![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcdvsass | Structured version Visualization version GIF version |
Description: Associative law for scalar product in a closed kernel dual vector space. (Contributed by NM, 20-Mar-2015.) |
Ref | Expression |
---|---|
lcdvsass.h | ⊢ 𝐻 = (LHyp‘𝐾) |
lcdvsass.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
lcdvsass.r | ⊢ 𝑅 = (Scalar‘𝑈) |
lcdvsass.l | ⊢ 𝐿 = (Base‘𝑅) |
lcdvsass.t | ⊢ · = (.r‘𝑅) |
lcdvsass.d | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
lcdvsass.f | ⊢ 𝐹 = (Base‘𝐶) |
lcdvsass.s | ⊢ ∙ = ( ·𝑠 ‘𝐶) |
lcdvsass.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
lcdvsass.x | ⊢ (𝜑 → 𝑋 ∈ 𝐿) |
lcdvsass.y | ⊢ (𝜑 → 𝑌 ∈ 𝐿) |
lcdvsass.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
Ref | Expression |
---|---|
lcdvsass | ⊢ (𝜑 → ((𝑌 · 𝑋) ∙ 𝐺) = (𝑋 ∙ (𝑌 ∙ 𝐺))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcdvsass.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | lcdvsass.u | . . . 4 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
3 | lcdvsass.r | . . . 4 ⊢ 𝑅 = (Scalar‘𝑈) | |
4 | lcdvsass.l | . . . 4 ⊢ 𝐿 = (Base‘𝑅) | |
5 | lcdvsass.t | . . . 4 ⊢ · = (.r‘𝑅) | |
6 | lcdvsass.d | . . . 4 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
7 | eqid 2778 | . . . 4 ⊢ (Scalar‘𝐶) = (Scalar‘𝐶) | |
8 | eqid 2778 | . . . 4 ⊢ (.r‘(Scalar‘𝐶)) = (.r‘(Scalar‘𝐶)) | |
9 | lcdvsass.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
10 | lcdvsass.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐿) | |
11 | lcdvsass.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐿) | |
12 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | lcdsmul 37758 | . . 3 ⊢ (𝜑 → (𝑋(.r‘(Scalar‘𝐶))𝑌) = (𝑌 · 𝑋)) |
13 | 12 | oveq1d 6937 | . 2 ⊢ (𝜑 → ((𝑋(.r‘(Scalar‘𝐶))𝑌) ∙ 𝐺) = ((𝑌 · 𝑋) ∙ 𝐺)) |
14 | 1, 6, 9 | lcdlmod 37748 | . . 3 ⊢ (𝜑 → 𝐶 ∈ LMod) |
15 | eqid 2778 | . . . . 5 ⊢ (Base‘(Scalar‘𝐶)) = (Base‘(Scalar‘𝐶)) | |
16 | 1, 2, 3, 4, 6, 7, 15, 9 | lcdsbase 37756 | . . . 4 ⊢ (𝜑 → (Base‘(Scalar‘𝐶)) = 𝐿) |
17 | 10, 16 | eleqtrrd 2862 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘(Scalar‘𝐶))) |
18 | 11, 16 | eleqtrrd 2862 | . . 3 ⊢ (𝜑 → 𝑌 ∈ (Base‘(Scalar‘𝐶))) |
19 | lcdvsass.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
20 | lcdvsass.f | . . . 4 ⊢ 𝐹 = (Base‘𝐶) | |
21 | lcdvsass.s | . . . 4 ⊢ ∙ = ( ·𝑠 ‘𝐶) | |
22 | 20, 7, 21, 15, 8 | lmodvsass 19280 | . . 3 ⊢ ((𝐶 ∈ LMod ∧ (𝑋 ∈ (Base‘(Scalar‘𝐶)) ∧ 𝑌 ∈ (Base‘(Scalar‘𝐶)) ∧ 𝐺 ∈ 𝐹)) → ((𝑋(.r‘(Scalar‘𝐶))𝑌) ∙ 𝐺) = (𝑋 ∙ (𝑌 ∙ 𝐺))) |
23 | 14, 17, 18, 19, 22 | syl13anc 1440 | . 2 ⊢ (𝜑 → ((𝑋(.r‘(Scalar‘𝐶))𝑌) ∙ 𝐺) = (𝑋 ∙ (𝑌 ∙ 𝐺))) |
24 | 13, 23 | eqtr3d 2816 | 1 ⊢ (𝜑 → ((𝑌 · 𝑋) ∙ 𝐺) = (𝑋 ∙ (𝑌 ∙ 𝐺))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1601 ∈ wcel 2107 ‘cfv 6135 (class class class)co 6922 Basecbs 16255 .rcmulr 16339 Scalarcsca 16341 ·𝑠 cvsca 16342 LModclmod 19255 HLchlt 35506 LHypclh 36140 DVecHcdvh 37234 LCDualclcd 37742 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-cnex 10328 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-pre-mulgt0 10349 ax-riotaBAD 35109 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-fal 1615 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4672 df-int 4711 df-iun 4755 df-iin 4756 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-of 7174 df-om 7344 df-1st 7445 df-2nd 7446 df-tpos 7634 df-undef 7681 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-1o 7843 df-oadd 7847 df-er 8026 df-map 8142 df-en 8242 df-dom 8243 df-sdom 8244 df-fin 8245 df-pnf 10413 df-mnf 10414 df-xr 10415 df-ltxr 10416 df-le 10417 df-sub 10608 df-neg 10609 df-nn 11375 df-2 11438 df-3 11439 df-4 11440 df-5 11441 df-6 11442 df-n0 11643 df-z 11729 df-uz 11993 df-fz 12644 df-struct 16257 df-ndx 16258 df-slot 16259 df-base 16261 df-sets 16262 df-ress 16263 df-plusg 16351 df-mulr 16352 df-sca 16354 df-vsca 16355 df-0g 16488 df-mre 16632 df-mrc 16633 df-acs 16635 df-proset 17314 df-poset 17332 df-plt 17344 df-lub 17360 df-glb 17361 df-join 17362 df-meet 17363 df-p0 17425 df-p1 17426 df-lat 17432 df-clat 17494 df-mgm 17628 df-sgrp 17670 df-mnd 17681 df-submnd 17722 df-grp 17812 df-minusg 17813 df-sbg 17814 df-subg 17975 df-cntz 18133 df-oppg 18159 df-lsm 18435 df-cmn 18581 df-abl 18582 df-mgp 18877 df-ur 18889 df-ring 18936 df-oppr 19010 df-dvdsr 19028 df-unit 19029 df-invr 19059 df-dvr 19070 df-drng 19141 df-lmod 19257 df-lss 19325 df-lsp 19367 df-lvec 19498 df-lsatoms 35132 df-lshyp 35133 df-lcv 35175 df-lfl 35214 df-lkr 35242 df-ldual 35280 df-oposet 35332 df-ol 35334 df-oml 35335 df-covers 35422 df-ats 35423 df-atl 35454 df-cvlat 35478 df-hlat 35507 df-llines 35654 df-lplanes 35655 df-lvols 35656 df-lines 35657 df-psubsp 35659 df-pmap 35660 df-padd 35952 df-lhyp 36144 df-laut 36145 df-ldil 36260 df-ltrn 36261 df-trl 36315 df-tgrp 36899 df-tendo 36911 df-edring 36913 df-dveca 37159 df-disoa 37185 df-dvech 37235 df-dib 37295 df-dic 37329 df-dih 37385 df-doch 37504 df-djh 37551 df-lcdual 37743 |
This theorem is referenced by: mapdpglem21 37848 mapdpglem30 37858 |
Copyright terms: Public domain | W3C validator |