![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lhpocat | Structured version Visualization version GIF version |
Description: The orthocomplement of a co-atom is an atom. (Contributed by NM, 9-Feb-2013.) |
Ref | Expression |
---|---|
lhpocat.o | β’ β₯ = (ocβπΎ) |
lhpocat.a | β’ π΄ = (AtomsβπΎ) |
lhpocat.h | β’ π» = (LHypβπΎ) |
Ref | Expression |
---|---|
lhpocat | β’ ((πΎ β HL β§ π β π») β ( β₯ βπ) β π΄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 483 | . 2 β’ ((πΎ β HL β§ π β π») β π β π») | |
2 | eqid 2730 | . . . 4 β’ (BaseβπΎ) = (BaseβπΎ) | |
3 | lhpocat.h | . . . 4 β’ π» = (LHypβπΎ) | |
4 | 2, 3 | lhpbase 39172 | . . 3 β’ (π β π» β π β (BaseβπΎ)) |
5 | lhpocat.o | . . . 4 β’ β₯ = (ocβπΎ) | |
6 | lhpocat.a | . . . 4 β’ π΄ = (AtomsβπΎ) | |
7 | 2, 5, 6, 3 | lhpoc 39188 | . . 3 β’ ((πΎ β HL β§ π β (BaseβπΎ)) β (π β π» β ( β₯ βπ) β π΄)) |
8 | 4, 7 | sylan2 591 | . 2 β’ ((πΎ β HL β§ π β π») β (π β π» β ( β₯ βπ) β π΄)) |
9 | 1, 8 | mpbid 231 | 1 β’ ((πΎ β HL β§ π β π») β ( β₯ βπ) β π΄) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 394 = wceq 1539 β wcel 2104 βcfv 6542 Basecbs 17148 occoc 17209 Atomscatm 38436 HLchlt 38523 LHypclh 39158 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-proset 18252 df-poset 18270 df-plt 18287 df-lub 18303 df-glb 18304 df-p0 18382 df-p1 18383 df-oposet 38349 df-ol 38351 df-oml 38352 df-covers 38439 df-ats 38440 df-hlat 38524 df-lhyp 39162 |
This theorem is referenced by: lhpocnel 39192 lhpmod2i2 39212 lhpmod6i1 39213 dihat 40509 |
Copyright terms: Public domain | W3C validator |