MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephislim Structured version   Visualization version   GIF version

Theorem alephislim 10074
Description: Every aleph is a limit ordinal. (Contributed by NM, 11-Nov-2003.)
Assertion
Ref Expression
alephislim (𝐴 ∈ On ↔ Lim (β„΅β€˜π΄))

Proof of Theorem alephislim
StepHypRef Expression
1 alephgeom 10073 . 2 (𝐴 ∈ On ↔ Ο‰ βŠ† (β„΅β€˜π΄))
2 cardlim 9963 . . 3 (Ο‰ βŠ† (cardβ€˜(β„΅β€˜π΄)) ↔ Lim (cardβ€˜(β„΅β€˜π΄)))
3 alephcard 10061 . . . 4 (cardβ€˜(β„΅β€˜π΄)) = (β„΅β€˜π΄)
43sseq2i 4003 . . 3 (Ο‰ βŠ† (cardβ€˜(β„΅β€˜π΄)) ↔ Ο‰ βŠ† (β„΅β€˜π΄))
5 limeq 6366 . . . 4 ((cardβ€˜(β„΅β€˜π΄)) = (β„΅β€˜π΄) β†’ (Lim (cardβ€˜(β„΅β€˜π΄)) ↔ Lim (β„΅β€˜π΄)))
63, 5ax-mp 5 . . 3 (Lim (cardβ€˜(β„΅β€˜π΄)) ↔ Lim (β„΅β€˜π΄))
72, 4, 63bitr3i 301 . 2 (Ο‰ βŠ† (β„΅β€˜π΄) ↔ Lim (β„΅β€˜π΄))
81, 7bitri 275 1 (𝐴 ∈ On ↔ Lim (β„΅β€˜π΄))
Colors of variables: wff setvar class
Syntax hints:   ↔ wb 205   = wceq 1533   ∈ wcel 2098   βŠ† wss 3940  Oncon0 6354  Lim wlim 6355  β€˜cfv 6533  Ο‰com 7848  cardccrd 9926  β„΅cale 9927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-inf2 9632
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-se 5622  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-isom 6542  df-riota 7357  df-ov 7404  df-om 7849  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-oi 9501  df-har 9548  df-card 9930  df-aleph 9931
This theorem is referenced by:  alephreg  10573  pwcfsdom  10574
  Copyright terms: Public domain W3C validator