Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpocat Structured version   Visualization version   GIF version

Theorem lhpocat 40041
Description: The orthocomplement of a co-atom is an atom. (Contributed by NM, 9-Feb-2013.)
Hypotheses
Ref Expression
lhpocat.o = (oc‘𝐾)
lhpocat.a 𝐴 = (Atoms‘𝐾)
lhpocat.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
lhpocat ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( 𝑊) ∈ 𝐴)

Proof of Theorem lhpocat
StepHypRef Expression
1 simpr 484 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑊𝐻)
2 eqid 2736 . . . 4 (Base‘𝐾) = (Base‘𝐾)
3 lhpocat.h . . . 4 𝐻 = (LHyp‘𝐾)
42, 3lhpbase 40022 . . 3 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
5 lhpocat.o . . . 4 = (oc‘𝐾)
6 lhpocat.a . . . 4 𝐴 = (Atoms‘𝐾)
72, 5, 6, 3lhpoc 40038 . . 3 ((𝐾 ∈ HL ∧ 𝑊 ∈ (Base‘𝐾)) → (𝑊𝐻 ↔ ( 𝑊) ∈ 𝐴))
84, 7sylan2 593 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑊𝐻 ↔ ( 𝑊) ∈ 𝐴))
91, 8mpbid 232 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( 𝑊) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cfv 6536  Basecbs 17233  occoc 17284  Atomscatm 39286  HLchlt 39373  LHypclh 40008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-proset 18311  df-poset 18330  df-plt 18345  df-lub 18361  df-glb 18362  df-p0 18440  df-p1 18441  df-oposet 39199  df-ol 39201  df-oml 39202  df-covers 39289  df-ats 39290  df-hlat 39374  df-lhyp 40012
This theorem is referenced by:  lhpocnel  40042  lhpmod2i2  40062  lhpmod6i1  40063  dihat  41359
  Copyright terms: Public domain W3C validator