MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodsubvs Structured version   Visualization version   GIF version

Theorem lmodsubvs 20938
Description: Subtraction of a scalar product in terms of addition. (Contributed by NM, 9-Apr-2015.)
Hypotheses
Ref Expression
lmodsubvs.v 𝑉 = (Base‘𝑊)
lmodsubvs.p + = (+g𝑊)
lmodsubvs.m = (-g𝑊)
lmodsubvs.t · = ( ·𝑠𝑊)
lmodsubvs.f 𝐹 = (Scalar‘𝑊)
lmodsubvs.k 𝐾 = (Base‘𝐹)
lmodsubvs.n 𝑁 = (invg𝐹)
lmodsubvs.w (𝜑𝑊 ∈ LMod)
lmodsubvs.a (𝜑𝐴𝐾)
lmodsubvs.x (𝜑𝑋𝑉)
lmodsubvs.y (𝜑𝑌𝑉)
Assertion
Ref Expression
lmodsubvs (𝜑 → (𝑋 (𝐴 · 𝑌)) = (𝑋 + ((𝑁𝐴) · 𝑌)))

Proof of Theorem lmodsubvs
StepHypRef Expression
1 lmodsubvs.w . . 3 (𝜑𝑊 ∈ LMod)
2 lmodsubvs.x . . 3 (𝜑𝑋𝑉)
3 lmodsubvs.a . . . 4 (𝜑𝐴𝐾)
4 lmodsubvs.y . . . 4 (𝜑𝑌𝑉)
5 lmodsubvs.v . . . . 5 𝑉 = (Base‘𝑊)
6 lmodsubvs.f . . . . 5 𝐹 = (Scalar‘𝑊)
7 lmodsubvs.t . . . . 5 · = ( ·𝑠𝑊)
8 lmodsubvs.k . . . . 5 𝐾 = (Base‘𝐹)
95, 6, 7, 8lmodvscl 20898 . . . 4 ((𝑊 ∈ LMod ∧ 𝐴𝐾𝑌𝑉) → (𝐴 · 𝑌) ∈ 𝑉)
101, 3, 4, 9syl3anc 1371 . . 3 (𝜑 → (𝐴 · 𝑌) ∈ 𝑉)
11 lmodsubvs.p . . . 4 + = (+g𝑊)
12 lmodsubvs.m . . . 4 = (-g𝑊)
13 lmodsubvs.n . . . 4 𝑁 = (invg𝐹)
14 eqid 2740 . . . 4 (1r𝐹) = (1r𝐹)
155, 11, 12, 6, 7, 13, 14lmodvsubval2 20937 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉 ∧ (𝐴 · 𝑌) ∈ 𝑉) → (𝑋 (𝐴 · 𝑌)) = (𝑋 + ((𝑁‘(1r𝐹)) · (𝐴 · 𝑌))))
161, 2, 10, 15syl3anc 1371 . 2 (𝜑 → (𝑋 (𝐴 · 𝑌)) = (𝑋 + ((𝑁‘(1r𝐹)) · (𝐴 · 𝑌))))
176lmodring 20888 . . . . . . . 8 (𝑊 ∈ LMod → 𝐹 ∈ Ring)
181, 17syl 17 . . . . . . 7 (𝜑𝐹 ∈ Ring)
19 ringgrp 20265 . . . . . . 7 (𝐹 ∈ Ring → 𝐹 ∈ Grp)
2018, 19syl 17 . . . . . 6 (𝜑𝐹 ∈ Grp)
218, 14ringidcl 20289 . . . . . . 7 (𝐹 ∈ Ring → (1r𝐹) ∈ 𝐾)
2218, 21syl 17 . . . . . 6 (𝜑 → (1r𝐹) ∈ 𝐾)
238, 13grpinvcl 19027 . . . . . 6 ((𝐹 ∈ Grp ∧ (1r𝐹) ∈ 𝐾) → (𝑁‘(1r𝐹)) ∈ 𝐾)
2420, 22, 23syl2anc 583 . . . . 5 (𝜑 → (𝑁‘(1r𝐹)) ∈ 𝐾)
25 eqid 2740 . . . . . 6 (.r𝐹) = (.r𝐹)
265, 6, 7, 8, 25lmodvsass 20907 . . . . 5 ((𝑊 ∈ LMod ∧ ((𝑁‘(1r𝐹)) ∈ 𝐾𝐴𝐾𝑌𝑉)) → (((𝑁‘(1r𝐹))(.r𝐹)𝐴) · 𝑌) = ((𝑁‘(1r𝐹)) · (𝐴 · 𝑌)))
271, 24, 3, 4, 26syl13anc 1372 . . . 4 (𝜑 → (((𝑁‘(1r𝐹))(.r𝐹)𝐴) · 𝑌) = ((𝑁‘(1r𝐹)) · (𝐴 · 𝑌)))
288, 25, 14, 13, 18, 3ringnegl 20325 . . . . 5 (𝜑 → ((𝑁‘(1r𝐹))(.r𝐹)𝐴) = (𝑁𝐴))
2928oveq1d 7463 . . . 4 (𝜑 → (((𝑁‘(1r𝐹))(.r𝐹)𝐴) · 𝑌) = ((𝑁𝐴) · 𝑌))
3027, 29eqtr3d 2782 . . 3 (𝜑 → ((𝑁‘(1r𝐹)) · (𝐴 · 𝑌)) = ((𝑁𝐴) · 𝑌))
3130oveq2d 7464 . 2 (𝜑 → (𝑋 + ((𝑁‘(1r𝐹)) · (𝐴 · 𝑌))) = (𝑋 + ((𝑁𝐴) · 𝑌)))
3216, 31eqtrd 2780 1 (𝜑 → (𝑋 (𝐴 · 𝑌)) = (𝑋 + ((𝑁𝐴) · 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  cfv 6573  (class class class)co 7448  Basecbs 17258  +gcplusg 17311  .rcmulr 17312  Scalarcsca 17314   ·𝑠 cvsca 17315  Grpcgrp 18973  invgcminusg 18974  -gcsg 18975  1rcur 20208  Ringcrg 20260  LModclmod 20880
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-plusg 17324  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-sbg 18978  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-lmod 20882
This theorem is referenced by:  lspexch  21154  baerlem5alem1  41665  baerlem5blem1  41666
  Copyright terms: Public domain W3C validator