| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lspsnvs | Structured version Visualization version GIF version | ||
| Description: A nonzero scalar product does not change the span of a singleton. (spansncol 31552 analog.) (Contributed by NM, 23-Apr-2014.) |
| Ref | Expression |
|---|---|
| lspsnvs.v | ⊢ 𝑉 = (Base‘𝑊) |
| lspsnvs.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| lspsnvs.t | ⊢ · = ( ·𝑠 ‘𝑊) |
| lspsnvs.k | ⊢ 𝐾 = (Base‘𝐹) |
| lspsnvs.o | ⊢ 0 = (0g‘𝐹) |
| lspsnvs.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| Ref | Expression |
|---|---|
| lspsnvs | ⊢ ((𝑊 ∈ LVec ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) ∧ 𝑋 ∈ 𝑉) → (𝑁‘{(𝑅 · 𝑋)}) = (𝑁‘{𝑋})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lveclmod 21044 | . . . 4 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
| 2 | 1 | 3ad2ant1 1133 | . . 3 ⊢ ((𝑊 ∈ LVec ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) ∧ 𝑋 ∈ 𝑉) → 𝑊 ∈ LMod) |
| 3 | simp2l 1200 | . . 3 ⊢ ((𝑊 ∈ LVec ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) ∧ 𝑋 ∈ 𝑉) → 𝑅 ∈ 𝐾) | |
| 4 | simp3 1138 | . . 3 ⊢ ((𝑊 ∈ LVec ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ 𝑉) | |
| 5 | lspsnvs.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 6 | lspsnvs.k | . . . 4 ⊢ 𝐾 = (Base‘𝐹) | |
| 7 | lspsnvs.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
| 8 | lspsnvs.t | . . . 4 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 9 | lspsnvs.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 10 | 5, 6, 7, 8, 9 | lspsnvsi 20941 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → (𝑁‘{(𝑅 · 𝑋)}) ⊆ (𝑁‘{𝑋})) |
| 11 | 2, 3, 4, 10 | syl3anc 1373 | . 2 ⊢ ((𝑊 ∈ LVec ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) ∧ 𝑋 ∈ 𝑉) → (𝑁‘{(𝑅 · 𝑋)}) ⊆ (𝑁‘{𝑋})) |
| 12 | 5 | lvecdrng 21043 | . . . . . . . . 9 ⊢ (𝑊 ∈ LVec → 𝐹 ∈ DivRing) |
| 13 | 12 | 3ad2ant1 1133 | . . . . . . . 8 ⊢ ((𝑊 ∈ LVec ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) ∧ 𝑋 ∈ 𝑉) → 𝐹 ∈ DivRing) |
| 14 | simp2r 1201 | . . . . . . . 8 ⊢ ((𝑊 ∈ LVec ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) ∧ 𝑋 ∈ 𝑉) → 𝑅 ≠ 0 ) | |
| 15 | lspsnvs.o | . . . . . . . . 9 ⊢ 0 = (0g‘𝐹) | |
| 16 | eqid 2733 | . . . . . . . . 9 ⊢ (.r‘𝐹) = (.r‘𝐹) | |
| 17 | eqid 2733 | . . . . . . . . 9 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
| 18 | eqid 2733 | . . . . . . . . 9 ⊢ (invr‘𝐹) = (invr‘𝐹) | |
| 19 | 6, 15, 16, 17, 18 | drnginvrl 20675 | . . . . . . . 8 ⊢ ((𝐹 ∈ DivRing ∧ 𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) → (((invr‘𝐹)‘𝑅)(.r‘𝐹)𝑅) = (1r‘𝐹)) |
| 20 | 13, 3, 14, 19 | syl3anc 1373 | . . . . . . 7 ⊢ ((𝑊 ∈ LVec ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) ∧ 𝑋 ∈ 𝑉) → (((invr‘𝐹)‘𝑅)(.r‘𝐹)𝑅) = (1r‘𝐹)) |
| 21 | 20 | oveq1d 7369 | . . . . . 6 ⊢ ((𝑊 ∈ LVec ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) ∧ 𝑋 ∈ 𝑉) → ((((invr‘𝐹)‘𝑅)(.r‘𝐹)𝑅) · 𝑋) = ((1r‘𝐹) · 𝑋)) |
| 22 | 6, 15, 18 | drnginvrcl 20672 | . . . . . . . 8 ⊢ ((𝐹 ∈ DivRing ∧ 𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) → ((invr‘𝐹)‘𝑅) ∈ 𝐾) |
| 23 | 13, 3, 14, 22 | syl3anc 1373 | . . . . . . 7 ⊢ ((𝑊 ∈ LVec ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) ∧ 𝑋 ∈ 𝑉) → ((invr‘𝐹)‘𝑅) ∈ 𝐾) |
| 24 | 7, 5, 8, 6, 16 | lmodvsass 20824 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ (((invr‘𝐹)‘𝑅) ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((((invr‘𝐹)‘𝑅)(.r‘𝐹)𝑅) · 𝑋) = (((invr‘𝐹)‘𝑅) · (𝑅 · 𝑋))) |
| 25 | 2, 23, 3, 4, 24 | syl13anc 1374 | . . . . . 6 ⊢ ((𝑊 ∈ LVec ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) ∧ 𝑋 ∈ 𝑉) → ((((invr‘𝐹)‘𝑅)(.r‘𝐹)𝑅) · 𝑋) = (((invr‘𝐹)‘𝑅) · (𝑅 · 𝑋))) |
| 26 | 7, 5, 8, 17 | lmodvs1 20827 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ((1r‘𝐹) · 𝑋) = 𝑋) |
| 27 | 2, 4, 26 | syl2anc 584 | . . . . . 6 ⊢ ((𝑊 ∈ LVec ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) ∧ 𝑋 ∈ 𝑉) → ((1r‘𝐹) · 𝑋) = 𝑋) |
| 28 | 21, 25, 27 | 3eqtr3d 2776 | . . . . 5 ⊢ ((𝑊 ∈ LVec ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) ∧ 𝑋 ∈ 𝑉) → (((invr‘𝐹)‘𝑅) · (𝑅 · 𝑋)) = 𝑋) |
| 29 | 28 | sneqd 4589 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) ∧ 𝑋 ∈ 𝑉) → {(((invr‘𝐹)‘𝑅) · (𝑅 · 𝑋))} = {𝑋}) |
| 30 | 29 | fveq2d 6834 | . . 3 ⊢ ((𝑊 ∈ LVec ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) ∧ 𝑋 ∈ 𝑉) → (𝑁‘{(((invr‘𝐹)‘𝑅) · (𝑅 · 𝑋))}) = (𝑁‘{𝑋})) |
| 31 | 7, 5, 8, 6 | lmodvscl 20815 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → (𝑅 · 𝑋) ∈ 𝑉) |
| 32 | 2, 3, 4, 31 | syl3anc 1373 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) ∧ 𝑋 ∈ 𝑉) → (𝑅 · 𝑋) ∈ 𝑉) |
| 33 | 5, 6, 7, 8, 9 | lspsnvsi 20941 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ ((invr‘𝐹)‘𝑅) ∈ 𝐾 ∧ (𝑅 · 𝑋) ∈ 𝑉) → (𝑁‘{(((invr‘𝐹)‘𝑅) · (𝑅 · 𝑋))}) ⊆ (𝑁‘{(𝑅 · 𝑋)})) |
| 34 | 2, 23, 32, 33 | syl3anc 1373 | . . 3 ⊢ ((𝑊 ∈ LVec ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) ∧ 𝑋 ∈ 𝑉) → (𝑁‘{(((invr‘𝐹)‘𝑅) · (𝑅 · 𝑋))}) ⊆ (𝑁‘{(𝑅 · 𝑋)})) |
| 35 | 30, 34 | eqsstrrd 3966 | . 2 ⊢ ((𝑊 ∈ LVec ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) ⊆ (𝑁‘{(𝑅 · 𝑋)})) |
| 36 | 11, 35 | eqssd 3948 | 1 ⊢ ((𝑊 ∈ LVec ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) ∧ 𝑋 ∈ 𝑉) → (𝑁‘{(𝑅 · 𝑋)}) = (𝑁‘{𝑋})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ⊆ wss 3898 {csn 4577 ‘cfv 6488 (class class class)co 7354 Basecbs 17124 .rcmulr 17166 Scalarcsca 17168 ·𝑠 cvsca 17169 0gc0g 17347 1rcur 20103 invrcinvr 20309 DivRingcdr 20648 LModclmod 20797 LSpanclspn 20908 LVecclvec 21040 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-1st 7929 df-2nd 7930 df-tpos 8164 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-er 8630 df-en 8878 df-dom 8879 df-sdom 8880 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-nn 12135 df-2 12197 df-3 12198 df-sets 17079 df-slot 17097 df-ndx 17109 df-base 17125 df-ress 17146 df-plusg 17178 df-mulr 17179 df-0g 17349 df-mgm 18552 df-sgrp 18631 df-mnd 18647 df-grp 18853 df-minusg 18854 df-sbg 18855 df-cmn 19698 df-abl 19699 df-mgp 20063 df-rng 20075 df-ur 20104 df-ring 20157 df-oppr 20259 df-dvdsr 20279 df-unit 20280 df-invr 20310 df-drng 20650 df-lmod 20799 df-lss 20869 df-lsp 20909 df-lvec 21041 |
| This theorem is referenced by: lspsneleq 21056 lspsneq 21063 lspfixed 21069 islbs2 21095 lindsadd 37676 lindsenlbs 37678 mapdpglem22 41815 hdmap14lem1a 41988 |
| Copyright terms: Public domain | W3C validator |