MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspsnvs Structured version   Visualization version   GIF version

Theorem lspsnvs 21055
Description: A nonzero scalar product does not change the span of a singleton. (spansncol 31552 analog.) (Contributed by NM, 23-Apr-2014.)
Hypotheses
Ref Expression
lspsnvs.v 𝑉 = (Base‘𝑊)
lspsnvs.f 𝐹 = (Scalar‘𝑊)
lspsnvs.t · = ( ·𝑠𝑊)
lspsnvs.k 𝐾 = (Base‘𝐹)
lspsnvs.o 0 = (0g𝐹)
lspsnvs.n 𝑁 = (LSpan‘𝑊)
Assertion
Ref Expression
lspsnvs ((𝑊 ∈ LVec ∧ (𝑅𝐾𝑅0 ) ∧ 𝑋𝑉) → (𝑁‘{(𝑅 · 𝑋)}) = (𝑁‘{𝑋}))

Proof of Theorem lspsnvs
StepHypRef Expression
1 lveclmod 21044 . . . 4 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
213ad2ant1 1133 . . 3 ((𝑊 ∈ LVec ∧ (𝑅𝐾𝑅0 ) ∧ 𝑋𝑉) → 𝑊 ∈ LMod)
3 simp2l 1200 . . 3 ((𝑊 ∈ LVec ∧ (𝑅𝐾𝑅0 ) ∧ 𝑋𝑉) → 𝑅𝐾)
4 simp3 1138 . . 3 ((𝑊 ∈ LVec ∧ (𝑅𝐾𝑅0 ) ∧ 𝑋𝑉) → 𝑋𝑉)
5 lspsnvs.f . . . 4 𝐹 = (Scalar‘𝑊)
6 lspsnvs.k . . . 4 𝐾 = (Base‘𝐹)
7 lspsnvs.v . . . 4 𝑉 = (Base‘𝑊)
8 lspsnvs.t . . . 4 · = ( ·𝑠𝑊)
9 lspsnvs.n . . . 4 𝑁 = (LSpan‘𝑊)
105, 6, 7, 8, 9lspsnvsi 20941 . . 3 ((𝑊 ∈ LMod ∧ 𝑅𝐾𝑋𝑉) → (𝑁‘{(𝑅 · 𝑋)}) ⊆ (𝑁‘{𝑋}))
112, 3, 4, 10syl3anc 1373 . 2 ((𝑊 ∈ LVec ∧ (𝑅𝐾𝑅0 ) ∧ 𝑋𝑉) → (𝑁‘{(𝑅 · 𝑋)}) ⊆ (𝑁‘{𝑋}))
125lvecdrng 21043 . . . . . . . . 9 (𝑊 ∈ LVec → 𝐹 ∈ DivRing)
13123ad2ant1 1133 . . . . . . . 8 ((𝑊 ∈ LVec ∧ (𝑅𝐾𝑅0 ) ∧ 𝑋𝑉) → 𝐹 ∈ DivRing)
14 simp2r 1201 . . . . . . . 8 ((𝑊 ∈ LVec ∧ (𝑅𝐾𝑅0 ) ∧ 𝑋𝑉) → 𝑅0 )
15 lspsnvs.o . . . . . . . . 9 0 = (0g𝐹)
16 eqid 2733 . . . . . . . . 9 (.r𝐹) = (.r𝐹)
17 eqid 2733 . . . . . . . . 9 (1r𝐹) = (1r𝐹)
18 eqid 2733 . . . . . . . . 9 (invr𝐹) = (invr𝐹)
196, 15, 16, 17, 18drnginvrl 20675 . . . . . . . 8 ((𝐹 ∈ DivRing ∧ 𝑅𝐾𝑅0 ) → (((invr𝐹)‘𝑅)(.r𝐹)𝑅) = (1r𝐹))
2013, 3, 14, 19syl3anc 1373 . . . . . . 7 ((𝑊 ∈ LVec ∧ (𝑅𝐾𝑅0 ) ∧ 𝑋𝑉) → (((invr𝐹)‘𝑅)(.r𝐹)𝑅) = (1r𝐹))
2120oveq1d 7369 . . . . . 6 ((𝑊 ∈ LVec ∧ (𝑅𝐾𝑅0 ) ∧ 𝑋𝑉) → ((((invr𝐹)‘𝑅)(.r𝐹)𝑅) · 𝑋) = ((1r𝐹) · 𝑋))
226, 15, 18drnginvrcl 20672 . . . . . . . 8 ((𝐹 ∈ DivRing ∧ 𝑅𝐾𝑅0 ) → ((invr𝐹)‘𝑅) ∈ 𝐾)
2313, 3, 14, 22syl3anc 1373 . . . . . . 7 ((𝑊 ∈ LVec ∧ (𝑅𝐾𝑅0 ) ∧ 𝑋𝑉) → ((invr𝐹)‘𝑅) ∈ 𝐾)
247, 5, 8, 6, 16lmodvsass 20824 . . . . . . 7 ((𝑊 ∈ LMod ∧ (((invr𝐹)‘𝑅) ∈ 𝐾𝑅𝐾𝑋𝑉)) → ((((invr𝐹)‘𝑅)(.r𝐹)𝑅) · 𝑋) = (((invr𝐹)‘𝑅) · (𝑅 · 𝑋)))
252, 23, 3, 4, 24syl13anc 1374 . . . . . 6 ((𝑊 ∈ LVec ∧ (𝑅𝐾𝑅0 ) ∧ 𝑋𝑉) → ((((invr𝐹)‘𝑅)(.r𝐹)𝑅) · 𝑋) = (((invr𝐹)‘𝑅) · (𝑅 · 𝑋)))
267, 5, 8, 17lmodvs1 20827 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((1r𝐹) · 𝑋) = 𝑋)
272, 4, 26syl2anc 584 . . . . . 6 ((𝑊 ∈ LVec ∧ (𝑅𝐾𝑅0 ) ∧ 𝑋𝑉) → ((1r𝐹) · 𝑋) = 𝑋)
2821, 25, 273eqtr3d 2776 . . . . 5 ((𝑊 ∈ LVec ∧ (𝑅𝐾𝑅0 ) ∧ 𝑋𝑉) → (((invr𝐹)‘𝑅) · (𝑅 · 𝑋)) = 𝑋)
2928sneqd 4589 . . . 4 ((𝑊 ∈ LVec ∧ (𝑅𝐾𝑅0 ) ∧ 𝑋𝑉) → {(((invr𝐹)‘𝑅) · (𝑅 · 𝑋))} = {𝑋})
3029fveq2d 6834 . . 3 ((𝑊 ∈ LVec ∧ (𝑅𝐾𝑅0 ) ∧ 𝑋𝑉) → (𝑁‘{(((invr𝐹)‘𝑅) · (𝑅 · 𝑋))}) = (𝑁‘{𝑋}))
317, 5, 8, 6lmodvscl 20815 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑅𝐾𝑋𝑉) → (𝑅 · 𝑋) ∈ 𝑉)
322, 3, 4, 31syl3anc 1373 . . . 4 ((𝑊 ∈ LVec ∧ (𝑅𝐾𝑅0 ) ∧ 𝑋𝑉) → (𝑅 · 𝑋) ∈ 𝑉)
335, 6, 7, 8, 9lspsnvsi 20941 . . . 4 ((𝑊 ∈ LMod ∧ ((invr𝐹)‘𝑅) ∈ 𝐾 ∧ (𝑅 · 𝑋) ∈ 𝑉) → (𝑁‘{(((invr𝐹)‘𝑅) · (𝑅 · 𝑋))}) ⊆ (𝑁‘{(𝑅 · 𝑋)}))
342, 23, 32, 33syl3anc 1373 . . 3 ((𝑊 ∈ LVec ∧ (𝑅𝐾𝑅0 ) ∧ 𝑋𝑉) → (𝑁‘{(((invr𝐹)‘𝑅) · (𝑅 · 𝑋))}) ⊆ (𝑁‘{(𝑅 · 𝑋)}))
3530, 34eqsstrrd 3966 . 2 ((𝑊 ∈ LVec ∧ (𝑅𝐾𝑅0 ) ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ⊆ (𝑁‘{(𝑅 · 𝑋)}))
3611, 35eqssd 3948 1 ((𝑊 ∈ LVec ∧ (𝑅𝐾𝑅0 ) ∧ 𝑋𝑉) → (𝑁‘{(𝑅 · 𝑋)}) = (𝑁‘{𝑋}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  wne 2929  wss 3898  {csn 4577  cfv 6488  (class class class)co 7354  Basecbs 17124  .rcmulr 17166  Scalarcsca 17168   ·𝑠 cvsca 17169  0gc0g 17347  1rcur 20103  invrcinvr 20309  DivRingcdr 20648  LModclmod 20797  LSpanclspn 20908  LVecclvec 21040
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-om 7805  df-1st 7929  df-2nd 7930  df-tpos 8164  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-er 8630  df-en 8878  df-dom 8879  df-sdom 8880  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-nn 12135  df-2 12197  df-3 12198  df-sets 17079  df-slot 17097  df-ndx 17109  df-base 17125  df-ress 17146  df-plusg 17178  df-mulr 17179  df-0g 17349  df-mgm 18552  df-sgrp 18631  df-mnd 18647  df-grp 18853  df-minusg 18854  df-sbg 18855  df-cmn 19698  df-abl 19699  df-mgp 20063  df-rng 20075  df-ur 20104  df-ring 20157  df-oppr 20259  df-dvdsr 20279  df-unit 20280  df-invr 20310  df-drng 20650  df-lmod 20799  df-lss 20869  df-lsp 20909  df-lvec 21041
This theorem is referenced by:  lspsneleq  21056  lspsneq  21063  lspfixed  21069  islbs2  21095  lindsadd  37676  lindsenlbs  37678  mapdpglem22  41815  hdmap14lem1a  41988
  Copyright terms: Public domain W3C validator