![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmodsubvs | Structured version Visualization version GIF version |
Description: Subtraction of a scalar product in terms of addition. (Contributed by NM, 9-Apr-2015.) |
Ref | Expression |
---|---|
lmodsubvs.v | ⊢ 𝑉 = (Base‘𝑊) |
lmodsubvs.p | ⊢ + = (+g‘𝑊) |
lmodsubvs.m | ⊢ − = (-g‘𝑊) |
lmodsubvs.t | ⊢ · = ( ·𝑠 ‘𝑊) |
lmodsubvs.f | ⊢ 𝐹 = (Scalar‘𝑊) |
lmodsubvs.k | ⊢ 𝐾 = (Base‘𝐹) |
lmodsubvs.n | ⊢ 𝑁 = (invg‘𝐹) |
lmodsubvs.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
lmodsubvs.a | ⊢ (𝜑 → 𝐴 ∈ 𝐾) |
lmodsubvs.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
lmodsubvs.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
Ref | Expression |
---|---|
lmodsubvs | ⊢ (𝜑 → (𝑋 − (𝐴 · 𝑌)) = (𝑋 + ((𝑁‘𝐴) · 𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmodsubvs.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
2 | lmodsubvs.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
3 | lmodsubvs.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝐾) | |
4 | lmodsubvs.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
5 | lmodsubvs.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
6 | lmodsubvs.f | . . . . 5 ⊢ 𝐹 = (Scalar‘𝑊) | |
7 | lmodsubvs.t | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
8 | lmodsubvs.k | . . . . 5 ⊢ 𝐾 = (Base‘𝐹) | |
9 | 5, 6, 7, 8 | lmodvscl 20339 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉) → (𝐴 · 𝑌) ∈ 𝑉) |
10 | 1, 3, 4, 9 | syl3anc 1371 | . . 3 ⊢ (𝜑 → (𝐴 · 𝑌) ∈ 𝑉) |
11 | lmodsubvs.p | . . . 4 ⊢ + = (+g‘𝑊) | |
12 | lmodsubvs.m | . . . 4 ⊢ − = (-g‘𝑊) | |
13 | lmodsubvs.n | . . . 4 ⊢ 𝑁 = (invg‘𝐹) | |
14 | eqid 2736 | . . . 4 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
15 | 5, 11, 12, 6, 7, 13, 14 | lmodvsubval2 20377 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ (𝐴 · 𝑌) ∈ 𝑉) → (𝑋 − (𝐴 · 𝑌)) = (𝑋 + ((𝑁‘(1r‘𝐹)) · (𝐴 · 𝑌)))) |
16 | 1, 2, 10, 15 | syl3anc 1371 | . 2 ⊢ (𝜑 → (𝑋 − (𝐴 · 𝑌)) = (𝑋 + ((𝑁‘(1r‘𝐹)) · (𝐴 · 𝑌)))) |
17 | 6 | lmodring 20330 | . . . . . . . 8 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) |
18 | 1, 17 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ Ring) |
19 | ringgrp 19969 | . . . . . . 7 ⊢ (𝐹 ∈ Ring → 𝐹 ∈ Grp) | |
20 | 18, 19 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ Grp) |
21 | 8, 14 | ringidcl 19989 | . . . . . . 7 ⊢ (𝐹 ∈ Ring → (1r‘𝐹) ∈ 𝐾) |
22 | 18, 21 | syl 17 | . . . . . 6 ⊢ (𝜑 → (1r‘𝐹) ∈ 𝐾) |
23 | 8, 13 | grpinvcl 18798 | . . . . . 6 ⊢ ((𝐹 ∈ Grp ∧ (1r‘𝐹) ∈ 𝐾) → (𝑁‘(1r‘𝐹)) ∈ 𝐾) |
24 | 20, 22, 23 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝑁‘(1r‘𝐹)) ∈ 𝐾) |
25 | eqid 2736 | . . . . . 6 ⊢ (.r‘𝐹) = (.r‘𝐹) | |
26 | 5, 6, 7, 8, 25 | lmodvsass 20347 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ ((𝑁‘(1r‘𝐹)) ∈ 𝐾 ∧ 𝐴 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉)) → (((𝑁‘(1r‘𝐹))(.r‘𝐹)𝐴) · 𝑌) = ((𝑁‘(1r‘𝐹)) · (𝐴 · 𝑌))) |
27 | 1, 24, 3, 4, 26 | syl13anc 1372 | . . . 4 ⊢ (𝜑 → (((𝑁‘(1r‘𝐹))(.r‘𝐹)𝐴) · 𝑌) = ((𝑁‘(1r‘𝐹)) · (𝐴 · 𝑌))) |
28 | 8, 25, 14, 13, 18, 3 | ringnegl 20018 | . . . . 5 ⊢ (𝜑 → ((𝑁‘(1r‘𝐹))(.r‘𝐹)𝐴) = (𝑁‘𝐴)) |
29 | 28 | oveq1d 7372 | . . . 4 ⊢ (𝜑 → (((𝑁‘(1r‘𝐹))(.r‘𝐹)𝐴) · 𝑌) = ((𝑁‘𝐴) · 𝑌)) |
30 | 27, 29 | eqtr3d 2778 | . . 3 ⊢ (𝜑 → ((𝑁‘(1r‘𝐹)) · (𝐴 · 𝑌)) = ((𝑁‘𝐴) · 𝑌)) |
31 | 30 | oveq2d 7373 | . 2 ⊢ (𝜑 → (𝑋 + ((𝑁‘(1r‘𝐹)) · (𝐴 · 𝑌))) = (𝑋 + ((𝑁‘𝐴) · 𝑌))) |
32 | 16, 31 | eqtrd 2776 | 1 ⊢ (𝜑 → (𝑋 − (𝐴 · 𝑌)) = (𝑋 + ((𝑁‘𝐴) · 𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 ‘cfv 6496 (class class class)co 7357 Basecbs 17083 +gcplusg 17133 .rcmulr 17134 Scalarcsca 17136 ·𝑠 cvsca 17137 Grpcgrp 18748 invgcminusg 18749 -gcsg 18750 1rcur 19913 Ringcrg 19964 LModclmod 20322 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-iun 4956 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-om 7803 df-1st 7921 df-2nd 7922 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-er 8648 df-en 8884 df-dom 8885 df-sdom 8886 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-nn 12154 df-2 12216 df-sets 17036 df-slot 17054 df-ndx 17066 df-base 17084 df-plusg 17146 df-0g 17323 df-mgm 18497 df-sgrp 18546 df-mnd 18557 df-grp 18751 df-minusg 18752 df-sbg 18753 df-mgp 19897 df-ur 19914 df-ring 19966 df-lmod 20324 |
This theorem is referenced by: lspexch 20590 baerlem5alem1 40171 baerlem5blem1 40172 |
Copyright terms: Public domain | W3C validator |