![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > alephislim | Structured version Visualization version GIF version |
Description: Every aleph is a limit ordinal. (Contributed by NM, 11-Nov-2003.) |
Ref | Expression |
---|---|
alephislim | ⊢ (𝐴 ∈ On ↔ Lim (ℵ‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alephgeom 10125 | . 2 ⊢ (𝐴 ∈ On ↔ ω ⊆ (ℵ‘𝐴)) | |
2 | cardlim 10015 | . . 3 ⊢ (ω ⊆ (card‘(ℵ‘𝐴)) ↔ Lim (card‘(ℵ‘𝐴))) | |
3 | alephcard 10113 | . . . 4 ⊢ (card‘(ℵ‘𝐴)) = (ℵ‘𝐴) | |
4 | 3 | sseq2i 4009 | . . 3 ⊢ (ω ⊆ (card‘(ℵ‘𝐴)) ↔ ω ⊆ (ℵ‘𝐴)) |
5 | limeq 6388 | . . . 4 ⊢ ((card‘(ℵ‘𝐴)) = (ℵ‘𝐴) → (Lim (card‘(ℵ‘𝐴)) ↔ Lim (ℵ‘𝐴))) | |
6 | 3, 5 | ax-mp 5 | . . 3 ⊢ (Lim (card‘(ℵ‘𝐴)) ↔ Lim (ℵ‘𝐴)) |
7 | 2, 4, 6 | 3bitr3i 300 | . 2 ⊢ (ω ⊆ (ℵ‘𝐴) ↔ Lim (ℵ‘𝐴)) |
8 | 1, 7 | bitri 274 | 1 ⊢ (𝐴 ∈ On ↔ Lim (ℵ‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1534 ∈ wcel 2099 ⊆ wss 3947 Oncon0 6376 Lim wlim 6377 ‘cfv 6554 ωcom 7876 cardccrd 9978 ℵcale 9979 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-inf2 9684 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-int 4955 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-se 5638 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-isom 6563 df-riota 7380 df-ov 7427 df-om 7877 df-2nd 8004 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-1o 8496 df-er 8734 df-en 8975 df-dom 8976 df-sdom 8977 df-fin 8978 df-oi 9553 df-har 9600 df-card 9982 df-aleph 9983 |
This theorem is referenced by: alephreg 10625 pwcfsdom 10626 |
Copyright terms: Public domain | W3C validator |