| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > winalim | Structured version Visualization version GIF version | ||
| Description: A weakly inaccessible cardinal is a limit ordinal. (Contributed by Mario Carneiro, 29-May-2014.) |
| Ref | Expression |
|---|---|
| winalim | ⊢ (𝐴 ∈ Inaccw → Lim 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | winainf 10592 | . 2 ⊢ (𝐴 ∈ Inaccw → ω ⊆ 𝐴) | |
| 2 | winacard 10590 | . . 3 ⊢ (𝐴 ∈ Inaccw → (card‘𝐴) = 𝐴) | |
| 3 | cardlim 9872 | . . . 4 ⊢ (ω ⊆ (card‘𝐴) ↔ Lim (card‘𝐴)) | |
| 4 | sseq2 3957 | . . . . 5 ⊢ ((card‘𝐴) = 𝐴 → (ω ⊆ (card‘𝐴) ↔ ω ⊆ 𝐴)) | |
| 5 | limeq 6323 | . . . . 5 ⊢ ((card‘𝐴) = 𝐴 → (Lim (card‘𝐴) ↔ Lim 𝐴)) | |
| 6 | 4, 5 | bibi12d 345 | . . . 4 ⊢ ((card‘𝐴) = 𝐴 → ((ω ⊆ (card‘𝐴) ↔ Lim (card‘𝐴)) ↔ (ω ⊆ 𝐴 ↔ Lim 𝐴))) |
| 7 | 3, 6 | mpbii 233 | . . 3 ⊢ ((card‘𝐴) = 𝐴 → (ω ⊆ 𝐴 ↔ Lim 𝐴)) |
| 8 | 2, 7 | syl 17 | . 2 ⊢ (𝐴 ∈ Inaccw → (ω ⊆ 𝐴 ↔ Lim 𝐴)) |
| 9 | 1, 8 | mpbid 232 | 1 ⊢ (𝐴 ∈ Inaccw → Lim 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2113 ⊆ wss 3898 Lim wlim 6312 ‘cfv 6486 ωcom 7802 cardccrd 9835 Inaccwcwina 10580 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-om 7803 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-card 9839 df-cf 9841 df-wina 10582 |
| This theorem is referenced by: inar1 10673 inatsk 10676 tskuni 10681 grur1a 10717 |
| Copyright terms: Public domain | W3C validator |