MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lssvs0or Structured version   Visualization version   GIF version

Theorem lssvs0or 20287
Description: If a scalar product belongs to a subspace, either the scalar component is zero or the vector component also belongs to the subspace. (Contributed by NM, 5-Apr-2015.)
Hypotheses
Ref Expression
lssvs0or.v 𝑉 = (Base‘𝑊)
lssvs0or.t · = ( ·𝑠𝑊)
lssvs0or.f 𝐹 = (Scalar‘𝑊)
lssvs0or.k 𝐾 = (Base‘𝐹)
lssvs0or.o 0 = (0g𝐹)
lssvs0or.s 𝑆 = (LSubSp‘𝑊)
lssvs0or.w (𝜑𝑊 ∈ LVec)
lssvs0or.u (𝜑𝑈𝑆)
lssvs0or.x (𝜑𝑋𝑉)
lssvs0or.a (𝜑𝐴𝐾)
Assertion
Ref Expression
lssvs0or (𝜑 → ((𝐴 · 𝑋) ∈ 𝑈 ↔ (𝐴 = 0𝑋𝑈)))

Proof of Theorem lssvs0or
StepHypRef Expression
1 lssvs0or.w . . . . . . . . . . . 12 (𝜑𝑊 ∈ LVec)
2 lssvs0or.f . . . . . . . . . . . . 13 𝐹 = (Scalar‘𝑊)
32lvecdrng 20282 . . . . . . . . . . . 12 (𝑊 ∈ LVec → 𝐹 ∈ DivRing)
41, 3syl 17 . . . . . . . . . . 11 (𝜑𝐹 ∈ DivRing)
54ad2antrr 722 . . . . . . . . . 10 (((𝜑 ∧ (𝐴 · 𝑋) ∈ 𝑈) ∧ 𝐴0 ) → 𝐹 ∈ DivRing)
6 lssvs0or.a . . . . . . . . . . 11 (𝜑𝐴𝐾)
76ad2antrr 722 . . . . . . . . . 10 (((𝜑 ∧ (𝐴 · 𝑋) ∈ 𝑈) ∧ 𝐴0 ) → 𝐴𝐾)
8 simpr 484 . . . . . . . . . 10 (((𝜑 ∧ (𝐴 · 𝑋) ∈ 𝑈) ∧ 𝐴0 ) → 𝐴0 )
9 lssvs0or.k . . . . . . . . . . 11 𝐾 = (Base‘𝐹)
10 lssvs0or.o . . . . . . . . . . 11 0 = (0g𝐹)
11 eqid 2738 . . . . . . . . . . 11 (.r𝐹) = (.r𝐹)
12 eqid 2738 . . . . . . . . . . 11 (1r𝐹) = (1r𝐹)
13 eqid 2738 . . . . . . . . . . 11 (invr𝐹) = (invr𝐹)
149, 10, 11, 12, 13drnginvrl 19925 . . . . . . . . . 10 ((𝐹 ∈ DivRing ∧ 𝐴𝐾𝐴0 ) → (((invr𝐹)‘𝐴)(.r𝐹)𝐴) = (1r𝐹))
155, 7, 8, 14syl3anc 1369 . . . . . . . . 9 (((𝜑 ∧ (𝐴 · 𝑋) ∈ 𝑈) ∧ 𝐴0 ) → (((invr𝐹)‘𝐴)(.r𝐹)𝐴) = (1r𝐹))
1615oveq1d 7270 . . . . . . . 8 (((𝜑 ∧ (𝐴 · 𝑋) ∈ 𝑈) ∧ 𝐴0 ) → ((((invr𝐹)‘𝐴)(.r𝐹)𝐴) · 𝑋) = ((1r𝐹) · 𝑋))
17 lveclmod 20283 . . . . . . . . . . 11 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
181, 17syl 17 . . . . . . . . . 10 (𝜑𝑊 ∈ LMod)
1918ad2antrr 722 . . . . . . . . 9 (((𝜑 ∧ (𝐴 · 𝑋) ∈ 𝑈) ∧ 𝐴0 ) → 𝑊 ∈ LMod)
209, 10, 13drnginvrcl 19923 . . . . . . . . . 10 ((𝐹 ∈ DivRing ∧ 𝐴𝐾𝐴0 ) → ((invr𝐹)‘𝐴) ∈ 𝐾)
215, 7, 8, 20syl3anc 1369 . . . . . . . . 9 (((𝜑 ∧ (𝐴 · 𝑋) ∈ 𝑈) ∧ 𝐴0 ) → ((invr𝐹)‘𝐴) ∈ 𝐾)
22 lssvs0or.x . . . . . . . . . 10 (𝜑𝑋𝑉)
2322ad2antrr 722 . . . . . . . . 9 (((𝜑 ∧ (𝐴 · 𝑋) ∈ 𝑈) ∧ 𝐴0 ) → 𝑋𝑉)
24 lssvs0or.v . . . . . . . . . 10 𝑉 = (Base‘𝑊)
25 lssvs0or.t . . . . . . . . . 10 · = ( ·𝑠𝑊)
2624, 2, 25, 9, 11lmodvsass 20063 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ (((invr𝐹)‘𝐴) ∈ 𝐾𝐴𝐾𝑋𝑉)) → ((((invr𝐹)‘𝐴)(.r𝐹)𝐴) · 𝑋) = (((invr𝐹)‘𝐴) · (𝐴 · 𝑋)))
2719, 21, 7, 23, 26syl13anc 1370 . . . . . . . 8 (((𝜑 ∧ (𝐴 · 𝑋) ∈ 𝑈) ∧ 𝐴0 ) → ((((invr𝐹)‘𝐴)(.r𝐹)𝐴) · 𝑋) = (((invr𝐹)‘𝐴) · (𝐴 · 𝑋)))
2824, 2, 25, 12lmodvs1 20066 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((1r𝐹) · 𝑋) = 𝑋)
2919, 23, 28syl2anc 583 . . . . . . . 8 (((𝜑 ∧ (𝐴 · 𝑋) ∈ 𝑈) ∧ 𝐴0 ) → ((1r𝐹) · 𝑋) = 𝑋)
3016, 27, 293eqtr3rd 2787 . . . . . . 7 (((𝜑 ∧ (𝐴 · 𝑋) ∈ 𝑈) ∧ 𝐴0 ) → 𝑋 = (((invr𝐹)‘𝐴) · (𝐴 · 𝑋)))
31 lssvs0or.u . . . . . . . . 9 (𝜑𝑈𝑆)
3231ad2antrr 722 . . . . . . . 8 (((𝜑 ∧ (𝐴 · 𝑋) ∈ 𝑈) ∧ 𝐴0 ) → 𝑈𝑆)
33 simplr 765 . . . . . . . 8 (((𝜑 ∧ (𝐴 · 𝑋) ∈ 𝑈) ∧ 𝐴0 ) → (𝐴 · 𝑋) ∈ 𝑈)
34 lssvs0or.s . . . . . . . . 9 𝑆 = (LSubSp‘𝑊)
352, 25, 9, 34lssvscl 20132 . . . . . . . 8 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (((invr𝐹)‘𝐴) ∈ 𝐾 ∧ (𝐴 · 𝑋) ∈ 𝑈)) → (((invr𝐹)‘𝐴) · (𝐴 · 𝑋)) ∈ 𝑈)
3619, 32, 21, 33, 35syl22anc 835 . . . . . . 7 (((𝜑 ∧ (𝐴 · 𝑋) ∈ 𝑈) ∧ 𝐴0 ) → (((invr𝐹)‘𝐴) · (𝐴 · 𝑋)) ∈ 𝑈)
3730, 36eqeltrd 2839 . . . . . 6 (((𝜑 ∧ (𝐴 · 𝑋) ∈ 𝑈) ∧ 𝐴0 ) → 𝑋𝑈)
3837ex 412 . . . . 5 ((𝜑 ∧ (𝐴 · 𝑋) ∈ 𝑈) → (𝐴0𝑋𝑈))
3938necon1bd 2960 . . . 4 ((𝜑 ∧ (𝐴 · 𝑋) ∈ 𝑈) → (¬ 𝑋𝑈𝐴 = 0 ))
4039orrd 859 . . 3 ((𝜑 ∧ (𝐴 · 𝑋) ∈ 𝑈) → (𝑋𝑈𝐴 = 0 ))
4140orcomd 867 . 2 ((𝜑 ∧ (𝐴 · 𝑋) ∈ 𝑈) → (𝐴 = 0𝑋𝑈))
42 oveq1 7262 . . . . 5 (𝐴 = 0 → (𝐴 · 𝑋) = ( 0 · 𝑋))
4342adantl 481 . . . 4 ((𝜑𝐴 = 0 ) → (𝐴 · 𝑋) = ( 0 · 𝑋))
44 eqid 2738 . . . . . . . 8 (0g𝑊) = (0g𝑊)
4524, 2, 25, 10, 44lmod0vs 20071 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ( 0 · 𝑋) = (0g𝑊))
4618, 22, 45syl2anc 583 . . . . . 6 (𝜑 → ( 0 · 𝑋) = (0g𝑊))
4744, 34lss0cl 20123 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (0g𝑊) ∈ 𝑈)
4818, 31, 47syl2anc 583 . . . . . 6 (𝜑 → (0g𝑊) ∈ 𝑈)
4946, 48eqeltrd 2839 . . . . 5 (𝜑 → ( 0 · 𝑋) ∈ 𝑈)
5049adantr 480 . . . 4 ((𝜑𝐴 = 0 ) → ( 0 · 𝑋) ∈ 𝑈)
5143, 50eqeltrd 2839 . . 3 ((𝜑𝐴 = 0 ) → (𝐴 · 𝑋) ∈ 𝑈)
5218adantr 480 . . . 4 ((𝜑𝑋𝑈) → 𝑊 ∈ LMod)
5331adantr 480 . . . 4 ((𝜑𝑋𝑈) → 𝑈𝑆)
546adantr 480 . . . 4 ((𝜑𝑋𝑈) → 𝐴𝐾)
55 simpr 484 . . . 4 ((𝜑𝑋𝑈) → 𝑋𝑈)
562, 25, 9, 34lssvscl 20132 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝐴𝐾𝑋𝑈)) → (𝐴 · 𝑋) ∈ 𝑈)
5752, 53, 54, 55, 56syl22anc 835 . . 3 ((𝜑𝑋𝑈) → (𝐴 · 𝑋) ∈ 𝑈)
5851, 57jaodan 954 . 2 ((𝜑 ∧ (𝐴 = 0𝑋𝑈)) → (𝐴 · 𝑋) ∈ 𝑈)
5941, 58impbida 797 1 (𝜑 → ((𝐴 · 𝑋) ∈ 𝑈 ↔ (𝐴 = 0𝑋𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 843   = wceq 1539  wcel 2108  wne 2942  cfv 6418  (class class class)co 7255  Basecbs 16840  .rcmulr 16889  Scalarcsca 16891   ·𝑠 cvsca 16892  0gc0g 17067  1rcur 19652  invrcinvr 19828  DivRingcdr 19906  LModclmod 20038  LSubSpclss 20108  LVecclvec 20279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-sbg 18497  df-mgp 19636  df-ur 19653  df-ring 19700  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-invr 19829  df-drng 19908  df-lmod 20040  df-lss 20109  df-lvec 20280
This theorem is referenced by:  lspdisj  20302
  Copyright terms: Public domain W3C validator