Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpocat Structured version   Visualization version   GIF version

Theorem lhpocat 40020
Description: The orthocomplement of a co-atom is an atom. (Contributed by NM, 9-Feb-2013.)
Hypotheses
Ref Expression
lhpocat.o = (oc‘𝐾)
lhpocat.a 𝐴 = (Atoms‘𝐾)
lhpocat.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
lhpocat ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( 𝑊) ∈ 𝐴)

Proof of Theorem lhpocat
StepHypRef Expression
1 simpr 484 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑊𝐻)
2 eqid 2736 . . . 4 (Base‘𝐾) = (Base‘𝐾)
3 lhpocat.h . . . 4 𝐻 = (LHyp‘𝐾)
42, 3lhpbase 40001 . . 3 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
5 lhpocat.o . . . 4 = (oc‘𝐾)
6 lhpocat.a . . . 4 𝐴 = (Atoms‘𝐾)
72, 5, 6, 3lhpoc 40017 . . 3 ((𝐾 ∈ HL ∧ 𝑊 ∈ (Base‘𝐾)) → (𝑊𝐻 ↔ ( 𝑊) ∈ 𝐴))
84, 7sylan2 593 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑊𝐻 ↔ ( 𝑊) ∈ 𝐴))
91, 8mpbid 232 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( 𝑊) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  cfv 6560  Basecbs 17248  occoc 17306  Atomscatm 39265  HLchlt 39352  LHypclh 39987
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-proset 18341  df-poset 18360  df-plt 18376  df-lub 18392  df-glb 18393  df-p0 18471  df-p1 18472  df-oposet 39178  df-ol 39180  df-oml 39181  df-covers 39268  df-ats 39269  df-hlat 39353  df-lhyp 39991
This theorem is referenced by:  lhpocnel  40021  lhpmod2i2  40041  lhpmod6i1  40042  dihat  41338
  Copyright terms: Public domain W3C validator