Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lvecinv | Structured version Visualization version GIF version |
Description: Invert coefficient of scalar product. (Contributed by NM, 11-Apr-2015.) |
Ref | Expression |
---|---|
lvecinv.v | ⊢ 𝑉 = (Base‘𝑊) |
lvecinv.t | ⊢ · = ( ·𝑠 ‘𝑊) |
lvecinv.f | ⊢ 𝐹 = (Scalar‘𝑊) |
lvecinv.k | ⊢ 𝐾 = (Base‘𝐹) |
lvecinv.o | ⊢ 0 = (0g‘𝐹) |
lvecinv.i | ⊢ 𝐼 = (invr‘𝐹) |
lvecinv.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
lvecinv.a | ⊢ (𝜑 → 𝐴 ∈ (𝐾 ∖ { 0 })) |
lvecinv.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
lvecinv.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
Ref | Expression |
---|---|
lvecinv | ⊢ (𝜑 → (𝑋 = (𝐴 · 𝑌) ↔ 𝑌 = ((𝐼‘𝐴) · 𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7283 | . . . 4 ⊢ (𝑋 = (𝐴 · 𝑌) → ((𝐼‘𝐴) · 𝑋) = ((𝐼‘𝐴) · (𝐴 · 𝑌))) | |
2 | lvecinv.w | . . . . . . . 8 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
3 | lvecinv.f | . . . . . . . . 9 ⊢ 𝐹 = (Scalar‘𝑊) | |
4 | 3 | lvecdrng 20367 | . . . . . . . 8 ⊢ (𝑊 ∈ LVec → 𝐹 ∈ DivRing) |
5 | 2, 4 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ DivRing) |
6 | lvecinv.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ (𝐾 ∖ { 0 })) | |
7 | 6 | eldifad 3899 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ 𝐾) |
8 | eldifsni 4723 | . . . . . . . 8 ⊢ (𝐴 ∈ (𝐾 ∖ { 0 }) → 𝐴 ≠ 0 ) | |
9 | 6, 8 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ≠ 0 ) |
10 | lvecinv.k | . . . . . . . 8 ⊢ 𝐾 = (Base‘𝐹) | |
11 | lvecinv.o | . . . . . . . 8 ⊢ 0 = (0g‘𝐹) | |
12 | eqid 2738 | . . . . . . . 8 ⊢ (.r‘𝐹) = (.r‘𝐹) | |
13 | eqid 2738 | . . . . . . . 8 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
14 | lvecinv.i | . . . . . . . 8 ⊢ 𝐼 = (invr‘𝐹) | |
15 | 10, 11, 12, 13, 14 | drnginvrl 20010 | . . . . . . 7 ⊢ ((𝐹 ∈ DivRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0 ) → ((𝐼‘𝐴)(.r‘𝐹)𝐴) = (1r‘𝐹)) |
16 | 5, 7, 9, 15 | syl3anc 1370 | . . . . . 6 ⊢ (𝜑 → ((𝐼‘𝐴)(.r‘𝐹)𝐴) = (1r‘𝐹)) |
17 | 16 | oveq1d 7290 | . . . . 5 ⊢ (𝜑 → (((𝐼‘𝐴)(.r‘𝐹)𝐴) · 𝑌) = ((1r‘𝐹) · 𝑌)) |
18 | lveclmod 20368 | . . . . . . 7 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
19 | 2, 18 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ LMod) |
20 | 10, 11, 14 | drnginvrcl 20008 | . . . . . . 7 ⊢ ((𝐹 ∈ DivRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0 ) → (𝐼‘𝐴) ∈ 𝐾) |
21 | 5, 7, 9, 20 | syl3anc 1370 | . . . . . 6 ⊢ (𝜑 → (𝐼‘𝐴) ∈ 𝐾) |
22 | lvecinv.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
23 | lvecinv.v | . . . . . . 7 ⊢ 𝑉 = (Base‘𝑊) | |
24 | lvecinv.t | . . . . . . 7 ⊢ · = ( ·𝑠 ‘𝑊) | |
25 | 23, 3, 24, 10, 12 | lmodvsass 20148 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ ((𝐼‘𝐴) ∈ 𝐾 ∧ 𝐴 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉)) → (((𝐼‘𝐴)(.r‘𝐹)𝐴) · 𝑌) = ((𝐼‘𝐴) · (𝐴 · 𝑌))) |
26 | 19, 21, 7, 22, 25 | syl13anc 1371 | . . . . 5 ⊢ (𝜑 → (((𝐼‘𝐴)(.r‘𝐹)𝐴) · 𝑌) = ((𝐼‘𝐴) · (𝐴 · 𝑌))) |
27 | 23, 3, 24, 13 | lmodvs1 20151 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) → ((1r‘𝐹) · 𝑌) = 𝑌) |
28 | 19, 22, 27 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → ((1r‘𝐹) · 𝑌) = 𝑌) |
29 | 17, 26, 28 | 3eqtr3d 2786 | . . . 4 ⊢ (𝜑 → ((𝐼‘𝐴) · (𝐴 · 𝑌)) = 𝑌) |
30 | 1, 29 | sylan9eqr 2800 | . . 3 ⊢ ((𝜑 ∧ 𝑋 = (𝐴 · 𝑌)) → ((𝐼‘𝐴) · 𝑋) = 𝑌) |
31 | 10, 11, 12, 13, 14 | drnginvrr 20011 | . . . . . . 7 ⊢ ((𝐹 ∈ DivRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0 ) → (𝐴(.r‘𝐹)(𝐼‘𝐴)) = (1r‘𝐹)) |
32 | 5, 7, 9, 31 | syl3anc 1370 | . . . . . 6 ⊢ (𝜑 → (𝐴(.r‘𝐹)(𝐼‘𝐴)) = (1r‘𝐹)) |
33 | 32 | oveq1d 7290 | . . . . 5 ⊢ (𝜑 → ((𝐴(.r‘𝐹)(𝐼‘𝐴)) · 𝑋) = ((1r‘𝐹) · 𝑋)) |
34 | lvecinv.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
35 | 23, 3, 24, 10, 12 | lmodvsass 20148 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ (𝐴 ∈ 𝐾 ∧ (𝐼‘𝐴) ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((𝐴(.r‘𝐹)(𝐼‘𝐴)) · 𝑋) = (𝐴 · ((𝐼‘𝐴) · 𝑋))) |
36 | 19, 7, 21, 34, 35 | syl13anc 1371 | . . . . 5 ⊢ (𝜑 → ((𝐴(.r‘𝐹)(𝐼‘𝐴)) · 𝑋) = (𝐴 · ((𝐼‘𝐴) · 𝑋))) |
37 | 23, 3, 24, 13 | lmodvs1 20151 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ((1r‘𝐹) · 𝑋) = 𝑋) |
38 | 19, 34, 37 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → ((1r‘𝐹) · 𝑋) = 𝑋) |
39 | 33, 36, 38 | 3eqtr3rd 2787 | . . . 4 ⊢ (𝜑 → 𝑋 = (𝐴 · ((𝐼‘𝐴) · 𝑋))) |
40 | oveq2 7283 | . . . 4 ⊢ (((𝐼‘𝐴) · 𝑋) = 𝑌 → (𝐴 · ((𝐼‘𝐴) · 𝑋)) = (𝐴 · 𝑌)) | |
41 | 39, 40 | sylan9eq 2798 | . . 3 ⊢ ((𝜑 ∧ ((𝐼‘𝐴) · 𝑋) = 𝑌) → 𝑋 = (𝐴 · 𝑌)) |
42 | 30, 41 | impbida 798 | . 2 ⊢ (𝜑 → (𝑋 = (𝐴 · 𝑌) ↔ ((𝐼‘𝐴) · 𝑋) = 𝑌)) |
43 | eqcom 2745 | . 2 ⊢ (((𝐼‘𝐴) · 𝑋) = 𝑌 ↔ 𝑌 = ((𝐼‘𝐴) · 𝑋)) | |
44 | 42, 43 | bitrdi 287 | 1 ⊢ (𝜑 → (𝑋 = (𝐴 · 𝑌) ↔ 𝑌 = ((𝐼‘𝐴) · 𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∖ cdif 3884 {csn 4561 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 .rcmulr 16963 Scalarcsca 16965 ·𝑠 cvsca 16966 0gc0g 17150 1rcur 19737 invrcinvr 19913 DivRingcdr 19991 LModclmod 20123 LVecclvec 20364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-tpos 8042 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-0g 17152 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-grp 18580 df-minusg 18581 df-mgp 19721 df-ur 19738 df-ring 19785 df-oppr 19862 df-dvdsr 19883 df-unit 19884 df-invr 19914 df-drng 19993 df-lmod 20125 df-lvec 20365 |
This theorem is referenced by: lspexch 20391 prjspersym 40446 |
Copyright terms: Public domain | W3C validator |