![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmodvs0 | Structured version Visualization version GIF version |
Description: Anything times the zero vector is the zero vector. Equation 1b of [Kreyszig] p. 51. (hvmul0 28574 analog.) (Contributed by NM, 12-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
lmodvs0.f | ⊢ 𝐹 = (Scalar‘𝑊) |
lmodvs0.s | ⊢ · = ( ·𝑠 ‘𝑊) |
lmodvs0.k | ⊢ 𝐾 = (Base‘𝐹) |
lmodvs0.z | ⊢ 0 = (0g‘𝑊) |
Ref | Expression |
---|---|
lmodvs0 | ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾) → (𝑋 · 0 ) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmodvs0.f | . . . . 5 ⊢ 𝐹 = (Scalar‘𝑊) | |
2 | 1 | lmodring 19358 | . . . 4 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) |
3 | lmodvs0.k | . . . . 5 ⊢ 𝐾 = (Base‘𝐹) | |
4 | eqid 2775 | . . . . 5 ⊢ (.r‘𝐹) = (.r‘𝐹) | |
5 | eqid 2775 | . . . . 5 ⊢ (0g‘𝐹) = (0g‘𝐹) | |
6 | 3, 4, 5 | ringrz 19055 | . . . 4 ⊢ ((𝐹 ∈ Ring ∧ 𝑋 ∈ 𝐾) → (𝑋(.r‘𝐹)(0g‘𝐹)) = (0g‘𝐹)) |
7 | 2, 6 | sylan 572 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾) → (𝑋(.r‘𝐹)(0g‘𝐹)) = (0g‘𝐹)) |
8 | 7 | oveq1d 6989 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾) → ((𝑋(.r‘𝐹)(0g‘𝐹)) · 0 ) = ((0g‘𝐹) · 0 )) |
9 | simpl 475 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾) → 𝑊 ∈ LMod) | |
10 | simpr 477 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾) → 𝑋 ∈ 𝐾) | |
11 | 2 | adantr 473 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾) → 𝐹 ∈ Ring) |
12 | 3, 5 | ring0cl 19036 | . . . . 5 ⊢ (𝐹 ∈ Ring → (0g‘𝐹) ∈ 𝐾) |
13 | 11, 12 | syl 17 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾) → (0g‘𝐹) ∈ 𝐾) |
14 | eqid 2775 | . . . . . 6 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
15 | lmodvs0.z | . . . . . 6 ⊢ 0 = (0g‘𝑊) | |
16 | 14, 15 | lmod0vcl 19379 | . . . . 5 ⊢ (𝑊 ∈ LMod → 0 ∈ (Base‘𝑊)) |
17 | 16 | adantr 473 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾) → 0 ∈ (Base‘𝑊)) |
18 | lmodvs0.s | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
19 | 14, 1, 18, 3, 4 | lmodvsass 19375 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ (𝑋 ∈ 𝐾 ∧ (0g‘𝐹) ∈ 𝐾 ∧ 0 ∈ (Base‘𝑊))) → ((𝑋(.r‘𝐹)(0g‘𝐹)) · 0 ) = (𝑋 · ((0g‘𝐹) · 0 ))) |
20 | 9, 10, 13, 17, 19 | syl13anc 1352 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾) → ((𝑋(.r‘𝐹)(0g‘𝐹)) · 0 ) = (𝑋 · ((0g‘𝐹) · 0 ))) |
21 | 14, 1, 18, 5, 15 | lmod0vs 19383 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 0 ∈ (Base‘𝑊)) → ((0g‘𝐹) · 0 ) = 0 ) |
22 | 17, 21 | syldan 582 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾) → ((0g‘𝐹) · 0 ) = 0 ) |
23 | 22 | oveq2d 6990 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾) → (𝑋 · ((0g‘𝐹) · 0 )) = (𝑋 · 0 )) |
24 | 20, 23 | eqtrd 2811 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾) → ((𝑋(.r‘𝐹)(0g‘𝐹)) · 0 ) = (𝑋 · 0 )) |
25 | 8, 24, 22 | 3eqtr3d 2819 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝐾) → (𝑋 · 0 ) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 = wceq 1507 ∈ wcel 2048 ‘cfv 6186 (class class class)co 6974 Basecbs 16333 .rcmulr 16416 Scalarcsca 16418 ·𝑠 cvsca 16419 0gc0g 16563 Ringcrg 19014 LModclmod 19350 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2747 ax-sep 5058 ax-nul 5065 ax-pow 5117 ax-pr 5184 ax-un 7277 ax-cnex 10387 ax-resscn 10388 ax-1cn 10389 ax-icn 10390 ax-addcl 10391 ax-addrcl 10392 ax-mulcl 10393 ax-mulrcl 10394 ax-mulcom 10395 ax-addass 10396 ax-mulass 10397 ax-distr 10398 ax-i2m1 10399 ax-1ne0 10400 ax-1rid 10401 ax-rnegex 10402 ax-rrecex 10403 ax-cnre 10404 ax-pre-lttri 10405 ax-pre-lttrn 10406 ax-pre-ltadd 10407 ax-pre-mulgt0 10408 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2756 df-cleq 2768 df-clel 2843 df-nfc 2915 df-ne 2965 df-nel 3071 df-ral 3090 df-rex 3091 df-reu 3092 df-rmo 3093 df-rab 3094 df-v 3414 df-sbc 3681 df-csb 3786 df-dif 3831 df-un 3833 df-in 3835 df-ss 3842 df-pss 3844 df-nul 4178 df-if 4349 df-pw 4422 df-sn 4440 df-pr 4442 df-tp 4444 df-op 4446 df-uni 4711 df-iun 4792 df-br 4928 df-opab 4990 df-mpt 5007 df-tr 5029 df-id 5309 df-eprel 5314 df-po 5323 df-so 5324 df-fr 5363 df-we 5365 df-xp 5410 df-rel 5411 df-cnv 5412 df-co 5413 df-dm 5414 df-rn 5415 df-res 5416 df-ima 5417 df-pred 5984 df-ord 6030 df-on 6031 df-lim 6032 df-suc 6033 df-iota 6150 df-fun 6188 df-fn 6189 df-f 6190 df-f1 6191 df-fo 6192 df-f1o 6193 df-fv 6194 df-riota 6935 df-ov 6977 df-oprab 6978 df-mpo 6979 df-om 7395 df-wrecs 7747 df-recs 7809 df-rdg 7847 df-er 8085 df-en 8303 df-dom 8304 df-sdom 8305 df-pnf 10472 df-mnf 10473 df-xr 10474 df-ltxr 10475 df-le 10476 df-sub 10668 df-neg 10669 df-nn 11436 df-2 11500 df-ndx 16336 df-slot 16337 df-base 16339 df-sets 16340 df-plusg 16428 df-0g 16565 df-mgm 17704 df-sgrp 17746 df-mnd 17757 df-grp 17888 df-mgp 18957 df-ring 19016 df-lmod 19352 |
This theorem is referenced by: lmodfopne 19388 lsssn0 19435 lmodvsinv2 19525 0lmhm 19528 lvecvs0or 19596 dsmmlss 20584 pmatcollpwfi 21088 pmatcollpw3fi1lem1 21092 pm2mp 21131 chfacfscmul0 21164 ttgbtwnid 26367 0nellinds 30599 lcdvs0N 38175 hdmap14lem13 38439 lmodvsmdi 43770 linc0scn0 43819 |
Copyright terms: Public domain | W3C validator |