MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  winalim Structured version   Visualization version   GIF version

Theorem winalim 9832
Description: A weakly inaccessible cardinal is a limit ordinal. (Contributed by Mario Carneiro, 29-May-2014.)
Assertion
Ref Expression
winalim (𝐴 ∈ Inaccw → Lim 𝐴)

Proof of Theorem winalim
StepHypRef Expression
1 winainf 9831 . 2 (𝐴 ∈ Inaccw → ω ⊆ 𝐴)
2 winacard 9829 . . 3 (𝐴 ∈ Inaccw → (card‘𝐴) = 𝐴)
3 cardlim 9111 . . . 4 (ω ⊆ (card‘𝐴) ↔ Lim (card‘𝐴))
4 sseq2 3852 . . . . 5 ((card‘𝐴) = 𝐴 → (ω ⊆ (card‘𝐴) ↔ ω ⊆ 𝐴))
5 limeq 5975 . . . . 5 ((card‘𝐴) = 𝐴 → (Lim (card‘𝐴) ↔ Lim 𝐴))
64, 5bibi12d 337 . . . 4 ((card‘𝐴) = 𝐴 → ((ω ⊆ (card‘𝐴) ↔ Lim (card‘𝐴)) ↔ (ω ⊆ 𝐴 ↔ Lim 𝐴)))
73, 6mpbii 225 . . 3 ((card‘𝐴) = 𝐴 → (ω ⊆ 𝐴 ↔ Lim 𝐴))
82, 7syl 17 . 2 (𝐴 ∈ Inaccw → (ω ⊆ 𝐴 ↔ Lim 𝐴))
91, 8mpbid 224 1 (𝐴 ∈ Inaccw → Lim 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198   = wceq 1658  wcel 2166  wss 3798  Lim wlim 5964  cfv 6123  ωcom 7326  cardccrd 9074  Inaccwcwina 9819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-om 7327  df-1o 7826  df-er 8009  df-en 8223  df-dom 8224  df-sdom 8225  df-card 9078  df-cf 9080  df-wina 9821
This theorem is referenced by:  inar1  9912  inatsk  9915  tskuni  9920  grur1a  9956
  Copyright terms: Public domain W3C validator