| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > winalim | Structured version Visualization version GIF version | ||
| Description: A weakly inaccessible cardinal is a limit ordinal. (Contributed by Mario Carneiro, 29-May-2014.) |
| Ref | Expression |
|---|---|
| winalim | ⊢ (𝐴 ∈ Inaccw → Lim 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | winainf 10582 | . 2 ⊢ (𝐴 ∈ Inaccw → ω ⊆ 𝐴) | |
| 2 | winacard 10580 | . . 3 ⊢ (𝐴 ∈ Inaccw → (card‘𝐴) = 𝐴) | |
| 3 | cardlim 9862 | . . . 4 ⊢ (ω ⊆ (card‘𝐴) ↔ Lim (card‘𝐴)) | |
| 4 | sseq2 3961 | . . . . 5 ⊢ ((card‘𝐴) = 𝐴 → (ω ⊆ (card‘𝐴) ↔ ω ⊆ 𝐴)) | |
| 5 | limeq 6318 | . . . . 5 ⊢ ((card‘𝐴) = 𝐴 → (Lim (card‘𝐴) ↔ Lim 𝐴)) | |
| 6 | 4, 5 | bibi12d 345 | . . . 4 ⊢ ((card‘𝐴) = 𝐴 → ((ω ⊆ (card‘𝐴) ↔ Lim (card‘𝐴)) ↔ (ω ⊆ 𝐴 ↔ Lim 𝐴))) |
| 7 | 3, 6 | mpbii 233 | . . 3 ⊢ ((card‘𝐴) = 𝐴 → (ω ⊆ 𝐴 ↔ Lim 𝐴)) |
| 8 | 2, 7 | syl 17 | . 2 ⊢ (𝐴 ∈ Inaccw → (ω ⊆ 𝐴 ↔ Lim 𝐴)) |
| 9 | 1, 8 | mpbid 232 | 1 ⊢ (𝐴 ∈ Inaccw → Lim 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 ⊆ wss 3902 Lim wlim 6307 ‘cfv 6481 ωcom 7796 cardccrd 9825 Inaccwcwina 10570 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-om 7797 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-card 9829 df-cf 9831 df-wina 10572 |
| This theorem is referenced by: inar1 10663 inatsk 10666 tskuni 10671 grur1a 10707 |
| Copyright terms: Public domain | W3C validator |