| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmodsubvs | Structured version Visualization version GIF version | ||
| Description: Subtraction of a scalar product in terms of addition. (Contributed by NM, 9-Apr-2015.) |
| Ref | Expression |
|---|---|
| lmodsubvs.v | ⊢ 𝑉 = (Base‘𝑊) |
| lmodsubvs.p | ⊢ + = (+g‘𝑊) |
| lmodsubvs.m | ⊢ − = (-g‘𝑊) |
| lmodsubvs.t | ⊢ · = ( ·𝑠 ‘𝑊) |
| lmodsubvs.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| lmodsubvs.k | ⊢ 𝐾 = (Base‘𝐹) |
| lmodsubvs.n | ⊢ 𝑁 = (invg‘𝐹) |
| lmodsubvs.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| lmodsubvs.a | ⊢ (𝜑 → 𝐴 ∈ 𝐾) |
| lmodsubvs.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| lmodsubvs.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| lmodsubvs | ⊢ (𝜑 → (𝑋 − (𝐴 · 𝑌)) = (𝑋 + ((𝑁‘𝐴) · 𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodsubvs.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 2 | lmodsubvs.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 3 | lmodsubvs.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝐾) | |
| 4 | lmodsubvs.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
| 5 | lmodsubvs.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
| 6 | lmodsubvs.f | . . . . 5 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 7 | lmodsubvs.t | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 8 | lmodsubvs.k | . . . . 5 ⊢ 𝐾 = (Base‘𝐹) | |
| 9 | 5, 6, 7, 8 | lmodvscl 20877 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉) → (𝐴 · 𝑌) ∈ 𝑉) |
| 10 | 1, 3, 4, 9 | syl3anc 1372 | . . 3 ⊢ (𝜑 → (𝐴 · 𝑌) ∈ 𝑉) |
| 11 | lmodsubvs.p | . . . 4 ⊢ + = (+g‘𝑊) | |
| 12 | lmodsubvs.m | . . . 4 ⊢ − = (-g‘𝑊) | |
| 13 | lmodsubvs.n | . . . 4 ⊢ 𝑁 = (invg‘𝐹) | |
| 14 | eqid 2736 | . . . 4 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
| 15 | 5, 11, 12, 6, 7, 13, 14 | lmodvsubval2 20916 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ (𝐴 · 𝑌) ∈ 𝑉) → (𝑋 − (𝐴 · 𝑌)) = (𝑋 + ((𝑁‘(1r‘𝐹)) · (𝐴 · 𝑌)))) |
| 16 | 1, 2, 10, 15 | syl3anc 1372 | . 2 ⊢ (𝜑 → (𝑋 − (𝐴 · 𝑌)) = (𝑋 + ((𝑁‘(1r‘𝐹)) · (𝐴 · 𝑌)))) |
| 17 | 6 | lmodring 20867 | . . . . . . . 8 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) |
| 18 | 1, 17 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ Ring) |
| 19 | ringgrp 20236 | . . . . . . 7 ⊢ (𝐹 ∈ Ring → 𝐹 ∈ Grp) | |
| 20 | 18, 19 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ Grp) |
| 21 | 8, 14 | ringidcl 20263 | . . . . . . 7 ⊢ (𝐹 ∈ Ring → (1r‘𝐹) ∈ 𝐾) |
| 22 | 18, 21 | syl 17 | . . . . . 6 ⊢ (𝜑 → (1r‘𝐹) ∈ 𝐾) |
| 23 | 8, 13 | grpinvcl 19006 | . . . . . 6 ⊢ ((𝐹 ∈ Grp ∧ (1r‘𝐹) ∈ 𝐾) → (𝑁‘(1r‘𝐹)) ∈ 𝐾) |
| 24 | 20, 22, 23 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝑁‘(1r‘𝐹)) ∈ 𝐾) |
| 25 | eqid 2736 | . . . . . 6 ⊢ (.r‘𝐹) = (.r‘𝐹) | |
| 26 | 5, 6, 7, 8, 25 | lmodvsass 20886 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ ((𝑁‘(1r‘𝐹)) ∈ 𝐾 ∧ 𝐴 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉)) → (((𝑁‘(1r‘𝐹))(.r‘𝐹)𝐴) · 𝑌) = ((𝑁‘(1r‘𝐹)) · (𝐴 · 𝑌))) |
| 27 | 1, 24, 3, 4, 26 | syl13anc 1373 | . . . 4 ⊢ (𝜑 → (((𝑁‘(1r‘𝐹))(.r‘𝐹)𝐴) · 𝑌) = ((𝑁‘(1r‘𝐹)) · (𝐴 · 𝑌))) |
| 28 | 8, 25, 14, 13, 18, 3 | ringnegl 20300 | . . . . 5 ⊢ (𝜑 → ((𝑁‘(1r‘𝐹))(.r‘𝐹)𝐴) = (𝑁‘𝐴)) |
| 29 | 28 | oveq1d 7447 | . . . 4 ⊢ (𝜑 → (((𝑁‘(1r‘𝐹))(.r‘𝐹)𝐴) · 𝑌) = ((𝑁‘𝐴) · 𝑌)) |
| 30 | 27, 29 | eqtr3d 2778 | . . 3 ⊢ (𝜑 → ((𝑁‘(1r‘𝐹)) · (𝐴 · 𝑌)) = ((𝑁‘𝐴) · 𝑌)) |
| 31 | 30 | oveq2d 7448 | . 2 ⊢ (𝜑 → (𝑋 + ((𝑁‘(1r‘𝐹)) · (𝐴 · 𝑌))) = (𝑋 + ((𝑁‘𝐴) · 𝑌))) |
| 32 | 16, 31 | eqtrd 2776 | 1 ⊢ (𝜑 → (𝑋 − (𝐴 · 𝑌)) = (𝑋 + ((𝑁‘𝐴) · 𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ‘cfv 6560 (class class class)co 7432 Basecbs 17248 +gcplusg 17298 .rcmulr 17299 Scalarcsca 17301 ·𝑠 cvsca 17302 Grpcgrp 18952 invgcminusg 18953 -gcsg 18954 1rcur 20179 Ringcrg 20231 LModclmod 20859 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-1st 8015 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-nn 12268 df-2 12330 df-sets 17202 df-slot 17220 df-ndx 17232 df-base 17249 df-plusg 17311 df-0g 17487 df-mgm 18654 df-sgrp 18733 df-mnd 18749 df-grp 18955 df-minusg 18956 df-sbg 18957 df-cmn 19801 df-abl 19802 df-mgp 20139 df-rng 20151 df-ur 20180 df-ring 20233 df-lmod 20861 |
| This theorem is referenced by: lspexch 21132 baerlem5alem1 41711 baerlem5blem1 41712 |
| Copyright terms: Public domain | W3C validator |