MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephislim Structured version   Visualization version   GIF version

Theorem alephislim 10126
Description: Every aleph is a limit ordinal. (Contributed by NM, 11-Nov-2003.)
Assertion
Ref Expression
alephislim (𝐴 ∈ On ↔ Lim (ℵ‘𝐴))

Proof of Theorem alephislim
StepHypRef Expression
1 alephgeom 10125 . 2 (𝐴 ∈ On ↔ ω ⊆ (ℵ‘𝐴))
2 cardlim 10015 . . 3 (ω ⊆ (card‘(ℵ‘𝐴)) ↔ Lim (card‘(ℵ‘𝐴)))
3 alephcard 10113 . . . 4 (card‘(ℵ‘𝐴)) = (ℵ‘𝐴)
43sseq2i 4009 . . 3 (ω ⊆ (card‘(ℵ‘𝐴)) ↔ ω ⊆ (ℵ‘𝐴))
5 limeq 6388 . . . 4 ((card‘(ℵ‘𝐴)) = (ℵ‘𝐴) → (Lim (card‘(ℵ‘𝐴)) ↔ Lim (ℵ‘𝐴)))
63, 5ax-mp 5 . . 3 (Lim (card‘(ℵ‘𝐴)) ↔ Lim (ℵ‘𝐴))
72, 4, 63bitr3i 300 . 2 (ω ⊆ (ℵ‘𝐴) ↔ Lim (ℵ‘𝐴))
81, 7bitri 274 1 (𝐴 ∈ On ↔ Lim (ℵ‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1534  wcel 2099  wss 3947  Oncon0 6376  Lim wlim 6377  cfv 6554  ωcom 7876  cardccrd 9978  cale 9979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-inf2 9684
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-int 4955  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-se 5638  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-isom 6563  df-riota 7380  df-ov 7427  df-om 7877  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-1o 8496  df-er 8734  df-en 8975  df-dom 8976  df-sdom 8977  df-fin 8978  df-oi 9553  df-har 9600  df-card 9982  df-aleph 9983
This theorem is referenced by:  alephreg  10625  pwcfsdom  10626
  Copyright terms: Public domain W3C validator