Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lspsnvs | Structured version Visualization version GIF version |
Description: A nonzero scalar product does not change the span of a singleton. (spansncol 29831 analog.) (Contributed by NM, 23-Apr-2014.) |
Ref | Expression |
---|---|
lspsnvs.v | ⊢ 𝑉 = (Base‘𝑊) |
lspsnvs.f | ⊢ 𝐹 = (Scalar‘𝑊) |
lspsnvs.t | ⊢ · = ( ·𝑠 ‘𝑊) |
lspsnvs.k | ⊢ 𝐾 = (Base‘𝐹) |
lspsnvs.o | ⊢ 0 = (0g‘𝐹) |
lspsnvs.n | ⊢ 𝑁 = (LSpan‘𝑊) |
Ref | Expression |
---|---|
lspsnvs | ⊢ ((𝑊 ∈ LVec ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) ∧ 𝑋 ∈ 𝑉) → (𝑁‘{(𝑅 · 𝑋)}) = (𝑁‘{𝑋})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lveclmod 20283 | . . . 4 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
2 | 1 | 3ad2ant1 1131 | . . 3 ⊢ ((𝑊 ∈ LVec ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) ∧ 𝑋 ∈ 𝑉) → 𝑊 ∈ LMod) |
3 | simp2l 1197 | . . 3 ⊢ ((𝑊 ∈ LVec ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) ∧ 𝑋 ∈ 𝑉) → 𝑅 ∈ 𝐾) | |
4 | simp3 1136 | . . 3 ⊢ ((𝑊 ∈ LVec ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ 𝑉) | |
5 | lspsnvs.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
6 | lspsnvs.k | . . . 4 ⊢ 𝐾 = (Base‘𝐹) | |
7 | lspsnvs.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
8 | lspsnvs.t | . . . 4 ⊢ · = ( ·𝑠 ‘𝑊) | |
9 | lspsnvs.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑊) | |
10 | 5, 6, 7, 8, 9 | lspsnvsi 20181 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → (𝑁‘{(𝑅 · 𝑋)}) ⊆ (𝑁‘{𝑋})) |
11 | 2, 3, 4, 10 | syl3anc 1369 | . 2 ⊢ ((𝑊 ∈ LVec ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) ∧ 𝑋 ∈ 𝑉) → (𝑁‘{(𝑅 · 𝑋)}) ⊆ (𝑁‘{𝑋})) |
12 | 5 | lvecdrng 20282 | . . . . . . . . 9 ⊢ (𝑊 ∈ LVec → 𝐹 ∈ DivRing) |
13 | 12 | 3ad2ant1 1131 | . . . . . . . 8 ⊢ ((𝑊 ∈ LVec ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) ∧ 𝑋 ∈ 𝑉) → 𝐹 ∈ DivRing) |
14 | simp2r 1198 | . . . . . . . 8 ⊢ ((𝑊 ∈ LVec ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) ∧ 𝑋 ∈ 𝑉) → 𝑅 ≠ 0 ) | |
15 | lspsnvs.o | . . . . . . . . 9 ⊢ 0 = (0g‘𝐹) | |
16 | eqid 2738 | . . . . . . . . 9 ⊢ (.r‘𝐹) = (.r‘𝐹) | |
17 | eqid 2738 | . . . . . . . . 9 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
18 | eqid 2738 | . . . . . . . . 9 ⊢ (invr‘𝐹) = (invr‘𝐹) | |
19 | 6, 15, 16, 17, 18 | drnginvrl 19925 | . . . . . . . 8 ⊢ ((𝐹 ∈ DivRing ∧ 𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) → (((invr‘𝐹)‘𝑅)(.r‘𝐹)𝑅) = (1r‘𝐹)) |
20 | 13, 3, 14, 19 | syl3anc 1369 | . . . . . . 7 ⊢ ((𝑊 ∈ LVec ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) ∧ 𝑋 ∈ 𝑉) → (((invr‘𝐹)‘𝑅)(.r‘𝐹)𝑅) = (1r‘𝐹)) |
21 | 20 | oveq1d 7270 | . . . . . 6 ⊢ ((𝑊 ∈ LVec ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) ∧ 𝑋 ∈ 𝑉) → ((((invr‘𝐹)‘𝑅)(.r‘𝐹)𝑅) · 𝑋) = ((1r‘𝐹) · 𝑋)) |
22 | 6, 15, 18 | drnginvrcl 19923 | . . . . . . . 8 ⊢ ((𝐹 ∈ DivRing ∧ 𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) → ((invr‘𝐹)‘𝑅) ∈ 𝐾) |
23 | 13, 3, 14, 22 | syl3anc 1369 | . . . . . . 7 ⊢ ((𝑊 ∈ LVec ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) ∧ 𝑋 ∈ 𝑉) → ((invr‘𝐹)‘𝑅) ∈ 𝐾) |
24 | 7, 5, 8, 6, 16 | lmodvsass 20063 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ (((invr‘𝐹)‘𝑅) ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((((invr‘𝐹)‘𝑅)(.r‘𝐹)𝑅) · 𝑋) = (((invr‘𝐹)‘𝑅) · (𝑅 · 𝑋))) |
25 | 2, 23, 3, 4, 24 | syl13anc 1370 | . . . . . 6 ⊢ ((𝑊 ∈ LVec ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) ∧ 𝑋 ∈ 𝑉) → ((((invr‘𝐹)‘𝑅)(.r‘𝐹)𝑅) · 𝑋) = (((invr‘𝐹)‘𝑅) · (𝑅 · 𝑋))) |
26 | 7, 5, 8, 17 | lmodvs1 20066 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ((1r‘𝐹) · 𝑋) = 𝑋) |
27 | 2, 4, 26 | syl2anc 583 | . . . . . 6 ⊢ ((𝑊 ∈ LVec ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) ∧ 𝑋 ∈ 𝑉) → ((1r‘𝐹) · 𝑋) = 𝑋) |
28 | 21, 25, 27 | 3eqtr3d 2786 | . . . . 5 ⊢ ((𝑊 ∈ LVec ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) ∧ 𝑋 ∈ 𝑉) → (((invr‘𝐹)‘𝑅) · (𝑅 · 𝑋)) = 𝑋) |
29 | 28 | sneqd 4570 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) ∧ 𝑋 ∈ 𝑉) → {(((invr‘𝐹)‘𝑅) · (𝑅 · 𝑋))} = {𝑋}) |
30 | 29 | fveq2d 6760 | . . 3 ⊢ ((𝑊 ∈ LVec ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) ∧ 𝑋 ∈ 𝑉) → (𝑁‘{(((invr‘𝐹)‘𝑅) · (𝑅 · 𝑋))}) = (𝑁‘{𝑋})) |
31 | 7, 5, 8, 6 | lmodvscl 20055 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → (𝑅 · 𝑋) ∈ 𝑉) |
32 | 2, 3, 4, 31 | syl3anc 1369 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) ∧ 𝑋 ∈ 𝑉) → (𝑅 · 𝑋) ∈ 𝑉) |
33 | 5, 6, 7, 8, 9 | lspsnvsi 20181 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ ((invr‘𝐹)‘𝑅) ∈ 𝐾 ∧ (𝑅 · 𝑋) ∈ 𝑉) → (𝑁‘{(((invr‘𝐹)‘𝑅) · (𝑅 · 𝑋))}) ⊆ (𝑁‘{(𝑅 · 𝑋)})) |
34 | 2, 23, 32, 33 | syl3anc 1369 | . . 3 ⊢ ((𝑊 ∈ LVec ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) ∧ 𝑋 ∈ 𝑉) → (𝑁‘{(((invr‘𝐹)‘𝑅) · (𝑅 · 𝑋))}) ⊆ (𝑁‘{(𝑅 · 𝑋)})) |
35 | 30, 34 | eqsstrrd 3956 | . 2 ⊢ ((𝑊 ∈ LVec ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) ⊆ (𝑁‘{(𝑅 · 𝑋)})) |
36 | 11, 35 | eqssd 3934 | 1 ⊢ ((𝑊 ∈ LVec ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) ∧ 𝑋 ∈ 𝑉) → (𝑁‘{(𝑅 · 𝑋)}) = (𝑁‘{𝑋})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ⊆ wss 3883 {csn 4558 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 .rcmulr 16889 Scalarcsca 16891 ·𝑠 cvsca 16892 0gc0g 17067 1rcur 19652 invrcinvr 19828 DivRingcdr 19906 LModclmod 20038 LSpanclspn 20148 LVecclvec 20279 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-tpos 8013 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-0g 17069 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-grp 18495 df-minusg 18496 df-sbg 18497 df-mgp 19636 df-ur 19653 df-ring 19700 df-oppr 19777 df-dvdsr 19798 df-unit 19799 df-invr 19829 df-drng 19908 df-lmod 20040 df-lss 20109 df-lsp 20149 df-lvec 20280 |
This theorem is referenced by: lspsneleq 20292 lspsneq 20299 lspfixed 20305 islbs2 20331 lindsadd 35697 lindsenlbs 35699 mapdpglem22 39634 hdmap14lem1a 39807 |
Copyright terms: Public domain | W3C validator |