Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lspsnvs | Structured version Visualization version GIF version |
Description: A nonzero scalar product does not change the span of a singleton. (spansncol 29505 analog.) (Contributed by NM, 23-Apr-2014.) |
Ref | Expression |
---|---|
lspsnvs.v | ⊢ 𝑉 = (Base‘𝑊) |
lspsnvs.f | ⊢ 𝐹 = (Scalar‘𝑊) |
lspsnvs.t | ⊢ · = ( ·𝑠 ‘𝑊) |
lspsnvs.k | ⊢ 𝐾 = (Base‘𝐹) |
lspsnvs.o | ⊢ 0 = (0g‘𝐹) |
lspsnvs.n | ⊢ 𝑁 = (LSpan‘𝑊) |
Ref | Expression |
---|---|
lspsnvs | ⊢ ((𝑊 ∈ LVec ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) ∧ 𝑋 ∈ 𝑉) → (𝑁‘{(𝑅 · 𝑋)}) = (𝑁‘{𝑋})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lveclmod 19999 | . . . 4 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
2 | 1 | 3ad2ant1 1134 | . . 3 ⊢ ((𝑊 ∈ LVec ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) ∧ 𝑋 ∈ 𝑉) → 𝑊 ∈ LMod) |
3 | simp2l 1200 | . . 3 ⊢ ((𝑊 ∈ LVec ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) ∧ 𝑋 ∈ 𝑉) → 𝑅 ∈ 𝐾) | |
4 | simp3 1139 | . . 3 ⊢ ((𝑊 ∈ LVec ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ 𝑉) | |
5 | lspsnvs.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
6 | lspsnvs.k | . . . 4 ⊢ 𝐾 = (Base‘𝐹) | |
7 | lspsnvs.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
8 | lspsnvs.t | . . . 4 ⊢ · = ( ·𝑠 ‘𝑊) | |
9 | lspsnvs.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑊) | |
10 | 5, 6, 7, 8, 9 | lspsnvsi 19897 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → (𝑁‘{(𝑅 · 𝑋)}) ⊆ (𝑁‘{𝑋})) |
11 | 2, 3, 4, 10 | syl3anc 1372 | . 2 ⊢ ((𝑊 ∈ LVec ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) ∧ 𝑋 ∈ 𝑉) → (𝑁‘{(𝑅 · 𝑋)}) ⊆ (𝑁‘{𝑋})) |
12 | 5 | lvecdrng 19998 | . . . . . . . . 9 ⊢ (𝑊 ∈ LVec → 𝐹 ∈ DivRing) |
13 | 12 | 3ad2ant1 1134 | . . . . . . . 8 ⊢ ((𝑊 ∈ LVec ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) ∧ 𝑋 ∈ 𝑉) → 𝐹 ∈ DivRing) |
14 | simp2r 1201 | . . . . . . . 8 ⊢ ((𝑊 ∈ LVec ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) ∧ 𝑋 ∈ 𝑉) → 𝑅 ≠ 0 ) | |
15 | lspsnvs.o | . . . . . . . . 9 ⊢ 0 = (0g‘𝐹) | |
16 | eqid 2738 | . . . . . . . . 9 ⊢ (.r‘𝐹) = (.r‘𝐹) | |
17 | eqid 2738 | . . . . . . . . 9 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
18 | eqid 2738 | . . . . . . . . 9 ⊢ (invr‘𝐹) = (invr‘𝐹) | |
19 | 6, 15, 16, 17, 18 | drnginvrl 19642 | . . . . . . . 8 ⊢ ((𝐹 ∈ DivRing ∧ 𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) → (((invr‘𝐹)‘𝑅)(.r‘𝐹)𝑅) = (1r‘𝐹)) |
20 | 13, 3, 14, 19 | syl3anc 1372 | . . . . . . 7 ⊢ ((𝑊 ∈ LVec ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) ∧ 𝑋 ∈ 𝑉) → (((invr‘𝐹)‘𝑅)(.r‘𝐹)𝑅) = (1r‘𝐹)) |
21 | 20 | oveq1d 7187 | . . . . . 6 ⊢ ((𝑊 ∈ LVec ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) ∧ 𝑋 ∈ 𝑉) → ((((invr‘𝐹)‘𝑅)(.r‘𝐹)𝑅) · 𝑋) = ((1r‘𝐹) · 𝑋)) |
22 | 6, 15, 18 | drnginvrcl 19640 | . . . . . . . 8 ⊢ ((𝐹 ∈ DivRing ∧ 𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) → ((invr‘𝐹)‘𝑅) ∈ 𝐾) |
23 | 13, 3, 14, 22 | syl3anc 1372 | . . . . . . 7 ⊢ ((𝑊 ∈ LVec ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) ∧ 𝑋 ∈ 𝑉) → ((invr‘𝐹)‘𝑅) ∈ 𝐾) |
24 | 7, 5, 8, 6, 16 | lmodvsass 19780 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ (((invr‘𝐹)‘𝑅) ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉)) → ((((invr‘𝐹)‘𝑅)(.r‘𝐹)𝑅) · 𝑋) = (((invr‘𝐹)‘𝑅) · (𝑅 · 𝑋))) |
25 | 2, 23, 3, 4, 24 | syl13anc 1373 | . . . . . 6 ⊢ ((𝑊 ∈ LVec ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) ∧ 𝑋 ∈ 𝑉) → ((((invr‘𝐹)‘𝑅)(.r‘𝐹)𝑅) · 𝑋) = (((invr‘𝐹)‘𝑅) · (𝑅 · 𝑋))) |
26 | 7, 5, 8, 17 | lmodvs1 19783 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ((1r‘𝐹) · 𝑋) = 𝑋) |
27 | 2, 4, 26 | syl2anc 587 | . . . . . 6 ⊢ ((𝑊 ∈ LVec ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) ∧ 𝑋 ∈ 𝑉) → ((1r‘𝐹) · 𝑋) = 𝑋) |
28 | 21, 25, 27 | 3eqtr3d 2781 | . . . . 5 ⊢ ((𝑊 ∈ LVec ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) ∧ 𝑋 ∈ 𝑉) → (((invr‘𝐹)‘𝑅) · (𝑅 · 𝑋)) = 𝑋) |
29 | 28 | sneqd 4528 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) ∧ 𝑋 ∈ 𝑉) → {(((invr‘𝐹)‘𝑅) · (𝑅 · 𝑋))} = {𝑋}) |
30 | 29 | fveq2d 6680 | . . 3 ⊢ ((𝑊 ∈ LVec ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) ∧ 𝑋 ∈ 𝑉) → (𝑁‘{(((invr‘𝐹)‘𝑅) · (𝑅 · 𝑋))}) = (𝑁‘{𝑋})) |
31 | 7, 5, 8, 6 | lmodvscl 19772 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → (𝑅 · 𝑋) ∈ 𝑉) |
32 | 2, 3, 4, 31 | syl3anc 1372 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) ∧ 𝑋 ∈ 𝑉) → (𝑅 · 𝑋) ∈ 𝑉) |
33 | 5, 6, 7, 8, 9 | lspsnvsi 19897 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ ((invr‘𝐹)‘𝑅) ∈ 𝐾 ∧ (𝑅 · 𝑋) ∈ 𝑉) → (𝑁‘{(((invr‘𝐹)‘𝑅) · (𝑅 · 𝑋))}) ⊆ (𝑁‘{(𝑅 · 𝑋)})) |
34 | 2, 23, 32, 33 | syl3anc 1372 | . . 3 ⊢ ((𝑊 ∈ LVec ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) ∧ 𝑋 ∈ 𝑉) → (𝑁‘{(((invr‘𝐹)‘𝑅) · (𝑅 · 𝑋))}) ⊆ (𝑁‘{(𝑅 · 𝑋)})) |
35 | 30, 34 | eqsstrrd 3916 | . 2 ⊢ ((𝑊 ∈ LVec ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) ⊆ (𝑁‘{(𝑅 · 𝑋)})) |
36 | 11, 35 | eqssd 3894 | 1 ⊢ ((𝑊 ∈ LVec ∧ (𝑅 ∈ 𝐾 ∧ 𝑅 ≠ 0 ) ∧ 𝑋 ∈ 𝑉) → (𝑁‘{(𝑅 · 𝑋)}) = (𝑁‘{𝑋})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1088 = wceq 1542 ∈ wcel 2114 ≠ wne 2934 ⊆ wss 3843 {csn 4516 ‘cfv 6339 (class class class)co 7172 Basecbs 16588 .rcmulr 16671 Scalarcsca 16673 ·𝑠 cvsca 16674 0gc0g 16818 1rcur 19372 invrcinvr 19545 DivRingcdr 19623 LModclmod 19755 LSpanclspn 19864 LVecclvec 19995 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-rep 5154 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7481 ax-cnex 10673 ax-resscn 10674 ax-1cn 10675 ax-icn 10676 ax-addcl 10677 ax-addrcl 10678 ax-mulcl 10679 ax-mulrcl 10680 ax-mulcom 10681 ax-addass 10682 ax-mulass 10683 ax-distr 10684 ax-i2m1 10685 ax-1ne0 10686 ax-1rid 10687 ax-rnegex 10688 ax-rrecex 10689 ax-cnre 10690 ax-pre-lttri 10691 ax-pre-lttrn 10692 ax-pre-ltadd 10693 ax-pre-mulgt0 10694 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-int 4837 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6129 df-ord 6175 df-on 6176 df-lim 6177 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7129 df-ov 7175 df-oprab 7176 df-mpo 7177 df-om 7602 df-1st 7716 df-2nd 7717 df-tpos 7923 df-wrecs 7978 df-recs 8039 df-rdg 8077 df-er 8322 df-en 8558 df-dom 8559 df-sdom 8560 df-pnf 10757 df-mnf 10758 df-xr 10759 df-ltxr 10760 df-le 10761 df-sub 10952 df-neg 10953 df-nn 11719 df-2 11781 df-3 11782 df-ndx 16591 df-slot 16592 df-base 16594 df-sets 16595 df-ress 16596 df-plusg 16683 df-mulr 16684 df-0g 16820 df-mgm 17970 df-sgrp 18019 df-mnd 18030 df-grp 18224 df-minusg 18225 df-sbg 18226 df-mgp 19361 df-ur 19373 df-ring 19420 df-oppr 19497 df-dvdsr 19515 df-unit 19516 df-invr 19546 df-drng 19625 df-lmod 19757 df-lss 19825 df-lsp 19865 df-lvec 19996 |
This theorem is referenced by: lspsneleq 20008 lspsneq 20015 lspfixed 20021 islbs2 20047 lindsadd 35415 lindsenlbs 35417 mapdpglem22 39352 hdmap14lem1a 39525 |
Copyright terms: Public domain | W3C validator |