MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lvecinv Structured version   Visualization version   GIF version

Theorem lvecinv 20150
Description: Invert coefficient of scalar product. (Contributed by NM, 11-Apr-2015.)
Hypotheses
Ref Expression
lvecinv.v 𝑉 = (Base‘𝑊)
lvecinv.t · = ( ·𝑠𝑊)
lvecinv.f 𝐹 = (Scalar‘𝑊)
lvecinv.k 𝐾 = (Base‘𝐹)
lvecinv.o 0 = (0g𝐹)
lvecinv.i 𝐼 = (invr𝐹)
lvecinv.w (𝜑𝑊 ∈ LVec)
lvecinv.a (𝜑𝐴 ∈ (𝐾 ∖ { 0 }))
lvecinv.x (𝜑𝑋𝑉)
lvecinv.y (𝜑𝑌𝑉)
Assertion
Ref Expression
lvecinv (𝜑 → (𝑋 = (𝐴 · 𝑌) ↔ 𝑌 = ((𝐼𝐴) · 𝑋)))

Proof of Theorem lvecinv
StepHypRef Expression
1 oveq2 7221 . . . 4 (𝑋 = (𝐴 · 𝑌) → ((𝐼𝐴) · 𝑋) = ((𝐼𝐴) · (𝐴 · 𝑌)))
2 lvecinv.w . . . . . . . 8 (𝜑𝑊 ∈ LVec)
3 lvecinv.f . . . . . . . . 9 𝐹 = (Scalar‘𝑊)
43lvecdrng 20142 . . . . . . . 8 (𝑊 ∈ LVec → 𝐹 ∈ DivRing)
52, 4syl 17 . . . . . . 7 (𝜑𝐹 ∈ DivRing)
6 lvecinv.a . . . . . . . 8 (𝜑𝐴 ∈ (𝐾 ∖ { 0 }))
76eldifad 3878 . . . . . . 7 (𝜑𝐴𝐾)
8 eldifsni 4703 . . . . . . . 8 (𝐴 ∈ (𝐾 ∖ { 0 }) → 𝐴0 )
96, 8syl 17 . . . . . . 7 (𝜑𝐴0 )
10 lvecinv.k . . . . . . . 8 𝐾 = (Base‘𝐹)
11 lvecinv.o . . . . . . . 8 0 = (0g𝐹)
12 eqid 2737 . . . . . . . 8 (.r𝐹) = (.r𝐹)
13 eqid 2737 . . . . . . . 8 (1r𝐹) = (1r𝐹)
14 lvecinv.i . . . . . . . 8 𝐼 = (invr𝐹)
1510, 11, 12, 13, 14drnginvrl 19786 . . . . . . 7 ((𝐹 ∈ DivRing ∧ 𝐴𝐾𝐴0 ) → ((𝐼𝐴)(.r𝐹)𝐴) = (1r𝐹))
165, 7, 9, 15syl3anc 1373 . . . . . 6 (𝜑 → ((𝐼𝐴)(.r𝐹)𝐴) = (1r𝐹))
1716oveq1d 7228 . . . . 5 (𝜑 → (((𝐼𝐴)(.r𝐹)𝐴) · 𝑌) = ((1r𝐹) · 𝑌))
18 lveclmod 20143 . . . . . . 7 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
192, 18syl 17 . . . . . 6 (𝜑𝑊 ∈ LMod)
2010, 11, 14drnginvrcl 19784 . . . . . . 7 ((𝐹 ∈ DivRing ∧ 𝐴𝐾𝐴0 ) → (𝐼𝐴) ∈ 𝐾)
215, 7, 9, 20syl3anc 1373 . . . . . 6 (𝜑 → (𝐼𝐴) ∈ 𝐾)
22 lvecinv.y . . . . . 6 (𝜑𝑌𝑉)
23 lvecinv.v . . . . . . 7 𝑉 = (Base‘𝑊)
24 lvecinv.t . . . . . . 7 · = ( ·𝑠𝑊)
2523, 3, 24, 10, 12lmodvsass 19924 . . . . . 6 ((𝑊 ∈ LMod ∧ ((𝐼𝐴) ∈ 𝐾𝐴𝐾𝑌𝑉)) → (((𝐼𝐴)(.r𝐹)𝐴) · 𝑌) = ((𝐼𝐴) · (𝐴 · 𝑌)))
2619, 21, 7, 22, 25syl13anc 1374 . . . . 5 (𝜑 → (((𝐼𝐴)(.r𝐹)𝐴) · 𝑌) = ((𝐼𝐴) · (𝐴 · 𝑌)))
2723, 3, 24, 13lmodvs1 19927 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → ((1r𝐹) · 𝑌) = 𝑌)
2819, 22, 27syl2anc 587 . . . . 5 (𝜑 → ((1r𝐹) · 𝑌) = 𝑌)
2917, 26, 283eqtr3d 2785 . . . 4 (𝜑 → ((𝐼𝐴) · (𝐴 · 𝑌)) = 𝑌)
301, 29sylan9eqr 2800 . . 3 ((𝜑𝑋 = (𝐴 · 𝑌)) → ((𝐼𝐴) · 𝑋) = 𝑌)
3110, 11, 12, 13, 14drnginvrr 19787 . . . . . . 7 ((𝐹 ∈ DivRing ∧ 𝐴𝐾𝐴0 ) → (𝐴(.r𝐹)(𝐼𝐴)) = (1r𝐹))
325, 7, 9, 31syl3anc 1373 . . . . . 6 (𝜑 → (𝐴(.r𝐹)(𝐼𝐴)) = (1r𝐹))
3332oveq1d 7228 . . . . 5 (𝜑 → ((𝐴(.r𝐹)(𝐼𝐴)) · 𝑋) = ((1r𝐹) · 𝑋))
34 lvecinv.x . . . . . 6 (𝜑𝑋𝑉)
3523, 3, 24, 10, 12lmodvsass 19924 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝐴𝐾 ∧ (𝐼𝐴) ∈ 𝐾𝑋𝑉)) → ((𝐴(.r𝐹)(𝐼𝐴)) · 𝑋) = (𝐴 · ((𝐼𝐴) · 𝑋)))
3619, 7, 21, 34, 35syl13anc 1374 . . . . 5 (𝜑 → ((𝐴(.r𝐹)(𝐼𝐴)) · 𝑋) = (𝐴 · ((𝐼𝐴) · 𝑋)))
3723, 3, 24, 13lmodvs1 19927 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((1r𝐹) · 𝑋) = 𝑋)
3819, 34, 37syl2anc 587 . . . . 5 (𝜑 → ((1r𝐹) · 𝑋) = 𝑋)
3933, 36, 383eqtr3rd 2786 . . . 4 (𝜑𝑋 = (𝐴 · ((𝐼𝐴) · 𝑋)))
40 oveq2 7221 . . . 4 (((𝐼𝐴) · 𝑋) = 𝑌 → (𝐴 · ((𝐼𝐴) · 𝑋)) = (𝐴 · 𝑌))
4139, 40sylan9eq 2798 . . 3 ((𝜑 ∧ ((𝐼𝐴) · 𝑋) = 𝑌) → 𝑋 = (𝐴 · 𝑌))
4230, 41impbida 801 . 2 (𝜑 → (𝑋 = (𝐴 · 𝑌) ↔ ((𝐼𝐴) · 𝑋) = 𝑌))
43 eqcom 2744 . 2 (((𝐼𝐴) · 𝑋) = 𝑌𝑌 = ((𝐼𝐴) · 𝑋))
4442, 43bitrdi 290 1 (𝜑 → (𝑋 = (𝐴 · 𝑌) ↔ 𝑌 = ((𝐼𝐴) · 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209   = wceq 1543  wcel 2110  wne 2940  cdif 3863  {csn 4541  cfv 6380  (class class class)co 7213  Basecbs 16760  .rcmulr 16803  Scalarcsca 16805   ·𝑠 cvsca 16806  0gc0g 16944  1rcur 19516  invrcinvr 19689  DivRingcdr 19767  LModclmod 19899  LVecclvec 20139
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-tpos 7968  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-2 11893  df-3 11894  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-ress 16785  df-plusg 16815  df-mulr 16816  df-0g 16946  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-grp 18368  df-minusg 18369  df-mgp 19505  df-ur 19517  df-ring 19564  df-oppr 19641  df-dvdsr 19659  df-unit 19660  df-invr 19690  df-drng 19769  df-lmod 19901  df-lvec 20140
This theorem is referenced by:  lspexch  20166  prjspersym  40154
  Copyright terms: Public domain W3C validator