![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmodsubvs | Structured version Visualization version GIF version |
Description: Subtraction of a scalar product in terms of addition. (Contributed by NM, 9-Apr-2015.) |
Ref | Expression |
---|---|
lmodsubvs.v | ⊢ 𝑉 = (Base‘𝑊) |
lmodsubvs.p | ⊢ + = (+g‘𝑊) |
lmodsubvs.m | ⊢ − = (-g‘𝑊) |
lmodsubvs.t | ⊢ · = ( ·𝑠 ‘𝑊) |
lmodsubvs.f | ⊢ 𝐹 = (Scalar‘𝑊) |
lmodsubvs.k | ⊢ 𝐾 = (Base‘𝐹) |
lmodsubvs.n | ⊢ 𝑁 = (invg‘𝐹) |
lmodsubvs.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
lmodsubvs.a | ⊢ (𝜑 → 𝐴 ∈ 𝐾) |
lmodsubvs.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
lmodsubvs.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
Ref | Expression |
---|---|
lmodsubvs | ⊢ (𝜑 → (𝑋 − (𝐴 · 𝑌)) = (𝑋 + ((𝑁‘𝐴) · 𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmodsubvs.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
2 | lmodsubvs.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
3 | lmodsubvs.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝐾) | |
4 | lmodsubvs.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
5 | lmodsubvs.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
6 | lmodsubvs.f | . . . . 5 ⊢ 𝐹 = (Scalar‘𝑊) | |
7 | lmodsubvs.t | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
8 | lmodsubvs.k | . . . . 5 ⊢ 𝐾 = (Base‘𝐹) | |
9 | 5, 6, 7, 8 | lmodvscl 19272 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉) → (𝐴 · 𝑌) ∈ 𝑉) |
10 | 1, 3, 4, 9 | syl3anc 1439 | . . 3 ⊢ (𝜑 → (𝐴 · 𝑌) ∈ 𝑉) |
11 | lmodsubvs.p | . . . 4 ⊢ + = (+g‘𝑊) | |
12 | lmodsubvs.m | . . . 4 ⊢ − = (-g‘𝑊) | |
13 | lmodsubvs.n | . . . 4 ⊢ 𝑁 = (invg‘𝐹) | |
14 | eqid 2777 | . . . 4 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
15 | 5, 11, 12, 6, 7, 13, 14 | lmodvsubval2 19310 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ (𝐴 · 𝑌) ∈ 𝑉) → (𝑋 − (𝐴 · 𝑌)) = (𝑋 + ((𝑁‘(1r‘𝐹)) · (𝐴 · 𝑌)))) |
16 | 1, 2, 10, 15 | syl3anc 1439 | . 2 ⊢ (𝜑 → (𝑋 − (𝐴 · 𝑌)) = (𝑋 + ((𝑁‘(1r‘𝐹)) · (𝐴 · 𝑌)))) |
17 | 6 | lmodring 19263 | . . . . . . . 8 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) |
18 | 1, 17 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ Ring) |
19 | ringgrp 18939 | . . . . . . 7 ⊢ (𝐹 ∈ Ring → 𝐹 ∈ Grp) | |
20 | 18, 19 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ Grp) |
21 | 8, 14 | ringidcl 18955 | . . . . . . 7 ⊢ (𝐹 ∈ Ring → (1r‘𝐹) ∈ 𝐾) |
22 | 18, 21 | syl 17 | . . . . . 6 ⊢ (𝜑 → (1r‘𝐹) ∈ 𝐾) |
23 | 8, 13 | grpinvcl 17854 | . . . . . 6 ⊢ ((𝐹 ∈ Grp ∧ (1r‘𝐹) ∈ 𝐾) → (𝑁‘(1r‘𝐹)) ∈ 𝐾) |
24 | 20, 22, 23 | syl2anc 579 | . . . . 5 ⊢ (𝜑 → (𝑁‘(1r‘𝐹)) ∈ 𝐾) |
25 | eqid 2777 | . . . . . 6 ⊢ (.r‘𝐹) = (.r‘𝐹) | |
26 | 5, 6, 7, 8, 25 | lmodvsass 19280 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ ((𝑁‘(1r‘𝐹)) ∈ 𝐾 ∧ 𝐴 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉)) → (((𝑁‘(1r‘𝐹))(.r‘𝐹)𝐴) · 𝑌) = ((𝑁‘(1r‘𝐹)) · (𝐴 · 𝑌))) |
27 | 1, 24, 3, 4, 26 | syl13anc 1440 | . . . 4 ⊢ (𝜑 → (((𝑁‘(1r‘𝐹))(.r‘𝐹)𝐴) · 𝑌) = ((𝑁‘(1r‘𝐹)) · (𝐴 · 𝑌))) |
28 | 8, 25, 14, 13, 18, 3 | ringnegl 18981 | . . . . 5 ⊢ (𝜑 → ((𝑁‘(1r‘𝐹))(.r‘𝐹)𝐴) = (𝑁‘𝐴)) |
29 | 28 | oveq1d 6937 | . . . 4 ⊢ (𝜑 → (((𝑁‘(1r‘𝐹))(.r‘𝐹)𝐴) · 𝑌) = ((𝑁‘𝐴) · 𝑌)) |
30 | 27, 29 | eqtr3d 2815 | . . 3 ⊢ (𝜑 → ((𝑁‘(1r‘𝐹)) · (𝐴 · 𝑌)) = ((𝑁‘𝐴) · 𝑌)) |
31 | 30 | oveq2d 6938 | . 2 ⊢ (𝜑 → (𝑋 + ((𝑁‘(1r‘𝐹)) · (𝐴 · 𝑌))) = (𝑋 + ((𝑁‘𝐴) · 𝑌))) |
32 | 16, 31 | eqtrd 2813 | 1 ⊢ (𝜑 → (𝑋 − (𝐴 · 𝑌)) = (𝑋 + ((𝑁‘𝐴) · 𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1601 ∈ wcel 2106 ‘cfv 6135 (class class class)co 6922 Basecbs 16255 +gcplusg 16338 .rcmulr 16339 Scalarcsca 16341 ·𝑠 cvsca 16342 Grpcgrp 17809 invgcminusg 17810 -gcsg 17811 1rcur 18888 Ringcrg 18934 LModclmod 19255 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-8 2108 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-cnex 10328 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-pre-mulgt0 10349 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ne 2969 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3399 df-sbc 3652 df-csb 3751 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-pss 3807 df-nul 4141 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4672 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-om 7344 df-1st 7445 df-2nd 7446 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-er 8026 df-en 8242 df-dom 8243 df-sdom 8244 df-pnf 10413 df-mnf 10414 df-xr 10415 df-ltxr 10416 df-le 10417 df-sub 10608 df-neg 10609 df-nn 11375 df-2 11438 df-ndx 16258 df-slot 16259 df-base 16261 df-sets 16262 df-plusg 16351 df-0g 16488 df-mgm 17628 df-sgrp 17670 df-mnd 17681 df-grp 17812 df-minusg 17813 df-sbg 17814 df-mgp 18877 df-ur 18889 df-ring 18936 df-lmod 19257 |
This theorem is referenced by: lspexch 19525 baerlem5alem1 37857 baerlem5blem1 37858 |
Copyright terms: Public domain | W3C validator |