MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephislim Structured version   Visualization version   GIF version

Theorem alephislim 9940
Description: Every aleph is a limit ordinal. (Contributed by NM, 11-Nov-2003.)
Assertion
Ref Expression
alephislim (𝐴 ∈ On ↔ Lim (ℵ‘𝐴))

Proof of Theorem alephislim
StepHypRef Expression
1 alephgeom 9939 . 2 (𝐴 ∈ On ↔ ω ⊆ (ℵ‘𝐴))
2 cardlim 9829 . . 3 (ω ⊆ (card‘(ℵ‘𝐴)) ↔ Lim (card‘(ℵ‘𝐴)))
3 alephcard 9927 . . . 4 (card‘(ℵ‘𝐴)) = (ℵ‘𝐴)
43sseq2i 3961 . . 3 (ω ⊆ (card‘(ℵ‘𝐴)) ↔ ω ⊆ (ℵ‘𝐴))
5 limeq 6314 . . . 4 ((card‘(ℵ‘𝐴)) = (ℵ‘𝐴) → (Lim (card‘(ℵ‘𝐴)) ↔ Lim (ℵ‘𝐴)))
63, 5ax-mp 5 . . 3 (Lim (card‘(ℵ‘𝐴)) ↔ Lim (ℵ‘𝐴))
72, 4, 63bitr3i 300 . 2 (ω ⊆ (ℵ‘𝐴) ↔ Lim (ℵ‘𝐴))
81, 7bitri 274 1 (𝐴 ∈ On ↔ Lim (ℵ‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1540  wcel 2105  wss 3898  Oncon0 6302  Lim wlim 6303  cfv 6479  ωcom 7780  cardccrd 9792  cale 9793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5229  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650  ax-inf2 9498
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-int 4895  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5176  df-tr 5210  df-id 5518  df-eprel 5524  df-po 5532  df-so 5533  df-fr 5575  df-se 5576  df-we 5577  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-pred 6238  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-isom 6488  df-riota 7293  df-ov 7340  df-om 7781  df-2nd 7900  df-frecs 8167  df-wrecs 8198  df-recs 8272  df-rdg 8311  df-1o 8367  df-er 8569  df-en 8805  df-dom 8806  df-sdom 8807  df-fin 8808  df-oi 9367  df-har 9414  df-card 9796  df-aleph 9797
This theorem is referenced by:  alephreg  10439  pwcfsdom  10440
  Copyright terms: Public domain W3C validator