| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lvecinv | Structured version Visualization version GIF version | ||
| Description: Invert coefficient of scalar product. (Contributed by NM, 11-Apr-2015.) |
| Ref | Expression |
|---|---|
| lvecinv.v | ⊢ 𝑉 = (Base‘𝑊) |
| lvecinv.t | ⊢ · = ( ·𝑠 ‘𝑊) |
| lvecinv.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| lvecinv.k | ⊢ 𝐾 = (Base‘𝐹) |
| lvecinv.o | ⊢ 0 = (0g‘𝐹) |
| lvecinv.i | ⊢ 𝐼 = (invr‘𝐹) |
| lvecinv.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
| lvecinv.a | ⊢ (𝜑 → 𝐴 ∈ (𝐾 ∖ { 0 })) |
| lvecinv.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| lvecinv.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| lvecinv | ⊢ (𝜑 → (𝑋 = (𝐴 · 𝑌) ↔ 𝑌 = ((𝐼‘𝐴) · 𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 7395 | . . . 4 ⊢ (𝑋 = (𝐴 · 𝑌) → ((𝐼‘𝐴) · 𝑋) = ((𝐼‘𝐴) · (𝐴 · 𝑌))) | |
| 2 | lvecinv.w | . . . . . . . 8 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
| 3 | lvecinv.f | . . . . . . . . 9 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 4 | 3 | lvecdrng 21012 | . . . . . . . 8 ⊢ (𝑊 ∈ LVec → 𝐹 ∈ DivRing) |
| 5 | 2, 4 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ DivRing) |
| 6 | lvecinv.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ (𝐾 ∖ { 0 })) | |
| 7 | 6 | eldifad 3926 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ 𝐾) |
| 8 | eldifsni 4754 | . . . . . . . 8 ⊢ (𝐴 ∈ (𝐾 ∖ { 0 }) → 𝐴 ≠ 0 ) | |
| 9 | 6, 8 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ≠ 0 ) |
| 10 | lvecinv.k | . . . . . . . 8 ⊢ 𝐾 = (Base‘𝐹) | |
| 11 | lvecinv.o | . . . . . . . 8 ⊢ 0 = (0g‘𝐹) | |
| 12 | eqid 2729 | . . . . . . . 8 ⊢ (.r‘𝐹) = (.r‘𝐹) | |
| 13 | eqid 2729 | . . . . . . . 8 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
| 14 | lvecinv.i | . . . . . . . 8 ⊢ 𝐼 = (invr‘𝐹) | |
| 15 | 10, 11, 12, 13, 14 | drnginvrl 20665 | . . . . . . 7 ⊢ ((𝐹 ∈ DivRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0 ) → ((𝐼‘𝐴)(.r‘𝐹)𝐴) = (1r‘𝐹)) |
| 16 | 5, 7, 9, 15 | syl3anc 1373 | . . . . . 6 ⊢ (𝜑 → ((𝐼‘𝐴)(.r‘𝐹)𝐴) = (1r‘𝐹)) |
| 17 | 16 | oveq1d 7402 | . . . . 5 ⊢ (𝜑 → (((𝐼‘𝐴)(.r‘𝐹)𝐴) · 𝑌) = ((1r‘𝐹) · 𝑌)) |
| 18 | lveclmod 21013 | . . . . . . 7 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
| 19 | 2, 18 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ LMod) |
| 20 | 10, 11, 14 | drnginvrcl 20662 | . . . . . . 7 ⊢ ((𝐹 ∈ DivRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0 ) → (𝐼‘𝐴) ∈ 𝐾) |
| 21 | 5, 7, 9, 20 | syl3anc 1373 | . . . . . 6 ⊢ (𝜑 → (𝐼‘𝐴) ∈ 𝐾) |
| 22 | lvecinv.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
| 23 | lvecinv.v | . . . . . . 7 ⊢ 𝑉 = (Base‘𝑊) | |
| 24 | lvecinv.t | . . . . . . 7 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 25 | 23, 3, 24, 10, 12 | lmodvsass 20793 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ ((𝐼‘𝐴) ∈ 𝐾 ∧ 𝐴 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉)) → (((𝐼‘𝐴)(.r‘𝐹)𝐴) · 𝑌) = ((𝐼‘𝐴) · (𝐴 · 𝑌))) |
| 26 | 19, 21, 7, 22, 25 | syl13anc 1374 | . . . . 5 ⊢ (𝜑 → (((𝐼‘𝐴)(.r‘𝐹)𝐴) · 𝑌) = ((𝐼‘𝐴) · (𝐴 · 𝑌))) |
| 27 | 23, 3, 24, 13 | lmodvs1 20796 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) → ((1r‘𝐹) · 𝑌) = 𝑌) |
| 28 | 19, 22, 27 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → ((1r‘𝐹) · 𝑌) = 𝑌) |
| 29 | 17, 26, 28 | 3eqtr3d 2772 | . . . 4 ⊢ (𝜑 → ((𝐼‘𝐴) · (𝐴 · 𝑌)) = 𝑌) |
| 30 | 1, 29 | sylan9eqr 2786 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = (𝐴 · 𝑌)) → ((𝐼‘𝐴) · 𝑋) = 𝑌) |
| 31 | 10, 11, 12, 13, 14 | drnginvrr 20666 | . . . . . . 7 ⊢ ((𝐹 ∈ DivRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0 ) → (𝐴(.r‘𝐹)(𝐼‘𝐴)) = (1r‘𝐹)) |
| 32 | 5, 7, 9, 31 | syl3anc 1373 | . . . . . 6 ⊢ (𝜑 → (𝐴(.r‘𝐹)(𝐼‘𝐴)) = (1r‘𝐹)) |
| 33 | 32 | oveq1d 7402 | . . . . 5 ⊢ (𝜑 → ((𝐴(.r‘𝐹)(𝐼‘𝐴)) · 𝑋) = ((1r‘𝐹) · 𝑋)) |
| 34 | lvecinv.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 35 | 23, 3, 24, 10, 12 | lmodvsass 20793 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ (𝐴 ∈ 𝐾 ∧ (𝐼‘𝐴) ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((𝐴(.r‘𝐹)(𝐼‘𝐴)) · 𝑋) = (𝐴 · ((𝐼‘𝐴) · 𝑋))) |
| 36 | 19, 7, 21, 34, 35 | syl13anc 1374 | . . . . 5 ⊢ (𝜑 → ((𝐴(.r‘𝐹)(𝐼‘𝐴)) · 𝑋) = (𝐴 · ((𝐼‘𝐴) · 𝑋))) |
| 37 | 23, 3, 24, 13 | lmodvs1 20796 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ((1r‘𝐹) · 𝑋) = 𝑋) |
| 38 | 19, 34, 37 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → ((1r‘𝐹) · 𝑋) = 𝑋) |
| 39 | 33, 36, 38 | 3eqtr3rd 2773 | . . . 4 ⊢ (𝜑 → 𝑋 = (𝐴 · ((𝐼‘𝐴) · 𝑋))) |
| 40 | oveq2 7395 | . . . 4 ⊢ (((𝐼‘𝐴) · 𝑋) = 𝑌 → (𝐴 · ((𝐼‘𝐴) · 𝑋)) = (𝐴 · 𝑌)) | |
| 41 | 39, 40 | sylan9eq 2784 | . . 3 ⊢ ((𝜑 ∧ ((𝐼‘𝐴) · 𝑋) = 𝑌) → 𝑋 = (𝐴 · 𝑌)) |
| 42 | 30, 41 | impbida 800 | . 2 ⊢ (𝜑 → (𝑋 = (𝐴 · 𝑌) ↔ ((𝐼‘𝐴) · 𝑋) = 𝑌)) |
| 43 | eqcom 2736 | . 2 ⊢ (((𝐼‘𝐴) · 𝑋) = 𝑌 ↔ 𝑌 = ((𝐼‘𝐴) · 𝑋)) | |
| 44 | 42, 43 | bitrdi 287 | 1 ⊢ (𝜑 → (𝑋 = (𝐴 · 𝑌) ↔ 𝑌 = ((𝐼‘𝐴) · 𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∖ cdif 3911 {csn 4589 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 .rcmulr 17221 Scalarcsca 17223 ·𝑠 cvsca 17224 0gc0g 17402 1rcur 20090 invrcinvr 20296 DivRingcdr 20638 LModclmod 20766 LVecclvec 21009 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-tpos 8205 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 df-minusg 18869 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-oppr 20246 df-dvdsr 20266 df-unit 20267 df-invr 20297 df-drng 20640 df-lmod 20768 df-lvec 21010 |
| This theorem is referenced by: lspexch 21039 prjspersym 42595 |
| Copyright terms: Public domain | W3C validator |