Step | Hyp | Ref
| Expression |
1 | | lveclmod 20861 |
. . . 4
β’ (π β LVec β π β LMod) |
2 | 1 | 3ad2ant1 1133 |
. . 3
β’ ((π β LVec β§ (π
β πΎ β§ π
β 0 ) β§ π β π) β π β LMod) |
3 | | simp2l 1199 |
. . 3
β’ ((π β LVec β§ (π
β πΎ β§ π
β 0 ) β§ π β π) β π
β πΎ) |
4 | | simp3 1138 |
. . 3
β’ ((π β LVec β§ (π
β πΎ β§ π
β 0 ) β§ π β π) β π β π) |
5 | | lspsnvs.f |
. . . 4
β’ πΉ = (Scalarβπ) |
6 | | lspsnvs.k |
. . . 4
β’ πΎ = (BaseβπΉ) |
7 | | lspsnvs.v |
. . . 4
β’ π = (Baseβπ) |
8 | | lspsnvs.t |
. . . 4
β’ Β· = (
Β·π βπ) |
9 | | lspsnvs.n |
. . . 4
β’ π = (LSpanβπ) |
10 | 5, 6, 7, 8, 9 | lspsnvsi 20759 |
. . 3
β’ ((π β LMod β§ π
β πΎ β§ π β π) β (πβ{(π
Β· π)}) β (πβ{π})) |
11 | 2, 3, 4, 10 | syl3anc 1371 |
. 2
β’ ((π β LVec β§ (π
β πΎ β§ π
β 0 ) β§ π β π) β (πβ{(π
Β· π)}) β (πβ{π})) |
12 | 5 | lvecdrng 20860 |
. . . . . . . . 9
β’ (π β LVec β πΉ β
DivRing) |
13 | 12 | 3ad2ant1 1133 |
. . . . . . . 8
β’ ((π β LVec β§ (π
β πΎ β§ π
β 0 ) β§ π β π) β πΉ β DivRing) |
14 | | simp2r 1200 |
. . . . . . . 8
β’ ((π β LVec β§ (π
β πΎ β§ π
β 0 ) β§ π β π) β π
β 0 ) |
15 | | lspsnvs.o |
. . . . . . . . 9
β’ 0 =
(0gβπΉ) |
16 | | eqid 2732 |
. . . . . . . . 9
β’
(.rβπΉ) = (.rβπΉ) |
17 | | eqid 2732 |
. . . . . . . . 9
β’
(1rβπΉ) = (1rβπΉ) |
18 | | eqid 2732 |
. . . . . . . . 9
β’
(invrβπΉ) = (invrβπΉ) |
19 | 6, 15, 16, 17, 18 | drnginvrl 20525 |
. . . . . . . 8
β’ ((πΉ β DivRing β§ π
β πΎ β§ π
β 0 ) β
(((invrβπΉ)βπ
)(.rβπΉ)π
) = (1rβπΉ)) |
20 | 13, 3, 14, 19 | syl3anc 1371 |
. . . . . . 7
β’ ((π β LVec β§ (π
β πΎ β§ π
β 0 ) β§ π β π) β (((invrβπΉ)βπ
)(.rβπΉ)π
) = (1rβπΉ)) |
21 | 20 | oveq1d 7426 |
. . . . . 6
β’ ((π β LVec β§ (π
β πΎ β§ π
β 0 ) β§ π β π) β ((((invrβπΉ)βπ
)(.rβπΉ)π
) Β· π) = ((1rβπΉ) Β· π)) |
22 | 6, 15, 18 | drnginvrcl 20522 |
. . . . . . . 8
β’ ((πΉ β DivRing β§ π
β πΎ β§ π
β 0 ) β
((invrβπΉ)βπ
) β πΎ) |
23 | 13, 3, 14, 22 | syl3anc 1371 |
. . . . . . 7
β’ ((π β LVec β§ (π
β πΎ β§ π
β 0 ) β§ π β π) β ((invrβπΉ)βπ
) β πΎ) |
24 | 7, 5, 8, 6, 16 | lmodvsass 20641 |
. . . . . . 7
β’ ((π β LMod β§
(((invrβπΉ)βπ
) β πΎ β§ π
β πΎ β§ π β π)) β ((((invrβπΉ)βπ
)(.rβπΉ)π
) Β· π) = (((invrβπΉ)βπ
) Β· (π
Β· π))) |
25 | 2, 23, 3, 4, 24 | syl13anc 1372 |
. . . . . 6
β’ ((π β LVec β§ (π
β πΎ β§ π
β 0 ) β§ π β π) β ((((invrβπΉ)βπ
)(.rβπΉ)π
) Β· π) = (((invrβπΉ)βπ
) Β· (π
Β· π))) |
26 | 7, 5, 8, 17 | lmodvs1 20644 |
. . . . . . 7
β’ ((π β LMod β§ π β π) β ((1rβπΉ) Β· π) = π) |
27 | 2, 4, 26 | syl2anc 584 |
. . . . . 6
β’ ((π β LVec β§ (π
β πΎ β§ π
β 0 ) β§ π β π) β ((1rβπΉ) Β· π) = π) |
28 | 21, 25, 27 | 3eqtr3d 2780 |
. . . . 5
β’ ((π β LVec β§ (π
β πΎ β§ π
β 0 ) β§ π β π) β (((invrβπΉ)βπ
) Β· (π
Β· π)) = π) |
29 | 28 | sneqd 4640 |
. . . 4
β’ ((π β LVec β§ (π
β πΎ β§ π
β 0 ) β§ π β π) β {(((invrβπΉ)βπ
) Β· (π
Β· π))} = {π}) |
30 | 29 | fveq2d 6895 |
. . 3
β’ ((π β LVec β§ (π
β πΎ β§ π
β 0 ) β§ π β π) β (πβ{(((invrβπΉ)βπ
) Β· (π
Β· π))}) = (πβ{π})) |
31 | 7, 5, 8, 6 | lmodvscl 20632 |
. . . . 5
β’ ((π β LMod β§ π
β πΎ β§ π β π) β (π
Β· π) β π) |
32 | 2, 3, 4, 31 | syl3anc 1371 |
. . . 4
β’ ((π β LVec β§ (π
β πΎ β§ π
β 0 ) β§ π β π) β (π
Β· π) β π) |
33 | 5, 6, 7, 8, 9 | lspsnvsi 20759 |
. . . 4
β’ ((π β LMod β§
((invrβπΉ)βπ
) β πΎ β§ (π
Β· π) β π) β (πβ{(((invrβπΉ)βπ
) Β· (π
Β· π))}) β (πβ{(π
Β· π)})) |
34 | 2, 23, 32, 33 | syl3anc 1371 |
. . 3
β’ ((π β LVec β§ (π
β πΎ β§ π
β 0 ) β§ π β π) β (πβ{(((invrβπΉ)βπ
) Β· (π
Β· π))}) β (πβ{(π
Β· π)})) |
35 | 30, 34 | eqsstrrd 4021 |
. 2
β’ ((π β LVec β§ (π
β πΎ β§ π
β 0 ) β§ π β π) β (πβ{π}) β (πβ{(π
Β· π)})) |
36 | 11, 35 | eqssd 3999 |
1
β’ ((π β LVec β§ (π
β πΎ β§ π
β 0 ) β§ π β π) β (πβ{(π
Β· π)}) = (πβ{π})) |