| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmodvsneg | Structured version Visualization version GIF version | ||
| Description: Multiplication of a vector by a negated scalar. (Contributed by Stefan O'Rear, 28-Feb-2015.) |
| Ref | Expression |
|---|---|
| lmodvsneg.b | ⊢ 𝐵 = (Base‘𝑊) |
| lmodvsneg.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| lmodvsneg.s | ⊢ · = ( ·𝑠 ‘𝑊) |
| lmodvsneg.n | ⊢ 𝑁 = (invg‘𝑊) |
| lmodvsneg.k | ⊢ 𝐾 = (Base‘𝐹) |
| lmodvsneg.m | ⊢ 𝑀 = (invg‘𝐹) |
| lmodvsneg.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| lmodvsneg.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| lmodvsneg.r | ⊢ (𝜑 → 𝑅 ∈ 𝐾) |
| Ref | Expression |
|---|---|
| lmodvsneg | ⊢ (𝜑 → (𝑁‘(𝑅 · 𝑋)) = ((𝑀‘𝑅) · 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodvsneg.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 2 | lmodvsneg.f | . . . . . . 7 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 3 | 2 | lmodring 20799 | . . . . . 6 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) |
| 4 | 1, 3 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ Ring) |
| 5 | ringgrp 20154 | . . . . 5 ⊢ (𝐹 ∈ Ring → 𝐹 ∈ Grp) | |
| 6 | 4, 5 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ Grp) |
| 7 | lmodvsneg.k | . . . . . 6 ⊢ 𝐾 = (Base‘𝐹) | |
| 8 | eqid 2731 | . . . . . 6 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
| 9 | 7, 8 | ringidcl 20181 | . . . . 5 ⊢ (𝐹 ∈ Ring → (1r‘𝐹) ∈ 𝐾) |
| 10 | 4, 9 | syl 17 | . . . 4 ⊢ (𝜑 → (1r‘𝐹) ∈ 𝐾) |
| 11 | lmodvsneg.m | . . . . 5 ⊢ 𝑀 = (invg‘𝐹) | |
| 12 | 7, 11 | grpinvcl 18897 | . . . 4 ⊢ ((𝐹 ∈ Grp ∧ (1r‘𝐹) ∈ 𝐾) → (𝑀‘(1r‘𝐹)) ∈ 𝐾) |
| 13 | 6, 10, 12 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑀‘(1r‘𝐹)) ∈ 𝐾) |
| 14 | lmodvsneg.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝐾) | |
| 15 | lmodvsneg.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 16 | lmodvsneg.b | . . . 4 ⊢ 𝐵 = (Base‘𝑊) | |
| 17 | lmodvsneg.s | . . . 4 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 18 | eqid 2731 | . . . 4 ⊢ (.r‘𝐹) = (.r‘𝐹) | |
| 19 | 16, 2, 17, 7, 18 | lmodvsass 20818 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ ((𝑀‘(1r‘𝐹)) ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵)) → (((𝑀‘(1r‘𝐹))(.r‘𝐹)𝑅) · 𝑋) = ((𝑀‘(1r‘𝐹)) · (𝑅 · 𝑋))) |
| 20 | 1, 13, 14, 15, 19 | syl13anc 1374 | . 2 ⊢ (𝜑 → (((𝑀‘(1r‘𝐹))(.r‘𝐹)𝑅) · 𝑋) = ((𝑀‘(1r‘𝐹)) · (𝑅 · 𝑋))) |
| 21 | 7, 18, 8, 11, 4, 14 | ringnegl 20218 | . . 3 ⊢ (𝜑 → ((𝑀‘(1r‘𝐹))(.r‘𝐹)𝑅) = (𝑀‘𝑅)) |
| 22 | 21 | oveq1d 7361 | . 2 ⊢ (𝜑 → (((𝑀‘(1r‘𝐹))(.r‘𝐹)𝑅) · 𝑋) = ((𝑀‘𝑅) · 𝑋)) |
| 23 | 16, 2, 17, 7 | lmodvscl 20809 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵) → (𝑅 · 𝑋) ∈ 𝐵) |
| 24 | 1, 14, 15, 23 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝑅 · 𝑋) ∈ 𝐵) |
| 25 | lmodvsneg.n | . . . 4 ⊢ 𝑁 = (invg‘𝑊) | |
| 26 | 16, 25, 2, 17, 8, 11 | lmodvneg1 20836 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ (𝑅 · 𝑋) ∈ 𝐵) → ((𝑀‘(1r‘𝐹)) · (𝑅 · 𝑋)) = (𝑁‘(𝑅 · 𝑋))) |
| 27 | 1, 24, 26 | syl2anc 584 | . 2 ⊢ (𝜑 → ((𝑀‘(1r‘𝐹)) · (𝑅 · 𝑋)) = (𝑁‘(𝑅 · 𝑋))) |
| 28 | 20, 22, 27 | 3eqtr3rd 2775 | 1 ⊢ (𝜑 → (𝑁‘(𝑅 · 𝑋)) = ((𝑀‘𝑅) · 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ‘cfv 6481 (class class class)co 7346 Basecbs 17117 .rcmulr 17159 Scalarcsca 17161 ·𝑠 cvsca 17162 Grpcgrp 18843 invgcminusg 18844 1rcur 20097 Ringcrg 20149 LModclmod 20791 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-2 12185 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-plusg 17171 df-0g 17342 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-grp 18846 df-minusg 18847 df-cmn 19692 df-abl 19693 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-lmod 20793 |
| This theorem is referenced by: lmodnegadd 20842 clmvsneg 25025 linds2eq 33341 baerlem5alem1 41746 lincext3 48487 lindslinindimp2lem4 48492 lincresunit3 48512 |
| Copyright terms: Public domain | W3C validator |