![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmodsubvs | Structured version Visualization version GIF version |
Description: Subtraction of a scalar product in terms of addition. (Contributed by NM, 9-Apr-2015.) |
Ref | Expression |
---|---|
lmodsubvs.v | β’ π = (Baseβπ) |
lmodsubvs.p | β’ + = (+gβπ) |
lmodsubvs.m | β’ β = (-gβπ) |
lmodsubvs.t | β’ Β· = ( Β·π βπ) |
lmodsubvs.f | β’ πΉ = (Scalarβπ) |
lmodsubvs.k | β’ πΎ = (BaseβπΉ) |
lmodsubvs.n | β’ π = (invgβπΉ) |
lmodsubvs.w | β’ (π β π β LMod) |
lmodsubvs.a | β’ (π β π΄ β πΎ) |
lmodsubvs.x | β’ (π β π β π) |
lmodsubvs.y | β’ (π β π β π) |
Ref | Expression |
---|---|
lmodsubvs | β’ (π β (π β (π΄ Β· π)) = (π + ((πβπ΄) Β· π))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmodsubvs.w | . . 3 β’ (π β π β LMod) | |
2 | lmodsubvs.x | . . 3 β’ (π β π β π) | |
3 | lmodsubvs.a | . . . 4 β’ (π β π΄ β πΎ) | |
4 | lmodsubvs.y | . . . 4 β’ (π β π β π) | |
5 | lmodsubvs.v | . . . . 5 β’ π = (Baseβπ) | |
6 | lmodsubvs.f | . . . . 5 β’ πΉ = (Scalarβπ) | |
7 | lmodsubvs.t | . . . . 5 β’ Β· = ( Β·π βπ) | |
8 | lmodsubvs.k | . . . . 5 β’ πΎ = (BaseβπΉ) | |
9 | 5, 6, 7, 8 | lmodvscl 20481 | . . . 4 β’ ((π β LMod β§ π΄ β πΎ β§ π β π) β (π΄ Β· π) β π) |
10 | 1, 3, 4, 9 | syl3anc 1371 | . . 3 β’ (π β (π΄ Β· π) β π) |
11 | lmodsubvs.p | . . . 4 β’ + = (+gβπ) | |
12 | lmodsubvs.m | . . . 4 β’ β = (-gβπ) | |
13 | lmodsubvs.n | . . . 4 β’ π = (invgβπΉ) | |
14 | eqid 2732 | . . . 4 β’ (1rβπΉ) = (1rβπΉ) | |
15 | 5, 11, 12, 6, 7, 13, 14 | lmodvsubval2 20519 | . . 3 β’ ((π β LMod β§ π β π β§ (π΄ Β· π) β π) β (π β (π΄ Β· π)) = (π + ((πβ(1rβπΉ)) Β· (π΄ Β· π)))) |
16 | 1, 2, 10, 15 | syl3anc 1371 | . 2 β’ (π β (π β (π΄ Β· π)) = (π + ((πβ(1rβπΉ)) Β· (π΄ Β· π)))) |
17 | 6 | lmodring 20471 | . . . . . . . 8 β’ (π β LMod β πΉ β Ring) |
18 | 1, 17 | syl 17 | . . . . . . 7 β’ (π β πΉ β Ring) |
19 | ringgrp 20054 | . . . . . . 7 β’ (πΉ β Ring β πΉ β Grp) | |
20 | 18, 19 | syl 17 | . . . . . 6 β’ (π β πΉ β Grp) |
21 | 8, 14 | ringidcl 20076 | . . . . . . 7 β’ (πΉ β Ring β (1rβπΉ) β πΎ) |
22 | 18, 21 | syl 17 | . . . . . 6 β’ (π β (1rβπΉ) β πΎ) |
23 | 8, 13 | grpinvcl 18868 | . . . . . 6 β’ ((πΉ β Grp β§ (1rβπΉ) β πΎ) β (πβ(1rβπΉ)) β πΎ) |
24 | 20, 22, 23 | syl2anc 584 | . . . . 5 β’ (π β (πβ(1rβπΉ)) β πΎ) |
25 | eqid 2732 | . . . . . 6 β’ (.rβπΉ) = (.rβπΉ) | |
26 | 5, 6, 7, 8, 25 | lmodvsass 20489 | . . . . 5 β’ ((π β LMod β§ ((πβ(1rβπΉ)) β πΎ β§ π΄ β πΎ β§ π β π)) β (((πβ(1rβπΉ))(.rβπΉ)π΄) Β· π) = ((πβ(1rβπΉ)) Β· (π΄ Β· π))) |
27 | 1, 24, 3, 4, 26 | syl13anc 1372 | . . . 4 β’ (π β (((πβ(1rβπΉ))(.rβπΉ)π΄) Β· π) = ((πβ(1rβπΉ)) Β· (π΄ Β· π))) |
28 | 8, 25, 14, 13, 18, 3 | ringnegl 20107 | . . . . 5 β’ (π β ((πβ(1rβπΉ))(.rβπΉ)π΄) = (πβπ΄)) |
29 | 28 | oveq1d 7420 | . . . 4 β’ (π β (((πβ(1rβπΉ))(.rβπΉ)π΄) Β· π) = ((πβπ΄) Β· π)) |
30 | 27, 29 | eqtr3d 2774 | . . 3 β’ (π β ((πβ(1rβπΉ)) Β· (π΄ Β· π)) = ((πβπ΄) Β· π)) |
31 | 30 | oveq2d 7421 | . 2 β’ (π β (π + ((πβ(1rβπΉ)) Β· (π΄ Β· π))) = (π + ((πβπ΄) Β· π))) |
32 | 16, 31 | eqtrd 2772 | 1 β’ (π β (π β (π΄ Β· π)) = (π + ((πβπ΄) Β· π))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1541 β wcel 2106 βcfv 6540 (class class class)co 7405 Basecbs 17140 +gcplusg 17193 .rcmulr 17194 Scalarcsca 17196 Β·π cvsca 17197 Grpcgrp 18815 invgcminusg 18816 -gcsg 18817 1rcur 19998 Ringcrg 20049 LModclmod 20463 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-plusg 17206 df-0g 17383 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-grp 18818 df-minusg 18819 df-sbg 18820 df-mgp 19982 df-ur 19999 df-ring 20051 df-lmod 20465 |
This theorem is referenced by: lspexch 20734 baerlem5alem1 40567 baerlem5blem1 40568 |
Copyright terms: Public domain | W3C validator |