| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > winalim | Structured version Visualization version GIF version | ||
| Description: A weakly inaccessible cardinal is a limit ordinal. (Contributed by Mario Carneiro, 29-May-2014.) |
| Ref | Expression |
|---|---|
| winalim | ⊢ (𝐴 ∈ Inaccw → Lim 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | winainf 10708 | . 2 ⊢ (𝐴 ∈ Inaccw → ω ⊆ 𝐴) | |
| 2 | winacard 10706 | . . 3 ⊢ (𝐴 ∈ Inaccw → (card‘𝐴) = 𝐴) | |
| 3 | cardlim 9986 | . . . 4 ⊢ (ω ⊆ (card‘𝐴) ↔ Lim (card‘𝐴)) | |
| 4 | sseq2 3985 | . . . . 5 ⊢ ((card‘𝐴) = 𝐴 → (ω ⊆ (card‘𝐴) ↔ ω ⊆ 𝐴)) | |
| 5 | limeq 6364 | . . . . 5 ⊢ ((card‘𝐴) = 𝐴 → (Lim (card‘𝐴) ↔ Lim 𝐴)) | |
| 6 | 4, 5 | bibi12d 345 | . . . 4 ⊢ ((card‘𝐴) = 𝐴 → ((ω ⊆ (card‘𝐴) ↔ Lim (card‘𝐴)) ↔ (ω ⊆ 𝐴 ↔ Lim 𝐴))) |
| 7 | 3, 6 | mpbii 233 | . . 3 ⊢ ((card‘𝐴) = 𝐴 → (ω ⊆ 𝐴 ↔ Lim 𝐴)) |
| 8 | 2, 7 | syl 17 | . 2 ⊢ (𝐴 ∈ Inaccw → (ω ⊆ 𝐴 ↔ Lim 𝐴)) |
| 9 | 1, 8 | mpbid 232 | 1 ⊢ (𝐴 ∈ Inaccw → Lim 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2108 ⊆ wss 3926 Lim wlim 6353 ‘cfv 6531 ωcom 7861 cardccrd 9949 Inaccwcwina 10696 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-om 7862 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-card 9953 df-cf 9955 df-wina 10698 |
| This theorem is referenced by: inar1 10789 inatsk 10792 tskuni 10797 grur1a 10833 |
| Copyright terms: Public domain | W3C validator |