| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lhpocat | Structured version Visualization version GIF version | ||
| Description: The orthocomplement of a co-atom is an atom. (Contributed by NM, 9-Feb-2013.) |
| Ref | Expression |
|---|---|
| lhpocat.o | ⊢ ⊥ = (oc‘𝐾) |
| lhpocat.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| lhpocat.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| Ref | Expression |
|---|---|
| lhpocat | ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( ⊥ ‘𝑊) ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑊 ∈ 𝐻) | |
| 2 | eqid 2729 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 3 | lhpocat.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 4 | 2, 3 | lhpbase 39965 | . . 3 ⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ (Base‘𝐾)) |
| 5 | lhpocat.o | . . . 4 ⊢ ⊥ = (oc‘𝐾) | |
| 6 | lhpocat.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 7 | 2, 5, 6, 3 | lhpoc 39981 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ (Base‘𝐾)) → (𝑊 ∈ 𝐻 ↔ ( ⊥ ‘𝑊) ∈ 𝐴)) |
| 8 | 4, 7 | sylan2 593 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝑊 ∈ 𝐻 ↔ ( ⊥ ‘𝑊) ∈ 𝐴)) |
| 9 | 1, 8 | mpbid 232 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( ⊥ ‘𝑊) ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6499 Basecbs 17155 occoc 17204 Atomscatm 39229 HLchlt 39316 LHypclh 39951 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-proset 18231 df-poset 18250 df-plt 18265 df-lub 18281 df-glb 18282 df-p0 18360 df-p1 18361 df-oposet 39142 df-ol 39144 df-oml 39145 df-covers 39232 df-ats 39233 df-hlat 39317 df-lhyp 39955 |
| This theorem is referenced by: lhpocnel 39985 lhpmod2i2 40005 lhpmod6i1 40006 dihat 41302 |
| Copyright terms: Public domain | W3C validator |