Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > alephislim | Structured version Visualization version GIF version |
Description: Every aleph is a limit ordinal. (Contributed by NM, 11-Nov-2003.) |
Ref | Expression |
---|---|
alephislim | ⊢ (𝐴 ∈ On ↔ Lim (ℵ‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alephgeom 9939 | . 2 ⊢ (𝐴 ∈ On ↔ ω ⊆ (ℵ‘𝐴)) | |
2 | cardlim 9829 | . . 3 ⊢ (ω ⊆ (card‘(ℵ‘𝐴)) ↔ Lim (card‘(ℵ‘𝐴))) | |
3 | alephcard 9927 | . . . 4 ⊢ (card‘(ℵ‘𝐴)) = (ℵ‘𝐴) | |
4 | 3 | sseq2i 3961 | . . 3 ⊢ (ω ⊆ (card‘(ℵ‘𝐴)) ↔ ω ⊆ (ℵ‘𝐴)) |
5 | limeq 6314 | . . . 4 ⊢ ((card‘(ℵ‘𝐴)) = (ℵ‘𝐴) → (Lim (card‘(ℵ‘𝐴)) ↔ Lim (ℵ‘𝐴))) | |
6 | 3, 5 | ax-mp 5 | . . 3 ⊢ (Lim (card‘(ℵ‘𝐴)) ↔ Lim (ℵ‘𝐴)) |
7 | 2, 4, 6 | 3bitr3i 300 | . 2 ⊢ (ω ⊆ (ℵ‘𝐴) ↔ Lim (ℵ‘𝐴)) |
8 | 1, 7 | bitri 274 | 1 ⊢ (𝐴 ∈ On ↔ Lim (ℵ‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1540 ∈ wcel 2105 ⊆ wss 3898 Oncon0 6302 Lim wlim 6303 ‘cfv 6479 ωcom 7780 cardccrd 9792 ℵcale 9793 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-inf2 9498 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-int 4895 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-se 5576 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-isom 6488 df-riota 7293 df-ov 7340 df-om 7781 df-2nd 7900 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-1o 8367 df-er 8569 df-en 8805 df-dom 8806 df-sdom 8807 df-fin 8808 df-oi 9367 df-har 9414 df-card 9796 df-aleph 9797 |
This theorem is referenced by: alephreg 10439 pwcfsdom 10440 |
Copyright terms: Public domain | W3C validator |