| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmodsubvs | Structured version Visualization version GIF version | ||
| Description: Subtraction of a scalar product in terms of addition. (Contributed by NM, 9-Apr-2015.) |
| Ref | Expression |
|---|---|
| lmodsubvs.v | ⊢ 𝑉 = (Base‘𝑊) |
| lmodsubvs.p | ⊢ + = (+g‘𝑊) |
| lmodsubvs.m | ⊢ − = (-g‘𝑊) |
| lmodsubvs.t | ⊢ · = ( ·𝑠 ‘𝑊) |
| lmodsubvs.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| lmodsubvs.k | ⊢ 𝐾 = (Base‘𝐹) |
| lmodsubvs.n | ⊢ 𝑁 = (invg‘𝐹) |
| lmodsubvs.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| lmodsubvs.a | ⊢ (𝜑 → 𝐴 ∈ 𝐾) |
| lmodsubvs.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| lmodsubvs.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| lmodsubvs | ⊢ (𝜑 → (𝑋 − (𝐴 · 𝑌)) = (𝑋 + ((𝑁‘𝐴) · 𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodsubvs.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 2 | lmodsubvs.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 3 | lmodsubvs.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝐾) | |
| 4 | lmodsubvs.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
| 5 | lmodsubvs.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
| 6 | lmodsubvs.f | . . . . 5 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 7 | lmodsubvs.t | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 8 | lmodsubvs.k | . . . . 5 ⊢ 𝐾 = (Base‘𝐹) | |
| 9 | 5, 6, 7, 8 | lmodvscl 20844 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉) → (𝐴 · 𝑌) ∈ 𝑉) |
| 10 | 1, 3, 4, 9 | syl3anc 1372 | . . 3 ⊢ (𝜑 → (𝐴 · 𝑌) ∈ 𝑉) |
| 11 | lmodsubvs.p | . . . 4 ⊢ + = (+g‘𝑊) | |
| 12 | lmodsubvs.m | . . . 4 ⊢ − = (-g‘𝑊) | |
| 13 | lmodsubvs.n | . . . 4 ⊢ 𝑁 = (invg‘𝐹) | |
| 14 | eqid 2734 | . . . 4 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
| 15 | 5, 11, 12, 6, 7, 13, 14 | lmodvsubval2 20883 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ (𝐴 · 𝑌) ∈ 𝑉) → (𝑋 − (𝐴 · 𝑌)) = (𝑋 + ((𝑁‘(1r‘𝐹)) · (𝐴 · 𝑌)))) |
| 16 | 1, 2, 10, 15 | syl3anc 1372 | . 2 ⊢ (𝜑 → (𝑋 − (𝐴 · 𝑌)) = (𝑋 + ((𝑁‘(1r‘𝐹)) · (𝐴 · 𝑌)))) |
| 17 | 6 | lmodring 20834 | . . . . . . . 8 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) |
| 18 | 1, 17 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ Ring) |
| 19 | ringgrp 20203 | . . . . . . 7 ⊢ (𝐹 ∈ Ring → 𝐹 ∈ Grp) | |
| 20 | 18, 19 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ Grp) |
| 21 | 8, 14 | ringidcl 20230 | . . . . . . 7 ⊢ (𝐹 ∈ Ring → (1r‘𝐹) ∈ 𝐾) |
| 22 | 18, 21 | syl 17 | . . . . . 6 ⊢ (𝜑 → (1r‘𝐹) ∈ 𝐾) |
| 23 | 8, 13 | grpinvcl 18974 | . . . . . 6 ⊢ ((𝐹 ∈ Grp ∧ (1r‘𝐹) ∈ 𝐾) → (𝑁‘(1r‘𝐹)) ∈ 𝐾) |
| 24 | 20, 22, 23 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝑁‘(1r‘𝐹)) ∈ 𝐾) |
| 25 | eqid 2734 | . . . . . 6 ⊢ (.r‘𝐹) = (.r‘𝐹) | |
| 26 | 5, 6, 7, 8, 25 | lmodvsass 20853 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ ((𝑁‘(1r‘𝐹)) ∈ 𝐾 ∧ 𝐴 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉)) → (((𝑁‘(1r‘𝐹))(.r‘𝐹)𝐴) · 𝑌) = ((𝑁‘(1r‘𝐹)) · (𝐴 · 𝑌))) |
| 27 | 1, 24, 3, 4, 26 | syl13anc 1373 | . . . 4 ⊢ (𝜑 → (((𝑁‘(1r‘𝐹))(.r‘𝐹)𝐴) · 𝑌) = ((𝑁‘(1r‘𝐹)) · (𝐴 · 𝑌))) |
| 28 | 8, 25, 14, 13, 18, 3 | ringnegl 20267 | . . . . 5 ⊢ (𝜑 → ((𝑁‘(1r‘𝐹))(.r‘𝐹)𝐴) = (𝑁‘𝐴)) |
| 29 | 28 | oveq1d 7428 | . . . 4 ⊢ (𝜑 → (((𝑁‘(1r‘𝐹))(.r‘𝐹)𝐴) · 𝑌) = ((𝑁‘𝐴) · 𝑌)) |
| 30 | 27, 29 | eqtr3d 2771 | . . 3 ⊢ (𝜑 → ((𝑁‘(1r‘𝐹)) · (𝐴 · 𝑌)) = ((𝑁‘𝐴) · 𝑌)) |
| 31 | 30 | oveq2d 7429 | . 2 ⊢ (𝜑 → (𝑋 + ((𝑁‘(1r‘𝐹)) · (𝐴 · 𝑌))) = (𝑋 + ((𝑁‘𝐴) · 𝑌))) |
| 32 | 16, 31 | eqtrd 2769 | 1 ⊢ (𝜑 → (𝑋 − (𝐴 · 𝑌)) = (𝑋 + ((𝑁‘𝐴) · 𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ‘cfv 6541 (class class class)co 7413 Basecbs 17229 +gcplusg 17273 .rcmulr 17274 Scalarcsca 17276 ·𝑠 cvsca 17277 Grpcgrp 18920 invgcminusg 18921 -gcsg 18922 1rcur 20146 Ringcrg 20198 LModclmod 20826 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-2 12311 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17230 df-plusg 17286 df-0g 17457 df-mgm 18622 df-sgrp 18701 df-mnd 18717 df-grp 18923 df-minusg 18924 df-sbg 18925 df-cmn 19768 df-abl 19769 df-mgp 20106 df-rng 20118 df-ur 20147 df-ring 20200 df-lmod 20828 |
| This theorem is referenced by: lspexch 21099 baerlem5alem1 41669 baerlem5blem1 41670 |
| Copyright terms: Public domain | W3C validator |