| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmodvsneg | Structured version Visualization version GIF version | ||
| Description: Multiplication of a vector by a negated scalar. (Contributed by Stefan O'Rear, 28-Feb-2015.) |
| Ref | Expression |
|---|---|
| lmodvsneg.b | ⊢ 𝐵 = (Base‘𝑊) |
| lmodvsneg.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| lmodvsneg.s | ⊢ · = ( ·𝑠 ‘𝑊) |
| lmodvsneg.n | ⊢ 𝑁 = (invg‘𝑊) |
| lmodvsneg.k | ⊢ 𝐾 = (Base‘𝐹) |
| lmodvsneg.m | ⊢ 𝑀 = (invg‘𝐹) |
| lmodvsneg.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| lmodvsneg.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| lmodvsneg.r | ⊢ (𝜑 → 𝑅 ∈ 𝐾) |
| Ref | Expression |
|---|---|
| lmodvsneg | ⊢ (𝜑 → (𝑁‘(𝑅 · 𝑋)) = ((𝑀‘𝑅) · 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodvsneg.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 2 | lmodvsneg.f | . . . . . . 7 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 3 | 2 | lmodring 20803 | . . . . . 6 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) |
| 4 | 1, 3 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ Ring) |
| 5 | ringgrp 20158 | . . . . 5 ⊢ (𝐹 ∈ Ring → 𝐹 ∈ Grp) | |
| 6 | 4, 5 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ Grp) |
| 7 | lmodvsneg.k | . . . . . 6 ⊢ 𝐾 = (Base‘𝐹) | |
| 8 | eqid 2733 | . . . . . 6 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
| 9 | 7, 8 | ringidcl 20185 | . . . . 5 ⊢ (𝐹 ∈ Ring → (1r‘𝐹) ∈ 𝐾) |
| 10 | 4, 9 | syl 17 | . . . 4 ⊢ (𝜑 → (1r‘𝐹) ∈ 𝐾) |
| 11 | lmodvsneg.m | . . . . 5 ⊢ 𝑀 = (invg‘𝐹) | |
| 12 | 7, 11 | grpinvcl 18902 | . . . 4 ⊢ ((𝐹 ∈ Grp ∧ (1r‘𝐹) ∈ 𝐾) → (𝑀‘(1r‘𝐹)) ∈ 𝐾) |
| 13 | 6, 10, 12 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑀‘(1r‘𝐹)) ∈ 𝐾) |
| 14 | lmodvsneg.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝐾) | |
| 15 | lmodvsneg.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 16 | lmodvsneg.b | . . . 4 ⊢ 𝐵 = (Base‘𝑊) | |
| 17 | lmodvsneg.s | . . . 4 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 18 | eqid 2733 | . . . 4 ⊢ (.r‘𝐹) = (.r‘𝐹) | |
| 19 | 16, 2, 17, 7, 18 | lmodvsass 20822 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ ((𝑀‘(1r‘𝐹)) ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵)) → (((𝑀‘(1r‘𝐹))(.r‘𝐹)𝑅) · 𝑋) = ((𝑀‘(1r‘𝐹)) · (𝑅 · 𝑋))) |
| 20 | 1, 13, 14, 15, 19 | syl13anc 1374 | . 2 ⊢ (𝜑 → (((𝑀‘(1r‘𝐹))(.r‘𝐹)𝑅) · 𝑋) = ((𝑀‘(1r‘𝐹)) · (𝑅 · 𝑋))) |
| 21 | 7, 18, 8, 11, 4, 14 | ringnegl 20222 | . . 3 ⊢ (𝜑 → ((𝑀‘(1r‘𝐹))(.r‘𝐹)𝑅) = (𝑀‘𝑅)) |
| 22 | 21 | oveq1d 7367 | . 2 ⊢ (𝜑 → (((𝑀‘(1r‘𝐹))(.r‘𝐹)𝑅) · 𝑋) = ((𝑀‘𝑅) · 𝑋)) |
| 23 | 16, 2, 17, 7 | lmodvscl 20813 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵) → (𝑅 · 𝑋) ∈ 𝐵) |
| 24 | 1, 14, 15, 23 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝑅 · 𝑋) ∈ 𝐵) |
| 25 | lmodvsneg.n | . . . 4 ⊢ 𝑁 = (invg‘𝑊) | |
| 26 | 16, 25, 2, 17, 8, 11 | lmodvneg1 20840 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ (𝑅 · 𝑋) ∈ 𝐵) → ((𝑀‘(1r‘𝐹)) · (𝑅 · 𝑋)) = (𝑁‘(𝑅 · 𝑋))) |
| 27 | 1, 24, 26 | syl2anc 584 | . 2 ⊢ (𝜑 → ((𝑀‘(1r‘𝐹)) · (𝑅 · 𝑋)) = (𝑁‘(𝑅 · 𝑋))) |
| 28 | 20, 22, 27 | 3eqtr3rd 2777 | 1 ⊢ (𝜑 → (𝑁‘(𝑅 · 𝑋)) = ((𝑀‘𝑅) · 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ‘cfv 6486 (class class class)co 7352 Basecbs 17122 .rcmulr 17164 Scalarcsca 17166 ·𝑠 cvsca 17167 Grpcgrp 18848 invgcminusg 18849 1rcur 20101 Ringcrg 20153 LModclmod 20795 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-2 12195 df-sets 17077 df-slot 17095 df-ndx 17107 df-base 17123 df-plusg 17176 df-0g 17347 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-grp 18851 df-minusg 18852 df-cmn 19696 df-abl 19697 df-mgp 20061 df-rng 20073 df-ur 20102 df-ring 20155 df-lmod 20797 |
| This theorem is referenced by: lmodnegadd 20846 clmvsneg 25028 linds2eq 33353 baerlem5alem1 41827 lincext3 48581 lindslinindimp2lem4 48586 lincresunit3 48606 |
| Copyright terms: Public domain | W3C validator |