![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lvecinv | Structured version Visualization version GIF version |
Description: Invert coefficient of scalar product. (Contributed by NM, 11-Apr-2015.) |
Ref | Expression |
---|---|
lvecinv.v | ⊢ 𝑉 = (Base‘𝑊) |
lvecinv.t | ⊢ · = ( ·𝑠 ‘𝑊) |
lvecinv.f | ⊢ 𝐹 = (Scalar‘𝑊) |
lvecinv.k | ⊢ 𝐾 = (Base‘𝐹) |
lvecinv.o | ⊢ 0 = (0g‘𝐹) |
lvecinv.i | ⊢ 𝐼 = (invr‘𝐹) |
lvecinv.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
lvecinv.a | ⊢ (𝜑 → 𝐴 ∈ (𝐾 ∖ { 0 })) |
lvecinv.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
lvecinv.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
Ref | Expression |
---|---|
lvecinv | ⊢ (𝜑 → (𝑋 = (𝐴 · 𝑌) ↔ 𝑌 = ((𝐼‘𝐴) · 𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7365 | . . . 4 ⊢ (𝑋 = (𝐴 · 𝑌) → ((𝐼‘𝐴) · 𝑋) = ((𝐼‘𝐴) · (𝐴 · 𝑌))) | |
2 | lvecinv.w | . . . . . . . 8 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
3 | lvecinv.f | . . . . . . . . 9 ⊢ 𝐹 = (Scalar‘𝑊) | |
4 | 3 | lvecdrng 20566 | . . . . . . . 8 ⊢ (𝑊 ∈ LVec → 𝐹 ∈ DivRing) |
5 | 2, 4 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ DivRing) |
6 | lvecinv.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ (𝐾 ∖ { 0 })) | |
7 | 6 | eldifad 3922 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ 𝐾) |
8 | eldifsni 4750 | . . . . . . . 8 ⊢ (𝐴 ∈ (𝐾 ∖ { 0 }) → 𝐴 ≠ 0 ) | |
9 | 6, 8 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ≠ 0 ) |
10 | lvecinv.k | . . . . . . . 8 ⊢ 𝐾 = (Base‘𝐹) | |
11 | lvecinv.o | . . . . . . . 8 ⊢ 0 = (0g‘𝐹) | |
12 | eqid 2736 | . . . . . . . 8 ⊢ (.r‘𝐹) = (.r‘𝐹) | |
13 | eqid 2736 | . . . . . . . 8 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
14 | lvecinv.i | . . . . . . . 8 ⊢ 𝐼 = (invr‘𝐹) | |
15 | 10, 11, 12, 13, 14 | drnginvrl 20208 | . . . . . . 7 ⊢ ((𝐹 ∈ DivRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0 ) → ((𝐼‘𝐴)(.r‘𝐹)𝐴) = (1r‘𝐹)) |
16 | 5, 7, 9, 15 | syl3anc 1371 | . . . . . 6 ⊢ (𝜑 → ((𝐼‘𝐴)(.r‘𝐹)𝐴) = (1r‘𝐹)) |
17 | 16 | oveq1d 7372 | . . . . 5 ⊢ (𝜑 → (((𝐼‘𝐴)(.r‘𝐹)𝐴) · 𝑌) = ((1r‘𝐹) · 𝑌)) |
18 | lveclmod 20567 | . . . . . . 7 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
19 | 2, 18 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ LMod) |
20 | 10, 11, 14 | drnginvrcl 20205 | . . . . . . 7 ⊢ ((𝐹 ∈ DivRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0 ) → (𝐼‘𝐴) ∈ 𝐾) |
21 | 5, 7, 9, 20 | syl3anc 1371 | . . . . . 6 ⊢ (𝜑 → (𝐼‘𝐴) ∈ 𝐾) |
22 | lvecinv.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
23 | lvecinv.v | . . . . . . 7 ⊢ 𝑉 = (Base‘𝑊) | |
24 | lvecinv.t | . . . . . . 7 ⊢ · = ( ·𝑠 ‘𝑊) | |
25 | 23, 3, 24, 10, 12 | lmodvsass 20347 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ ((𝐼‘𝐴) ∈ 𝐾 ∧ 𝐴 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉)) → (((𝐼‘𝐴)(.r‘𝐹)𝐴) · 𝑌) = ((𝐼‘𝐴) · (𝐴 · 𝑌))) |
26 | 19, 21, 7, 22, 25 | syl13anc 1372 | . . . . 5 ⊢ (𝜑 → (((𝐼‘𝐴)(.r‘𝐹)𝐴) · 𝑌) = ((𝐼‘𝐴) · (𝐴 · 𝑌))) |
27 | 23, 3, 24, 13 | lmodvs1 20350 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) → ((1r‘𝐹) · 𝑌) = 𝑌) |
28 | 19, 22, 27 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → ((1r‘𝐹) · 𝑌) = 𝑌) |
29 | 17, 26, 28 | 3eqtr3d 2784 | . . . 4 ⊢ (𝜑 → ((𝐼‘𝐴) · (𝐴 · 𝑌)) = 𝑌) |
30 | 1, 29 | sylan9eqr 2798 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = (𝐴 · 𝑌)) → ((𝐼‘𝐴) · 𝑋) = 𝑌) |
31 | 10, 11, 12, 13, 14 | drnginvrr 20209 | . . . . . . 7 ⊢ ((𝐹 ∈ DivRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0 ) → (𝐴(.r‘𝐹)(𝐼‘𝐴)) = (1r‘𝐹)) |
32 | 5, 7, 9, 31 | syl3anc 1371 | . . . . . 6 ⊢ (𝜑 → (𝐴(.r‘𝐹)(𝐼‘𝐴)) = (1r‘𝐹)) |
33 | 32 | oveq1d 7372 | . . . . 5 ⊢ (𝜑 → ((𝐴(.r‘𝐹)(𝐼‘𝐴)) · 𝑋) = ((1r‘𝐹) · 𝑋)) |
34 | lvecinv.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
35 | 23, 3, 24, 10, 12 | lmodvsass 20347 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ (𝐴 ∈ 𝐾 ∧ (𝐼‘𝐴) ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((𝐴(.r‘𝐹)(𝐼‘𝐴)) · 𝑋) = (𝐴 · ((𝐼‘𝐴) · 𝑋))) |
36 | 19, 7, 21, 34, 35 | syl13anc 1372 | . . . . 5 ⊢ (𝜑 → ((𝐴(.r‘𝐹)(𝐼‘𝐴)) · 𝑋) = (𝐴 · ((𝐼‘𝐴) · 𝑋))) |
37 | 23, 3, 24, 13 | lmodvs1 20350 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ((1r‘𝐹) · 𝑋) = 𝑋) |
38 | 19, 34, 37 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → ((1r‘𝐹) · 𝑋) = 𝑋) |
39 | 33, 36, 38 | 3eqtr3rd 2785 | . . . 4 ⊢ (𝜑 → 𝑋 = (𝐴 · ((𝐼‘𝐴) · 𝑋))) |
40 | oveq2 7365 | . . . 4 ⊢ (((𝐼‘𝐴) · 𝑋) = 𝑌 → (𝐴 · ((𝐼‘𝐴) · 𝑋)) = (𝐴 · 𝑌)) | |
41 | 39, 40 | sylan9eq 2796 | . . 3 ⊢ ((𝜑 ∧ ((𝐼‘𝐴) · 𝑋) = 𝑌) → 𝑋 = (𝐴 · 𝑌)) |
42 | 30, 41 | impbida 799 | . 2 ⊢ (𝜑 → (𝑋 = (𝐴 · 𝑌) ↔ ((𝐼‘𝐴) · 𝑋) = 𝑌)) |
43 | eqcom 2743 | . 2 ⊢ (((𝐼‘𝐴) · 𝑋) = 𝑌 ↔ 𝑌 = ((𝐼‘𝐴) · 𝑋)) | |
44 | 42, 43 | bitrdi 286 | 1 ⊢ (𝜑 → (𝑋 = (𝐴 · 𝑌) ↔ 𝑌 = ((𝐼‘𝐴) · 𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1541 ∈ wcel 2106 ≠ wne 2943 ∖ cdif 3907 {csn 4586 ‘cfv 6496 (class class class)co 7357 Basecbs 17083 .rcmulr 17134 Scalarcsca 17136 ·𝑠 cvsca 17137 0gc0g 17321 1rcur 19913 invrcinvr 20100 DivRingcdr 20185 LModclmod 20322 LVecclvec 20563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-iun 4956 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-om 7803 df-2nd 7922 df-tpos 8157 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-er 8648 df-en 8884 df-dom 8885 df-sdom 8886 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-nn 12154 df-2 12216 df-3 12217 df-sets 17036 df-slot 17054 df-ndx 17066 df-base 17084 df-ress 17113 df-plusg 17146 df-mulr 17147 df-0g 17323 df-mgm 18497 df-sgrp 18546 df-mnd 18557 df-grp 18751 df-minusg 18752 df-mgp 19897 df-ur 19914 df-ring 19966 df-oppr 20049 df-dvdsr 20070 df-unit 20071 df-invr 20101 df-drng 20187 df-lmod 20324 df-lvec 20564 |
This theorem is referenced by: lspexch 20590 prjspersym 40931 |
Copyright terms: Public domain | W3C validator |