20267 df-dvdsr 20290 df-unit 20291 df-invr 20321 df-drng 20620 df-lmod 20739 df-lss 20810 df-lsp 20850 df-lbs 20954 df-lvec 20982 df-dim 33288 |
This theorem is referenced by: tngdim 33302 matdim 33304 algextdeglem8 33387 |
Copyright terms: Public domain | W3C validator |