| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > winalim | Structured version Visualization version GIF version | ||
| Description: A weakly inaccessible cardinal is a limit ordinal. (Contributed by Mario Carneiro, 29-May-2014.) |
| Ref | Expression |
|---|---|
| winalim | ⊢ (𝐴 ∈ Inaccw → Lim 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | winainf 10734 | . 2 ⊢ (𝐴 ∈ Inaccw → ω ⊆ 𝐴) | |
| 2 | winacard 10732 | . . 3 ⊢ (𝐴 ∈ Inaccw → (card‘𝐴) = 𝐴) | |
| 3 | cardlim 10012 | . . . 4 ⊢ (ω ⊆ (card‘𝐴) ↔ Lim (card‘𝐴)) | |
| 4 | sseq2 4010 | . . . . 5 ⊢ ((card‘𝐴) = 𝐴 → (ω ⊆ (card‘𝐴) ↔ ω ⊆ 𝐴)) | |
| 5 | limeq 6396 | . . . . 5 ⊢ ((card‘𝐴) = 𝐴 → (Lim (card‘𝐴) ↔ Lim 𝐴)) | |
| 6 | 4, 5 | bibi12d 345 | . . . 4 ⊢ ((card‘𝐴) = 𝐴 → ((ω ⊆ (card‘𝐴) ↔ Lim (card‘𝐴)) ↔ (ω ⊆ 𝐴 ↔ Lim 𝐴))) |
| 7 | 3, 6 | mpbii 233 | . . 3 ⊢ ((card‘𝐴) = 𝐴 → (ω ⊆ 𝐴 ↔ Lim 𝐴)) |
| 8 | 2, 7 | syl 17 | . 2 ⊢ (𝐴 ∈ Inaccw → (ω ⊆ 𝐴 ↔ Lim 𝐴)) |
| 9 | 1, 8 | mpbid 232 | 1 ⊢ (𝐴 ∈ Inaccw → Lim 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2108 ⊆ wss 3951 Lim wlim 6385 ‘cfv 6561 ωcom 7887 cardccrd 9975 Inaccwcwina 10722 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-om 7888 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-card 9979 df-cf 9981 df-wina 10724 |
| This theorem is referenced by: inar1 10815 inatsk 10818 tskuni 10823 grur1a 10859 |
| Copyright terms: Public domain | W3C validator |