| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lvecinv | Structured version Visualization version GIF version | ||
| Description: Invert coefficient of scalar product. (Contributed by NM, 11-Apr-2015.) |
| Ref | Expression |
|---|---|
| lvecinv.v | ⊢ 𝑉 = (Base‘𝑊) |
| lvecinv.t | ⊢ · = ( ·𝑠 ‘𝑊) |
| lvecinv.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| lvecinv.k | ⊢ 𝐾 = (Base‘𝐹) |
| lvecinv.o | ⊢ 0 = (0g‘𝐹) |
| lvecinv.i | ⊢ 𝐼 = (invr‘𝐹) |
| lvecinv.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
| lvecinv.a | ⊢ (𝜑 → 𝐴 ∈ (𝐾 ∖ { 0 })) |
| lvecinv.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| lvecinv.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| lvecinv | ⊢ (𝜑 → (𝑋 = (𝐴 · 𝑌) ↔ 𝑌 = ((𝐼‘𝐴) · 𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 7354 | . . . 4 ⊢ (𝑋 = (𝐴 · 𝑌) → ((𝐼‘𝐴) · 𝑋) = ((𝐼‘𝐴) · (𝐴 · 𝑌))) | |
| 2 | lvecinv.w | . . . . . . . 8 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
| 3 | lvecinv.f | . . . . . . . . 9 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 4 | 3 | lvecdrng 21040 | . . . . . . . 8 ⊢ (𝑊 ∈ LVec → 𝐹 ∈ DivRing) |
| 5 | 2, 4 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ DivRing) |
| 6 | lvecinv.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ (𝐾 ∖ { 0 })) | |
| 7 | 6 | eldifad 3914 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ 𝐾) |
| 8 | eldifsni 4742 | . . . . . . . 8 ⊢ (𝐴 ∈ (𝐾 ∖ { 0 }) → 𝐴 ≠ 0 ) | |
| 9 | 6, 8 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ≠ 0 ) |
| 10 | lvecinv.k | . . . . . . . 8 ⊢ 𝐾 = (Base‘𝐹) | |
| 11 | lvecinv.o | . . . . . . . 8 ⊢ 0 = (0g‘𝐹) | |
| 12 | eqid 2731 | . . . . . . . 8 ⊢ (.r‘𝐹) = (.r‘𝐹) | |
| 13 | eqid 2731 | . . . . . . . 8 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
| 14 | lvecinv.i | . . . . . . . 8 ⊢ 𝐼 = (invr‘𝐹) | |
| 15 | 10, 11, 12, 13, 14 | drnginvrl 20672 | . . . . . . 7 ⊢ ((𝐹 ∈ DivRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0 ) → ((𝐼‘𝐴)(.r‘𝐹)𝐴) = (1r‘𝐹)) |
| 16 | 5, 7, 9, 15 | syl3anc 1373 | . . . . . 6 ⊢ (𝜑 → ((𝐼‘𝐴)(.r‘𝐹)𝐴) = (1r‘𝐹)) |
| 17 | 16 | oveq1d 7361 | . . . . 5 ⊢ (𝜑 → (((𝐼‘𝐴)(.r‘𝐹)𝐴) · 𝑌) = ((1r‘𝐹) · 𝑌)) |
| 18 | lveclmod 21041 | . . . . . . 7 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
| 19 | 2, 18 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ LMod) |
| 20 | 10, 11, 14 | drnginvrcl 20669 | . . . . . . 7 ⊢ ((𝐹 ∈ DivRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0 ) → (𝐼‘𝐴) ∈ 𝐾) |
| 21 | 5, 7, 9, 20 | syl3anc 1373 | . . . . . 6 ⊢ (𝜑 → (𝐼‘𝐴) ∈ 𝐾) |
| 22 | lvecinv.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
| 23 | lvecinv.v | . . . . . . 7 ⊢ 𝑉 = (Base‘𝑊) | |
| 24 | lvecinv.t | . . . . . . 7 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 25 | 23, 3, 24, 10, 12 | lmodvsass 20821 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ ((𝐼‘𝐴) ∈ 𝐾 ∧ 𝐴 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉)) → (((𝐼‘𝐴)(.r‘𝐹)𝐴) · 𝑌) = ((𝐼‘𝐴) · (𝐴 · 𝑌))) |
| 26 | 19, 21, 7, 22, 25 | syl13anc 1374 | . . . . 5 ⊢ (𝜑 → (((𝐼‘𝐴)(.r‘𝐹)𝐴) · 𝑌) = ((𝐼‘𝐴) · (𝐴 · 𝑌))) |
| 27 | 23, 3, 24, 13 | lmodvs1 20824 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) → ((1r‘𝐹) · 𝑌) = 𝑌) |
| 28 | 19, 22, 27 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → ((1r‘𝐹) · 𝑌) = 𝑌) |
| 29 | 17, 26, 28 | 3eqtr3d 2774 | . . . 4 ⊢ (𝜑 → ((𝐼‘𝐴) · (𝐴 · 𝑌)) = 𝑌) |
| 30 | 1, 29 | sylan9eqr 2788 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = (𝐴 · 𝑌)) → ((𝐼‘𝐴) · 𝑋) = 𝑌) |
| 31 | 10, 11, 12, 13, 14 | drnginvrr 20673 | . . . . . . 7 ⊢ ((𝐹 ∈ DivRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0 ) → (𝐴(.r‘𝐹)(𝐼‘𝐴)) = (1r‘𝐹)) |
| 32 | 5, 7, 9, 31 | syl3anc 1373 | . . . . . 6 ⊢ (𝜑 → (𝐴(.r‘𝐹)(𝐼‘𝐴)) = (1r‘𝐹)) |
| 33 | 32 | oveq1d 7361 | . . . . 5 ⊢ (𝜑 → ((𝐴(.r‘𝐹)(𝐼‘𝐴)) · 𝑋) = ((1r‘𝐹) · 𝑋)) |
| 34 | lvecinv.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 35 | 23, 3, 24, 10, 12 | lmodvsass 20821 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ (𝐴 ∈ 𝐾 ∧ (𝐼‘𝐴) ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((𝐴(.r‘𝐹)(𝐼‘𝐴)) · 𝑋) = (𝐴 · ((𝐼‘𝐴) · 𝑋))) |
| 36 | 19, 7, 21, 34, 35 | syl13anc 1374 | . . . . 5 ⊢ (𝜑 → ((𝐴(.r‘𝐹)(𝐼‘𝐴)) · 𝑋) = (𝐴 · ((𝐼‘𝐴) · 𝑋))) |
| 37 | 23, 3, 24, 13 | lmodvs1 20824 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ((1r‘𝐹) · 𝑋) = 𝑋) |
| 38 | 19, 34, 37 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → ((1r‘𝐹) · 𝑋) = 𝑋) |
| 39 | 33, 36, 38 | 3eqtr3rd 2775 | . . . 4 ⊢ (𝜑 → 𝑋 = (𝐴 · ((𝐼‘𝐴) · 𝑋))) |
| 40 | oveq2 7354 | . . . 4 ⊢ (((𝐼‘𝐴) · 𝑋) = 𝑌 → (𝐴 · ((𝐼‘𝐴) · 𝑋)) = (𝐴 · 𝑌)) | |
| 41 | 39, 40 | sylan9eq 2786 | . . 3 ⊢ ((𝜑 ∧ ((𝐼‘𝐴) · 𝑋) = 𝑌) → 𝑋 = (𝐴 · 𝑌)) |
| 42 | 30, 41 | impbida 800 | . 2 ⊢ (𝜑 → (𝑋 = (𝐴 · 𝑌) ↔ ((𝐼‘𝐴) · 𝑋) = 𝑌)) |
| 43 | eqcom 2738 | . 2 ⊢ (((𝐼‘𝐴) · 𝑋) = 𝑌 ↔ 𝑌 = ((𝐼‘𝐴) · 𝑋)) | |
| 44 | 42, 43 | bitrdi 287 | 1 ⊢ (𝜑 → (𝑋 = (𝐴 · 𝑌) ↔ 𝑌 = ((𝐼‘𝐴) · 𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∖ cdif 3899 {csn 4576 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 .rcmulr 17162 Scalarcsca 17164 ·𝑠 cvsca 17165 0gc0g 17343 1rcur 20100 invrcinvr 20306 DivRingcdr 20645 LModclmod 20794 LVecclvec 21037 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-tpos 8156 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-grp 18849 df-minusg 18850 df-cmn 19695 df-abl 19696 df-mgp 20060 df-rng 20072 df-ur 20101 df-ring 20154 df-oppr 20256 df-dvdsr 20276 df-unit 20277 df-invr 20307 df-drng 20647 df-lmod 20796 df-lvec 21038 |
| This theorem is referenced by: lspexch 21067 prjspersym 42646 |
| Copyright terms: Public domain | W3C validator |