![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lvecinv | Structured version Visualization version GIF version |
Description: Invert coefficient of scalar product. (Contributed by NM, 11-Apr-2015.) |
Ref | Expression |
---|---|
lvecinv.v | ⊢ 𝑉 = (Base‘𝑊) |
lvecinv.t | ⊢ · = ( ·𝑠 ‘𝑊) |
lvecinv.f | ⊢ 𝐹 = (Scalar‘𝑊) |
lvecinv.k | ⊢ 𝐾 = (Base‘𝐹) |
lvecinv.o | ⊢ 0 = (0g‘𝐹) |
lvecinv.i | ⊢ 𝐼 = (invr‘𝐹) |
lvecinv.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
lvecinv.a | ⊢ (𝜑 → 𝐴 ∈ (𝐾 ∖ { 0 })) |
lvecinv.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
lvecinv.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
Ref | Expression |
---|---|
lvecinv | ⊢ (𝜑 → (𝑋 = (𝐴 · 𝑌) ↔ 𝑌 = ((𝐼‘𝐴) · 𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7456 | . . . 4 ⊢ (𝑋 = (𝐴 · 𝑌) → ((𝐼‘𝐴) · 𝑋) = ((𝐼‘𝐴) · (𝐴 · 𝑌))) | |
2 | lvecinv.w | . . . . . . . 8 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
3 | lvecinv.f | . . . . . . . . 9 ⊢ 𝐹 = (Scalar‘𝑊) | |
4 | 3 | lvecdrng 21127 | . . . . . . . 8 ⊢ (𝑊 ∈ LVec → 𝐹 ∈ DivRing) |
5 | 2, 4 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ DivRing) |
6 | lvecinv.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ (𝐾 ∖ { 0 })) | |
7 | 6 | eldifad 3988 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ 𝐾) |
8 | eldifsni 4815 | . . . . . . . 8 ⊢ (𝐴 ∈ (𝐾 ∖ { 0 }) → 𝐴 ≠ 0 ) | |
9 | 6, 8 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ≠ 0 ) |
10 | lvecinv.k | . . . . . . . 8 ⊢ 𝐾 = (Base‘𝐹) | |
11 | lvecinv.o | . . . . . . . 8 ⊢ 0 = (0g‘𝐹) | |
12 | eqid 2740 | . . . . . . . 8 ⊢ (.r‘𝐹) = (.r‘𝐹) | |
13 | eqid 2740 | . . . . . . . 8 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
14 | lvecinv.i | . . . . . . . 8 ⊢ 𝐼 = (invr‘𝐹) | |
15 | 10, 11, 12, 13, 14 | drnginvrl 20778 | . . . . . . 7 ⊢ ((𝐹 ∈ DivRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0 ) → ((𝐼‘𝐴)(.r‘𝐹)𝐴) = (1r‘𝐹)) |
16 | 5, 7, 9, 15 | syl3anc 1371 | . . . . . 6 ⊢ (𝜑 → ((𝐼‘𝐴)(.r‘𝐹)𝐴) = (1r‘𝐹)) |
17 | 16 | oveq1d 7463 | . . . . 5 ⊢ (𝜑 → (((𝐼‘𝐴)(.r‘𝐹)𝐴) · 𝑌) = ((1r‘𝐹) · 𝑌)) |
18 | lveclmod 21128 | . . . . . . 7 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
19 | 2, 18 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ LMod) |
20 | 10, 11, 14 | drnginvrcl 20775 | . . . . . . 7 ⊢ ((𝐹 ∈ DivRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0 ) → (𝐼‘𝐴) ∈ 𝐾) |
21 | 5, 7, 9, 20 | syl3anc 1371 | . . . . . 6 ⊢ (𝜑 → (𝐼‘𝐴) ∈ 𝐾) |
22 | lvecinv.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
23 | lvecinv.v | . . . . . . 7 ⊢ 𝑉 = (Base‘𝑊) | |
24 | lvecinv.t | . . . . . . 7 ⊢ · = ( ·𝑠 ‘𝑊) | |
25 | 23, 3, 24, 10, 12 | lmodvsass 20907 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ ((𝐼‘𝐴) ∈ 𝐾 ∧ 𝐴 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉)) → (((𝐼‘𝐴)(.r‘𝐹)𝐴) · 𝑌) = ((𝐼‘𝐴) · (𝐴 · 𝑌))) |
26 | 19, 21, 7, 22, 25 | syl13anc 1372 | . . . . 5 ⊢ (𝜑 → (((𝐼‘𝐴)(.r‘𝐹)𝐴) · 𝑌) = ((𝐼‘𝐴) · (𝐴 · 𝑌))) |
27 | 23, 3, 24, 13 | lmodvs1 20910 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) → ((1r‘𝐹) · 𝑌) = 𝑌) |
28 | 19, 22, 27 | syl2anc 583 | . . . . 5 ⊢ (𝜑 → ((1r‘𝐹) · 𝑌) = 𝑌) |
29 | 17, 26, 28 | 3eqtr3d 2788 | . . . 4 ⊢ (𝜑 → ((𝐼‘𝐴) · (𝐴 · 𝑌)) = 𝑌) |
30 | 1, 29 | sylan9eqr 2802 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = (𝐴 · 𝑌)) → ((𝐼‘𝐴) · 𝑋) = 𝑌) |
31 | 10, 11, 12, 13, 14 | drnginvrr 20779 | . . . . . . 7 ⊢ ((𝐹 ∈ DivRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0 ) → (𝐴(.r‘𝐹)(𝐼‘𝐴)) = (1r‘𝐹)) |
32 | 5, 7, 9, 31 | syl3anc 1371 | . . . . . 6 ⊢ (𝜑 → (𝐴(.r‘𝐹)(𝐼‘𝐴)) = (1r‘𝐹)) |
33 | 32 | oveq1d 7463 | . . . . 5 ⊢ (𝜑 → ((𝐴(.r‘𝐹)(𝐼‘𝐴)) · 𝑋) = ((1r‘𝐹) · 𝑋)) |
34 | lvecinv.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
35 | 23, 3, 24, 10, 12 | lmodvsass 20907 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ (𝐴 ∈ 𝐾 ∧ (𝐼‘𝐴) ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((𝐴(.r‘𝐹)(𝐼‘𝐴)) · 𝑋) = (𝐴 · ((𝐼‘𝐴) · 𝑋))) |
36 | 19, 7, 21, 34, 35 | syl13anc 1372 | . . . . 5 ⊢ (𝜑 → ((𝐴(.r‘𝐹)(𝐼‘𝐴)) · 𝑋) = (𝐴 · ((𝐼‘𝐴) · 𝑋))) |
37 | 23, 3, 24, 13 | lmodvs1 20910 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ((1r‘𝐹) · 𝑋) = 𝑋) |
38 | 19, 34, 37 | syl2anc 583 | . . . . 5 ⊢ (𝜑 → ((1r‘𝐹) · 𝑋) = 𝑋) |
39 | 33, 36, 38 | 3eqtr3rd 2789 | . . . 4 ⊢ (𝜑 → 𝑋 = (𝐴 · ((𝐼‘𝐴) · 𝑋))) |
40 | oveq2 7456 | . . . 4 ⊢ (((𝐼‘𝐴) · 𝑋) = 𝑌 → (𝐴 · ((𝐼‘𝐴) · 𝑋)) = (𝐴 · 𝑌)) | |
41 | 39, 40 | sylan9eq 2800 | . . 3 ⊢ ((𝜑 ∧ ((𝐼‘𝐴) · 𝑋) = 𝑌) → 𝑋 = (𝐴 · 𝑌)) |
42 | 30, 41 | impbida 800 | . 2 ⊢ (𝜑 → (𝑋 = (𝐴 · 𝑌) ↔ ((𝐼‘𝐴) · 𝑋) = 𝑌)) |
43 | eqcom 2747 | . 2 ⊢ (((𝐼‘𝐴) · 𝑋) = 𝑌 ↔ 𝑌 = ((𝐼‘𝐴) · 𝑋)) | |
44 | 42, 43 | bitrdi 287 | 1 ⊢ (𝜑 → (𝑋 = (𝐴 · 𝑌) ↔ 𝑌 = ((𝐼‘𝐴) · 𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∖ cdif 3973 {csn 4648 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 .rcmulr 17312 Scalarcsca 17314 ·𝑠 cvsca 17315 0gc0g 17499 1rcur 20208 invrcinvr 20413 DivRingcdr 20751 LModclmod 20880 LVecclvec 21124 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-tpos 8267 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-0g 17501 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 df-minusg 18977 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-oppr 20360 df-dvdsr 20383 df-unit 20384 df-invr 20414 df-drng 20753 df-lmod 20882 df-lvec 21125 |
This theorem is referenced by: lspexch 21154 prjspersym 42562 |
Copyright terms: Public domain | W3C validator |