Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lhpocat | Structured version Visualization version GIF version |
Description: The orthocomplement of a co-atom is an atom. (Contributed by NM, 9-Feb-2013.) |
Ref | Expression |
---|---|
lhpocat.o | ⊢ ⊥ = (oc‘𝐾) |
lhpocat.a | ⊢ 𝐴 = (Atoms‘𝐾) |
lhpocat.h | ⊢ 𝐻 = (LHyp‘𝐾) |
Ref | Expression |
---|---|
lhpocat | ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( ⊥ ‘𝑊) ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 485 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑊 ∈ 𝐻) | |
2 | eqid 2736 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
3 | lhpocat.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | 2, 3 | lhpbase 38259 | . . 3 ⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ (Base‘𝐾)) |
5 | lhpocat.o | . . . 4 ⊢ ⊥ = (oc‘𝐾) | |
6 | lhpocat.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
7 | 2, 5, 6, 3 | lhpoc 38275 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ (Base‘𝐾)) → (𝑊 ∈ 𝐻 ↔ ( ⊥ ‘𝑊) ∈ 𝐴)) |
8 | 4, 7 | sylan2 593 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑊 ∈ 𝐻 ↔ ( ⊥ ‘𝑊) ∈ 𝐴)) |
9 | 1, 8 | mpbid 231 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( ⊥ ‘𝑊) ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ‘cfv 6473 Basecbs 17001 occoc 17059 Atomscatm 37523 HLchlt 37610 LHypclh 38245 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5226 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-iun 4940 df-br 5090 df-opab 5152 df-mpt 5173 df-id 5512 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-riota 7286 df-ov 7332 df-proset 18102 df-poset 18120 df-plt 18137 df-lub 18153 df-glb 18154 df-p0 18232 df-p1 18233 df-oposet 37436 df-ol 37438 df-oml 37439 df-covers 37526 df-ats 37527 df-hlat 37611 df-lhyp 38249 |
This theorem is referenced by: lhpocnel 38279 lhpmod2i2 38299 lhpmod6i1 38300 dihat 39596 |
Copyright terms: Public domain | W3C validator |