| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lspsnvs | Structured version Visualization version GIF version | ||
| Description: A nonzero scalar product does not change the span of a singleton. (spansncol 31546 analog.) (Contributed by NM, 23-Apr-2014.) |
| Ref | Expression |
|---|---|
| lspsnvs.v | ⊢ 𝑉 = (Base‘𝑊) |
| lspsnvs.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| lspsnvs.t | ⊢ · = ( ·𝑠 ‘𝑊) |
| lspsnvs.k | ⊢ 𝐾 = (Base‘𝐹) |
| lspsnvs.o | ⊢ 0 = (0g‘𝐹) |
| lspsnvs.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| Ref | Expression |
|---|---|
| lspsnvs | ⊢ ((𝑊 ∈ LVec ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) ∧ 𝑋 ∈ 𝑉) → (𝑁‘{(𝑅 · 𝑋)}) = (𝑁‘{𝑋})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lveclmod 21041 | . . . 4 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
| 2 | 1 | 3ad2ant1 1133 | . . 3 ⊢ ((𝑊 ∈ LVec ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) ∧ 𝑋 ∈ 𝑉) → 𝑊 ∈ LMod) |
| 3 | simp2l 1200 | . . 3 ⊢ ((𝑊 ∈ LVec ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) ∧ 𝑋 ∈ 𝑉) → 𝑅 ∈ 𝐾) | |
| 4 | simp3 1138 | . . 3 ⊢ ((𝑊 ∈ LVec ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ 𝑉) | |
| 5 | lspsnvs.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 6 | lspsnvs.k | . . . 4 ⊢ 𝐾 = (Base‘𝐹) | |
| 7 | lspsnvs.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
| 8 | lspsnvs.t | . . . 4 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 9 | lspsnvs.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 10 | 5, 6, 7, 8, 9 | lspsnvsi 20938 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → (𝑁‘{(𝑅 · 𝑋)}) ⊆ (𝑁‘{𝑋})) |
| 11 | 2, 3, 4, 10 | syl3anc 1373 | . 2 ⊢ ((𝑊 ∈ LVec ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) ∧ 𝑋 ∈ 𝑉) → (𝑁‘{(𝑅 · 𝑋)}) ⊆ (𝑁‘{𝑋})) |
| 12 | 5 | lvecdrng 21040 | . . . . . . . . 9 ⊢ (𝑊 ∈ LVec → 𝐹 ∈ DivRing) |
| 13 | 12 | 3ad2ant1 1133 | . . . . . . . 8 ⊢ ((𝑊 ∈ LVec ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) ∧ 𝑋 ∈ 𝑉) → 𝐹 ∈ DivRing) |
| 14 | simp2r 1201 | . . . . . . . 8 ⊢ ((𝑊 ∈ LVec ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) ∧ 𝑋 ∈ 𝑉) → 𝑅 ≠ 0 ) | |
| 15 | lspsnvs.o | . . . . . . . . 9 ⊢ 0 = (0g‘𝐹) | |
| 16 | eqid 2731 | . . . . . . . . 9 ⊢ (.r‘𝐹) = (.r‘𝐹) | |
| 17 | eqid 2731 | . . . . . . . . 9 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
| 18 | eqid 2731 | . . . . . . . . 9 ⊢ (invr‘𝐹) = (invr‘𝐹) | |
| 19 | 6, 15, 16, 17, 18 | drnginvrl 20672 | . . . . . . . 8 ⊢ ((𝐹 ∈ DivRing ∧ 𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) → (((invr‘𝐹)‘𝑅)(.r‘𝐹)𝑅) = (1r‘𝐹)) |
| 20 | 13, 3, 14, 19 | syl3anc 1373 | . . . . . . 7 ⊢ ((𝑊 ∈ LVec ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) ∧ 𝑋 ∈ 𝑉) → (((invr‘𝐹)‘𝑅)(.r‘𝐹)𝑅) = (1r‘𝐹)) |
| 21 | 20 | oveq1d 7361 | . . . . . 6 ⊢ ((𝑊 ∈ LVec ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) ∧ 𝑋 ∈ 𝑉) → ((((invr‘𝐹)‘𝑅)(.r‘𝐹)𝑅) · 𝑋) = ((1r‘𝐹) · 𝑋)) |
| 22 | 6, 15, 18 | drnginvrcl 20669 | . . . . . . . 8 ⊢ ((𝐹 ∈ DivRing ∧ 𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) → ((invr‘𝐹)‘𝑅) ∈ 𝐾) |
| 23 | 13, 3, 14, 22 | syl3anc 1373 | . . . . . . 7 ⊢ ((𝑊 ∈ LVec ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) ∧ 𝑋 ∈ 𝑉) → ((invr‘𝐹)‘𝑅) ∈ 𝐾) |
| 24 | 7, 5, 8, 6, 16 | lmodvsass 20821 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ (((invr‘𝐹)‘𝑅) ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((((invr‘𝐹)‘𝑅)(.r‘𝐹)𝑅) · 𝑋) = (((invr‘𝐹)‘𝑅) · (𝑅 · 𝑋))) |
| 25 | 2, 23, 3, 4, 24 | syl13anc 1374 | . . . . . 6 ⊢ ((𝑊 ∈ LVec ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) ∧ 𝑋 ∈ 𝑉) → ((((invr‘𝐹)‘𝑅)(.r‘𝐹)𝑅) · 𝑋) = (((invr‘𝐹)‘𝑅) · (𝑅 · 𝑋))) |
| 26 | 7, 5, 8, 17 | lmodvs1 20824 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ((1r‘𝐹) · 𝑋) = 𝑋) |
| 27 | 2, 4, 26 | syl2anc 584 | . . . . . 6 ⊢ ((𝑊 ∈ LVec ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) ∧ 𝑋 ∈ 𝑉) → ((1r‘𝐹) · 𝑋) = 𝑋) |
| 28 | 21, 25, 27 | 3eqtr3d 2774 | . . . . 5 ⊢ ((𝑊 ∈ LVec ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) ∧ 𝑋 ∈ 𝑉) → (((invr‘𝐹)‘𝑅) · (𝑅 · 𝑋)) = 𝑋) |
| 29 | 28 | sneqd 4588 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) ∧ 𝑋 ∈ 𝑉) → {(((invr‘𝐹)‘𝑅) · (𝑅 · 𝑋))} = {𝑋}) |
| 30 | 29 | fveq2d 6826 | . . 3 ⊢ ((𝑊 ∈ LVec ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) ∧ 𝑋 ∈ 𝑉) → (𝑁‘{(((invr‘𝐹)‘𝑅) · (𝑅 · 𝑋))}) = (𝑁‘{𝑋})) |
| 31 | 7, 5, 8, 6 | lmodvscl 20812 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → (𝑅 · 𝑋) ∈ 𝑉) |
| 32 | 2, 3, 4, 31 | syl3anc 1373 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) ∧ 𝑋 ∈ 𝑉) → (𝑅 · 𝑋) ∈ 𝑉) |
| 33 | 5, 6, 7, 8, 9 | lspsnvsi 20938 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ ((invr‘𝐹)‘𝑅) ∈ 𝐾 ∧ (𝑅 · 𝑋) ∈ 𝑉) → (𝑁‘{(((invr‘𝐹)‘𝑅) · (𝑅 · 𝑋))}) ⊆ (𝑁‘{(𝑅 · 𝑋)})) |
| 34 | 2, 23, 32, 33 | syl3anc 1373 | . . 3 ⊢ ((𝑊 ∈ LVec ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) ∧ 𝑋 ∈ 𝑉) → (𝑁‘{(((invr‘𝐹)‘𝑅) · (𝑅 · 𝑋))}) ⊆ (𝑁‘{(𝑅 · 𝑋)})) |
| 35 | 30, 34 | eqsstrrd 3970 | . 2 ⊢ ((𝑊 ∈ LVec ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) ⊆ (𝑁‘{(𝑅 · 𝑋)})) |
| 36 | 11, 35 | eqssd 3952 | 1 ⊢ ((𝑊 ∈ LVec ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) ∧ 𝑋 ∈ 𝑉) → (𝑁‘{(𝑅 · 𝑋)}) = (𝑁‘{𝑋})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ⊆ wss 3902 {csn 4576 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 .rcmulr 17162 Scalarcsca 17164 ·𝑠 cvsca 17165 0gc0g 17343 1rcur 20100 invrcinvr 20306 DivRingcdr 20645 LModclmod 20794 LSpanclspn 20905 LVecclvec 21037 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-tpos 8156 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-grp 18849 df-minusg 18850 df-sbg 18851 df-cmn 19695 df-abl 19696 df-mgp 20060 df-rng 20072 df-ur 20101 df-ring 20154 df-oppr 20256 df-dvdsr 20276 df-unit 20277 df-invr 20307 df-drng 20647 df-lmod 20796 df-lss 20866 df-lsp 20906 df-lvec 21038 |
| This theorem is referenced by: lspsneleq 21053 lspsneq 21060 lspfixed 21066 islbs2 21092 lindsadd 37659 lindsenlbs 37661 mapdpglem22 41738 hdmap14lem1a 41911 |
| Copyright terms: Public domain | W3C validator |