![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmodvsneg | Structured version Visualization version GIF version |
Description: Multiplication of a vector by a negated scalar. (Contributed by Stefan O'Rear, 28-Feb-2015.) |
Ref | Expression |
---|---|
lmodvsneg.b | ⊢ 𝐵 = (Base‘𝑊) |
lmodvsneg.f | ⊢ 𝐹 = (Scalar‘𝑊) |
lmodvsneg.s | ⊢ · = ( ·𝑠 ‘𝑊) |
lmodvsneg.n | ⊢ 𝑁 = (invg‘𝑊) |
lmodvsneg.k | ⊢ 𝐾 = (Base‘𝐹) |
lmodvsneg.m | ⊢ 𝑀 = (invg‘𝐹) |
lmodvsneg.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
lmodvsneg.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
lmodvsneg.r | ⊢ (𝜑 → 𝑅 ∈ 𝐾) |
Ref | Expression |
---|---|
lmodvsneg | ⊢ (𝜑 → (𝑁‘(𝑅 · 𝑋)) = ((𝑀‘𝑅) · 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmodvsneg.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
2 | lmodvsneg.f | . . . . . . 7 ⊢ 𝐹 = (Scalar‘𝑊) | |
3 | 2 | lmodring 20330 | . . . . . 6 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) |
4 | 1, 3 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ Ring) |
5 | ringgrp 19969 | . . . . 5 ⊢ (𝐹 ∈ Ring → 𝐹 ∈ Grp) | |
6 | 4, 5 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ Grp) |
7 | lmodvsneg.k | . . . . . 6 ⊢ 𝐾 = (Base‘𝐹) | |
8 | eqid 2736 | . . . . . 6 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
9 | 7, 8 | ringidcl 19989 | . . . . 5 ⊢ (𝐹 ∈ Ring → (1r‘𝐹) ∈ 𝐾) |
10 | 4, 9 | syl 17 | . . . 4 ⊢ (𝜑 → (1r‘𝐹) ∈ 𝐾) |
11 | lmodvsneg.m | . . . . 5 ⊢ 𝑀 = (invg‘𝐹) | |
12 | 7, 11 | grpinvcl 18798 | . . . 4 ⊢ ((𝐹 ∈ Grp ∧ (1r‘𝐹) ∈ 𝐾) → (𝑀‘(1r‘𝐹)) ∈ 𝐾) |
13 | 6, 10, 12 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑀‘(1r‘𝐹)) ∈ 𝐾) |
14 | lmodvsneg.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝐾) | |
15 | lmodvsneg.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
16 | lmodvsneg.b | . . . 4 ⊢ 𝐵 = (Base‘𝑊) | |
17 | lmodvsneg.s | . . . 4 ⊢ · = ( ·𝑠 ‘𝑊) | |
18 | eqid 2736 | . . . 4 ⊢ (.r‘𝐹) = (.r‘𝐹) | |
19 | 16, 2, 17, 7, 18 | lmodvsass 20347 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ ((𝑀‘(1r‘𝐹)) ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵)) → (((𝑀‘(1r‘𝐹))(.r‘𝐹)𝑅) · 𝑋) = ((𝑀‘(1r‘𝐹)) · (𝑅 · 𝑋))) |
20 | 1, 13, 14, 15, 19 | syl13anc 1372 | . 2 ⊢ (𝜑 → (((𝑀‘(1r‘𝐹))(.r‘𝐹)𝑅) · 𝑋) = ((𝑀‘(1r‘𝐹)) · (𝑅 · 𝑋))) |
21 | 7, 18, 8, 11, 4, 14 | ringnegl 20018 | . . 3 ⊢ (𝜑 → ((𝑀‘(1r‘𝐹))(.r‘𝐹)𝑅) = (𝑀‘𝑅)) |
22 | 21 | oveq1d 7372 | . 2 ⊢ (𝜑 → (((𝑀‘(1r‘𝐹))(.r‘𝐹)𝑅) · 𝑋) = ((𝑀‘𝑅) · 𝑋)) |
23 | 16, 2, 17, 7 | lmodvscl 20339 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵) → (𝑅 · 𝑋) ∈ 𝐵) |
24 | 1, 14, 15, 23 | syl3anc 1371 | . . 3 ⊢ (𝜑 → (𝑅 · 𝑋) ∈ 𝐵) |
25 | lmodvsneg.n | . . . 4 ⊢ 𝑁 = (invg‘𝑊) | |
26 | 16, 25, 2, 17, 8, 11 | lmodvneg1 20365 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ (𝑅 · 𝑋) ∈ 𝐵) → ((𝑀‘(1r‘𝐹)) · (𝑅 · 𝑋)) = (𝑁‘(𝑅 · 𝑋))) |
27 | 1, 24, 26 | syl2anc 584 | . 2 ⊢ (𝜑 → ((𝑀‘(1r‘𝐹)) · (𝑅 · 𝑋)) = (𝑁‘(𝑅 · 𝑋))) |
28 | 20, 22, 27 | 3eqtr3rd 2785 | 1 ⊢ (𝜑 → (𝑁‘(𝑅 · 𝑋)) = ((𝑀‘𝑅) · 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 ‘cfv 6496 (class class class)co 7357 Basecbs 17083 .rcmulr 17134 Scalarcsca 17136 ·𝑠 cvsca 17137 Grpcgrp 18748 invgcminusg 18749 1rcur 19913 Ringcrg 19964 LModclmod 20322 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-iun 4956 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-om 7803 df-2nd 7922 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-er 8648 df-en 8884 df-dom 8885 df-sdom 8886 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-nn 12154 df-2 12216 df-sets 17036 df-slot 17054 df-ndx 17066 df-base 17084 df-plusg 17146 df-0g 17323 df-mgm 18497 df-sgrp 18546 df-mnd 18557 df-grp 18751 df-minusg 18752 df-mgp 19897 df-ur 19914 df-ring 19966 df-lmod 20324 |
This theorem is referenced by: lmodnegadd 20371 clmvsneg 24463 linds2eq 32168 baerlem5alem1 40171 lincext3 46527 lindslinindimp2lem4 46532 lincresunit3 46552 |
Copyright terms: Public domain | W3C validator |