MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodsubvs Structured version   Visualization version   GIF version

Theorem lmodsubvs 19683
Description: Subtraction of a scalar product in terms of addition. (Contributed by NM, 9-Apr-2015.)
Hypotheses
Ref Expression
lmodsubvs.v 𝑉 = (Base‘𝑊)
lmodsubvs.p + = (+g𝑊)
lmodsubvs.m = (-g𝑊)
lmodsubvs.t · = ( ·𝑠𝑊)
lmodsubvs.f 𝐹 = (Scalar‘𝑊)
lmodsubvs.k 𝐾 = (Base‘𝐹)
lmodsubvs.n 𝑁 = (invg𝐹)
lmodsubvs.w (𝜑𝑊 ∈ LMod)
lmodsubvs.a (𝜑𝐴𝐾)
lmodsubvs.x (𝜑𝑋𝑉)
lmodsubvs.y (𝜑𝑌𝑉)
Assertion
Ref Expression
lmodsubvs (𝜑 → (𝑋 (𝐴 · 𝑌)) = (𝑋 + ((𝑁𝐴) · 𝑌)))

Proof of Theorem lmodsubvs
StepHypRef Expression
1 lmodsubvs.w . . 3 (𝜑𝑊 ∈ LMod)
2 lmodsubvs.x . . 3 (𝜑𝑋𝑉)
3 lmodsubvs.a . . . 4 (𝜑𝐴𝐾)
4 lmodsubvs.y . . . 4 (𝜑𝑌𝑉)
5 lmodsubvs.v . . . . 5 𝑉 = (Base‘𝑊)
6 lmodsubvs.f . . . . 5 𝐹 = (Scalar‘𝑊)
7 lmodsubvs.t . . . . 5 · = ( ·𝑠𝑊)
8 lmodsubvs.k . . . . 5 𝐾 = (Base‘𝐹)
95, 6, 7, 8lmodvscl 19644 . . . 4 ((𝑊 ∈ LMod ∧ 𝐴𝐾𝑌𝑉) → (𝐴 · 𝑌) ∈ 𝑉)
101, 3, 4, 9syl3anc 1368 . . 3 (𝜑 → (𝐴 · 𝑌) ∈ 𝑉)
11 lmodsubvs.p . . . 4 + = (+g𝑊)
12 lmodsubvs.m . . . 4 = (-g𝑊)
13 lmodsubvs.n . . . 4 𝑁 = (invg𝐹)
14 eqid 2798 . . . 4 (1r𝐹) = (1r𝐹)
155, 11, 12, 6, 7, 13, 14lmodvsubval2 19682 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉 ∧ (𝐴 · 𝑌) ∈ 𝑉) → (𝑋 (𝐴 · 𝑌)) = (𝑋 + ((𝑁‘(1r𝐹)) · (𝐴 · 𝑌))))
161, 2, 10, 15syl3anc 1368 . 2 (𝜑 → (𝑋 (𝐴 · 𝑌)) = (𝑋 + ((𝑁‘(1r𝐹)) · (𝐴 · 𝑌))))
176lmodring 19635 . . . . . . . 8 (𝑊 ∈ LMod → 𝐹 ∈ Ring)
181, 17syl 17 . . . . . . 7 (𝜑𝐹 ∈ Ring)
19 ringgrp 19295 . . . . . . 7 (𝐹 ∈ Ring → 𝐹 ∈ Grp)
2018, 19syl 17 . . . . . 6 (𝜑𝐹 ∈ Grp)
218, 14ringidcl 19314 . . . . . . 7 (𝐹 ∈ Ring → (1r𝐹) ∈ 𝐾)
2218, 21syl 17 . . . . . 6 (𝜑 → (1r𝐹) ∈ 𝐾)
238, 13grpinvcl 18143 . . . . . 6 ((𝐹 ∈ Grp ∧ (1r𝐹) ∈ 𝐾) → (𝑁‘(1r𝐹)) ∈ 𝐾)
2420, 22, 23syl2anc 587 . . . . 5 (𝜑 → (𝑁‘(1r𝐹)) ∈ 𝐾)
25 eqid 2798 . . . . . 6 (.r𝐹) = (.r𝐹)
265, 6, 7, 8, 25lmodvsass 19652 . . . . 5 ((𝑊 ∈ LMod ∧ ((𝑁‘(1r𝐹)) ∈ 𝐾𝐴𝐾𝑌𝑉)) → (((𝑁‘(1r𝐹))(.r𝐹)𝐴) · 𝑌) = ((𝑁‘(1r𝐹)) · (𝐴 · 𝑌)))
271, 24, 3, 4, 26syl13anc 1369 . . . 4 (𝜑 → (((𝑁‘(1r𝐹))(.r𝐹)𝐴) · 𝑌) = ((𝑁‘(1r𝐹)) · (𝐴 · 𝑌)))
288, 25, 14, 13, 18, 3ringnegl 19340 . . . . 5 (𝜑 → ((𝑁‘(1r𝐹))(.r𝐹)𝐴) = (𝑁𝐴))
2928oveq1d 7150 . . . 4 (𝜑 → (((𝑁‘(1r𝐹))(.r𝐹)𝐴) · 𝑌) = ((𝑁𝐴) · 𝑌))
3027, 29eqtr3d 2835 . . 3 (𝜑 → ((𝑁‘(1r𝐹)) · (𝐴 · 𝑌)) = ((𝑁𝐴) · 𝑌))
3130oveq2d 7151 . 2 (𝜑 → (𝑋 + ((𝑁‘(1r𝐹)) · (𝐴 · 𝑌))) = (𝑋 + ((𝑁𝐴) · 𝑌)))
3216, 31eqtrd 2833 1 (𝜑 → (𝑋 (𝐴 · 𝑌)) = (𝑋 + ((𝑁𝐴) · 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2111  cfv 6324  (class class class)co 7135  Basecbs 16475  +gcplusg 16557  .rcmulr 16558  Scalarcsca 16560   ·𝑠 cvsca 16561  Grpcgrp 18095  invgcminusg 18096  -gcsg 18097  1rcur 19244  Ringcrg 19290  LModclmod 19627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-plusg 16570  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-minusg 18099  df-sbg 18100  df-mgp 19233  df-ur 19245  df-ring 19292  df-lmod 19629
This theorem is referenced by:  lspexch  19894  baerlem5alem1  39004  baerlem5blem1  39005
  Copyright terms: Public domain W3C validator