MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodvsneg Structured version   Visualization version   GIF version

Theorem lmodvsneg 19672
Description: Multiplication of a vector by a negated scalar. (Contributed by Stefan O'Rear, 28-Feb-2015.)
Hypotheses
Ref Expression
lmodvsneg.b 𝐵 = (Base‘𝑊)
lmodvsneg.f 𝐹 = (Scalar‘𝑊)
lmodvsneg.s · = ( ·𝑠𝑊)
lmodvsneg.n 𝑁 = (invg𝑊)
lmodvsneg.k 𝐾 = (Base‘𝐹)
lmodvsneg.m 𝑀 = (invg𝐹)
lmodvsneg.w (𝜑𝑊 ∈ LMod)
lmodvsneg.x (𝜑𝑋𝐵)
lmodvsneg.r (𝜑𝑅𝐾)
Assertion
Ref Expression
lmodvsneg (𝜑 → (𝑁‘(𝑅 · 𝑋)) = ((𝑀𝑅) · 𝑋))

Proof of Theorem lmodvsneg
StepHypRef Expression
1 lmodvsneg.w . . 3 (𝜑𝑊 ∈ LMod)
2 lmodvsneg.f . . . . . . 7 𝐹 = (Scalar‘𝑊)
32lmodring 19636 . . . . . 6 (𝑊 ∈ LMod → 𝐹 ∈ Ring)
41, 3syl 17 . . . . 5 (𝜑𝐹 ∈ Ring)
5 ringgrp 19296 . . . . 5 (𝐹 ∈ Ring → 𝐹 ∈ Grp)
64, 5syl 17 . . . 4 (𝜑𝐹 ∈ Grp)
7 lmodvsneg.k . . . . . 6 𝐾 = (Base‘𝐹)
8 eqid 2821 . . . . . 6 (1r𝐹) = (1r𝐹)
97, 8ringidcl 19312 . . . . 5 (𝐹 ∈ Ring → (1r𝐹) ∈ 𝐾)
104, 9syl 17 . . . 4 (𝜑 → (1r𝐹) ∈ 𝐾)
11 lmodvsneg.m . . . . 5 𝑀 = (invg𝐹)
127, 11grpinvcl 18145 . . . 4 ((𝐹 ∈ Grp ∧ (1r𝐹) ∈ 𝐾) → (𝑀‘(1r𝐹)) ∈ 𝐾)
136, 10, 12syl2anc 586 . . 3 (𝜑 → (𝑀‘(1r𝐹)) ∈ 𝐾)
14 lmodvsneg.r . . 3 (𝜑𝑅𝐾)
15 lmodvsneg.x . . 3 (𝜑𝑋𝐵)
16 lmodvsneg.b . . . 4 𝐵 = (Base‘𝑊)
17 lmodvsneg.s . . . 4 · = ( ·𝑠𝑊)
18 eqid 2821 . . . 4 (.r𝐹) = (.r𝐹)
1916, 2, 17, 7, 18lmodvsass 19653 . . 3 ((𝑊 ∈ LMod ∧ ((𝑀‘(1r𝐹)) ∈ 𝐾𝑅𝐾𝑋𝐵)) → (((𝑀‘(1r𝐹))(.r𝐹)𝑅) · 𝑋) = ((𝑀‘(1r𝐹)) · (𝑅 · 𝑋)))
201, 13, 14, 15, 19syl13anc 1368 . 2 (𝜑 → (((𝑀‘(1r𝐹))(.r𝐹)𝑅) · 𝑋) = ((𝑀‘(1r𝐹)) · (𝑅 · 𝑋)))
217, 18, 8, 11, 4, 14ringnegl 19338 . . 3 (𝜑 → ((𝑀‘(1r𝐹))(.r𝐹)𝑅) = (𝑀𝑅))
2221oveq1d 7165 . 2 (𝜑 → (((𝑀‘(1r𝐹))(.r𝐹)𝑅) · 𝑋) = ((𝑀𝑅) · 𝑋))
2316, 2, 17, 7lmodvscl 19645 . . . 4 ((𝑊 ∈ LMod ∧ 𝑅𝐾𝑋𝐵) → (𝑅 · 𝑋) ∈ 𝐵)
241, 14, 15, 23syl3anc 1367 . . 3 (𝜑 → (𝑅 · 𝑋) ∈ 𝐵)
25 lmodvsneg.n . . . 4 𝑁 = (invg𝑊)
2616, 25, 2, 17, 8, 11lmodvneg1 19671 . . 3 ((𝑊 ∈ LMod ∧ (𝑅 · 𝑋) ∈ 𝐵) → ((𝑀‘(1r𝐹)) · (𝑅 · 𝑋)) = (𝑁‘(𝑅 · 𝑋)))
271, 24, 26syl2anc 586 . 2 (𝜑 → ((𝑀‘(1r𝐹)) · (𝑅 · 𝑋)) = (𝑁‘(𝑅 · 𝑋)))
2820, 22, 273eqtr3rd 2865 1 (𝜑 → (𝑁‘(𝑅 · 𝑋)) = ((𝑀𝑅) · 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2110  cfv 6350  (class class class)co 7150  Basecbs 16477  .rcmulr 16560  Scalarcsca 16562   ·𝑠 cvsca 16563  Grpcgrp 18097  invgcminusg 18098  1rcur 19245  Ringcrg 19291  LModclmod 19628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-plusg 16572  df-0g 16709  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-grp 18100  df-minusg 18101  df-mgp 19234  df-ur 19246  df-ring 19293  df-lmod 19630
This theorem is referenced by:  lmodnegadd  19677  clmvsneg  23698  linds2eq  30936  baerlem5alem1  38838  lincext3  44504  lindslinindimp2lem4  44509  lincresunit3  44529
  Copyright terms: Public domain W3C validator