Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodvs0 Structured version   Visualization version   GIF version

Theorem lmodvs0 19664
 Description: Anything times the zero vector is the zero vector. Equation 1b of [Kreyszig] p. 51. (hvmul0 28810 analog.) (Contributed by NM, 12-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lmodvs0.f 𝐹 = (Scalar‘𝑊)
lmodvs0.s · = ( ·𝑠𝑊)
lmodvs0.k 𝐾 = (Base‘𝐹)
lmodvs0.z 0 = (0g𝑊)
Assertion
Ref Expression
lmodvs0 ((𝑊 ∈ LMod ∧ 𝑋𝐾) → (𝑋 · 0 ) = 0 )

Proof of Theorem lmodvs0
StepHypRef Expression
1 lmodvs0.f . . . . 5 𝐹 = (Scalar‘𝑊)
21lmodring 19638 . . . 4 (𝑊 ∈ LMod → 𝐹 ∈ Ring)
3 lmodvs0.k . . . . 5 𝐾 = (Base‘𝐹)
4 eqid 2801 . . . . 5 (.r𝐹) = (.r𝐹)
5 eqid 2801 . . . . 5 (0g𝐹) = (0g𝐹)
63, 4, 5ringrz 19337 . . . 4 ((𝐹 ∈ Ring ∧ 𝑋𝐾) → (𝑋(.r𝐹)(0g𝐹)) = (0g𝐹))
72, 6sylan 583 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝐾) → (𝑋(.r𝐹)(0g𝐹)) = (0g𝐹))
87oveq1d 7154 . 2 ((𝑊 ∈ LMod ∧ 𝑋𝐾) → ((𝑋(.r𝐹)(0g𝐹)) · 0 ) = ((0g𝐹) · 0 ))
9 simpl 486 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝐾) → 𝑊 ∈ LMod)
10 simpr 488 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝐾) → 𝑋𝐾)
112adantr 484 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑋𝐾) → 𝐹 ∈ Ring)
123, 5ring0cl 19318 . . . . 5 (𝐹 ∈ Ring → (0g𝐹) ∈ 𝐾)
1311, 12syl 17 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝐾) → (0g𝐹) ∈ 𝐾)
14 eqid 2801 . . . . . 6 (Base‘𝑊) = (Base‘𝑊)
15 lmodvs0.z . . . . . 6 0 = (0g𝑊)
1614, 15lmod0vcl 19659 . . . . 5 (𝑊 ∈ LMod → 0 ∈ (Base‘𝑊))
1716adantr 484 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝐾) → 0 ∈ (Base‘𝑊))
18 lmodvs0.s . . . . 5 · = ( ·𝑠𝑊)
1914, 1, 18, 3, 4lmodvsass 19655 . . . 4 ((𝑊 ∈ LMod ∧ (𝑋𝐾 ∧ (0g𝐹) ∈ 𝐾0 ∈ (Base‘𝑊))) → ((𝑋(.r𝐹)(0g𝐹)) · 0 ) = (𝑋 · ((0g𝐹) · 0 )))
209, 10, 13, 17, 19syl13anc 1369 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝐾) → ((𝑋(.r𝐹)(0g𝐹)) · 0 ) = (𝑋 · ((0g𝐹) · 0 )))
2114, 1, 18, 5, 15lmod0vs 19663 . . . . 5 ((𝑊 ∈ LMod ∧ 0 ∈ (Base‘𝑊)) → ((0g𝐹) · 0 ) = 0 )
2217, 21syldan 594 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝐾) → ((0g𝐹) · 0 ) = 0 )
2322oveq2d 7155 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝐾) → (𝑋 · ((0g𝐹) · 0 )) = (𝑋 · 0 ))
2420, 23eqtrd 2836 . 2 ((𝑊 ∈ LMod ∧ 𝑋𝐾) → ((𝑋(.r𝐹)(0g𝐹)) · 0 ) = (𝑋 · 0 ))
258, 24, 223eqtr3d 2844 1 ((𝑊 ∈ LMod ∧ 𝑋𝐾) → (𝑋 · 0 ) = 0 )
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2112  ‘cfv 6328  (class class class)co 7139  Basecbs 16478  .rcmulr 16561  Scalarcsca 16563   ·𝑠 cvsca 16564  0gc0g 16708  Ringcrg 19293  LModclmod 19630 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-2 11692  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-plusg 16573  df-0g 16710  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-grp 18101  df-mgp 19236  df-ring 19295  df-lmod 19632 This theorem is referenced by:  lmodfopne  19668  lsssn0  19715  lmodvsinv2  19805  0lmhm  19808  lvecvs0or  19876  dsmmlss  20436  pmatcollpwfi  21390  pmatcollpw3fi1lem1  21394  pm2mp  21433  chfacfscmul0  21466  ttgbtwnid  26681  0nellinds  30989  lcdvs0N  38905  hdmap14lem13  39169  lmodvsmdi  44771  linc0scn0  44819
 Copyright terms: Public domain W3C validator