| Step | Hyp | Ref
| Expression |
| 1 | | hgmapmul.h |
. . . 4
⊢ 𝐻 = (LHyp‘𝐾) |
| 2 | | hgmapmul.u |
. . . 4
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| 3 | | eqid 2736 |
. . . 4
⊢
(Base‘𝑈) =
(Base‘𝑈) |
| 4 | | eqid 2736 |
. . . 4
⊢
(0g‘𝑈) = (0g‘𝑈) |
| 5 | | hgmapmul.k |
. . . 4
⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 6 | 1, 2, 3, 4, 5 | dvh1dim 41445 |
. . 3
⊢ (𝜑 → ∃𝑡 ∈ (Base‘𝑈)𝑡 ≠ (0g‘𝑈)) |
| 7 | | eqid 2736 |
. . . . . . . . 9
⊢
((LCDual‘𝐾)‘𝑊) = ((LCDual‘𝐾)‘𝑊) |
| 8 | 1, 7, 5 | lcdlmod 41595 |
. . . . . . . 8
⊢ (𝜑 → ((LCDual‘𝐾)‘𝑊) ∈ LMod) |
| 9 | 8 | 3ad2ant1 1133 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → ((LCDual‘𝐾)‘𝑊) ∈ LMod) |
| 10 | | hgmapmul.r |
. . . . . . . . 9
⊢ 𝑅 = (Scalar‘𝑈) |
| 11 | | hgmapmul.b |
. . . . . . . . 9
⊢ 𝐵 = (Base‘𝑅) |
| 12 | | eqid 2736 |
. . . . . . . . 9
⊢
(Scalar‘((LCDual‘𝐾)‘𝑊)) = (Scalar‘((LCDual‘𝐾)‘𝑊)) |
| 13 | | eqid 2736 |
. . . . . . . . 9
⊢
(Base‘(Scalar‘((LCDual‘𝐾)‘𝑊))) =
(Base‘(Scalar‘((LCDual‘𝐾)‘𝑊))) |
| 14 | | hgmapmul.g |
. . . . . . . . 9
⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) |
| 15 | | hgmapmul.x |
. . . . . . . . 9
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| 16 | 1, 2, 10, 11, 7, 12, 13, 14, 5, 15 | hgmapdcl 41893 |
. . . . . . . 8
⊢ (𝜑 → (𝐺‘𝑋) ∈
(Base‘(Scalar‘((LCDual‘𝐾)‘𝑊)))) |
| 17 | 16 | 3ad2ant1 1133 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → (𝐺‘𝑋) ∈
(Base‘(Scalar‘((LCDual‘𝐾)‘𝑊)))) |
| 18 | | hgmapmul.y |
. . . . . . . . 9
⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| 19 | 1, 2, 10, 11, 7, 12, 13, 14, 5, 18 | hgmapdcl 41893 |
. . . . . . . 8
⊢ (𝜑 → (𝐺‘𝑌) ∈
(Base‘(Scalar‘((LCDual‘𝐾)‘𝑊)))) |
| 20 | 19 | 3ad2ant1 1133 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → (𝐺‘𝑌) ∈
(Base‘(Scalar‘((LCDual‘𝐾)‘𝑊)))) |
| 21 | | eqid 2736 |
. . . . . . . 8
⊢
(Base‘((LCDual‘𝐾)‘𝑊)) = (Base‘((LCDual‘𝐾)‘𝑊)) |
| 22 | | eqid 2736 |
. . . . . . . 8
⊢
((HDMap‘𝐾)‘𝑊) = ((HDMap‘𝐾)‘𝑊) |
| 23 | 5 | 3ad2ant1 1133 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 24 | | simp2 1137 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → 𝑡 ∈ (Base‘𝑈)) |
| 25 | 1, 2, 3, 7, 21, 22, 23, 24 | hdmapcl 41833 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → (((HDMap‘𝐾)‘𝑊)‘𝑡) ∈ (Base‘((LCDual‘𝐾)‘𝑊))) |
| 26 | | eqid 2736 |
. . . . . . . 8
⊢ (
·𝑠 ‘((LCDual‘𝐾)‘𝑊)) = ( ·𝑠
‘((LCDual‘𝐾)‘𝑊)) |
| 27 | | eqid 2736 |
. . . . . . . 8
⊢
(.r‘(Scalar‘((LCDual‘𝐾)‘𝑊))) =
(.r‘(Scalar‘((LCDual‘𝐾)‘𝑊))) |
| 28 | 21, 12, 26, 13, 27 | lmodvsass 20886 |
. . . . . . 7
⊢
((((LCDual‘𝐾)‘𝑊) ∈ LMod ∧ ((𝐺‘𝑋) ∈
(Base‘(Scalar‘((LCDual‘𝐾)‘𝑊))) ∧ (𝐺‘𝑌) ∈
(Base‘(Scalar‘((LCDual‘𝐾)‘𝑊))) ∧ (((HDMap‘𝐾)‘𝑊)‘𝑡) ∈ (Base‘((LCDual‘𝐾)‘𝑊)))) → (((𝐺‘𝑋)(.r‘(Scalar‘((LCDual‘𝐾)‘𝑊)))(𝐺‘𝑌))( ·𝑠
‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑡)) = ((𝐺‘𝑋)( ·𝑠
‘((LCDual‘𝐾)‘𝑊))((𝐺‘𝑌)( ·𝑠
‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑡)))) |
| 29 | 9, 17, 20, 25, 28 | syl13anc 1373 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → (((𝐺‘𝑋)(.r‘(Scalar‘((LCDual‘𝐾)‘𝑊)))(𝐺‘𝑌))( ·𝑠
‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑡)) = ((𝐺‘𝑋)( ·𝑠
‘((LCDual‘𝐾)‘𝑊))((𝐺‘𝑌)( ·𝑠
‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑡)))) |
| 30 | 1, 2, 5 | dvhlmod 41113 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑈 ∈ LMod) |
| 31 | 30 | 3ad2ant1 1133 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → 𝑈 ∈ LMod) |
| 32 | 15 | 3ad2ant1 1133 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → 𝑋 ∈ 𝐵) |
| 33 | 18 | 3ad2ant1 1133 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → 𝑌 ∈ 𝐵) |
| 34 | | eqid 2736 |
. . . . . . . . . 10
⊢ (
·𝑠 ‘𝑈) = ( ·𝑠
‘𝑈) |
| 35 | | hgmapmul.t |
. . . . . . . . . 10
⊢ · =
(.r‘𝑅) |
| 36 | 3, 10, 34, 11, 35 | lmodvsass 20886 |
. . . . . . . . 9
⊢ ((𝑈 ∈ LMod ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑡 ∈ (Base‘𝑈))) → ((𝑋 · 𝑌)( ·𝑠
‘𝑈)𝑡) = (𝑋( ·𝑠
‘𝑈)(𝑌( ·𝑠
‘𝑈)𝑡))) |
| 37 | 31, 32, 33, 24, 36 | syl13anc 1373 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → ((𝑋 · 𝑌)( ·𝑠
‘𝑈)𝑡) = (𝑋( ·𝑠
‘𝑈)(𝑌( ·𝑠
‘𝑈)𝑡))) |
| 38 | 37 | fveq2d 6909 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → (((HDMap‘𝐾)‘𝑊)‘((𝑋 · 𝑌)( ·𝑠
‘𝑈)𝑡)) = (((HDMap‘𝐾)‘𝑊)‘(𝑋( ·𝑠
‘𝑈)(𝑌( ·𝑠
‘𝑈)𝑡)))) |
| 39 | 3, 10, 34, 11 | lmodvscl 20877 |
. . . . . . . . 9
⊢ ((𝑈 ∈ LMod ∧ 𝑌 ∈ 𝐵 ∧ 𝑡 ∈ (Base‘𝑈)) → (𝑌( ·𝑠
‘𝑈)𝑡) ∈ (Base‘𝑈)) |
| 40 | 31, 33, 24, 39 | syl3anc 1372 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → (𝑌( ·𝑠
‘𝑈)𝑡) ∈ (Base‘𝑈)) |
| 41 | 1, 2, 3, 34, 10, 11, 7, 26, 22, 14, 23, 40, 32 | hgmapvs 41894 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → (((HDMap‘𝐾)‘𝑊)‘(𝑋( ·𝑠
‘𝑈)(𝑌( ·𝑠
‘𝑈)𝑡))) = ((𝐺‘𝑋)( ·𝑠
‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘(𝑌( ·𝑠
‘𝑈)𝑡)))) |
| 42 | 1, 2, 3, 34, 10, 11, 7, 26, 22, 14, 23, 24, 33 | hgmapvs 41894 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → (((HDMap‘𝐾)‘𝑊)‘(𝑌( ·𝑠
‘𝑈)𝑡)) = ((𝐺‘𝑌)( ·𝑠
‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑡))) |
| 43 | 42 | oveq2d 7448 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → ((𝐺‘𝑋)( ·𝑠
‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘(𝑌( ·𝑠
‘𝑈)𝑡))) = ((𝐺‘𝑋)( ·𝑠
‘((LCDual‘𝐾)‘𝑊))((𝐺‘𝑌)( ·𝑠
‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑡)))) |
| 44 | 38, 41, 43 | 3eqtrd 2780 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → (((HDMap‘𝐾)‘𝑊)‘((𝑋 · 𝑌)( ·𝑠
‘𝑈)𝑡)) = ((𝐺‘𝑋)( ·𝑠
‘((LCDual‘𝐾)‘𝑊))((𝐺‘𝑌)( ·𝑠
‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑡)))) |
| 45 | 10, 11, 35 | lmodmcl 20872 |
. . . . . . . . 9
⊢ ((𝑈 ∈ LMod ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 · 𝑌) ∈ 𝐵) |
| 46 | 30, 15, 18, 45 | syl3anc 1372 |
. . . . . . . 8
⊢ (𝜑 → (𝑋 · 𝑌) ∈ 𝐵) |
| 47 | 46 | 3ad2ant1 1133 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → (𝑋 · 𝑌) ∈ 𝐵) |
| 48 | 1, 2, 3, 34, 10, 11, 7, 26, 22, 14, 23, 24, 47 | hgmapvs 41894 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → (((HDMap‘𝐾)‘𝑊)‘((𝑋 · 𝑌)( ·𝑠
‘𝑈)𝑡)) = ((𝐺‘(𝑋 · 𝑌))( ·𝑠
‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑡))) |
| 49 | 29, 44, 48 | 3eqtr2rd 2783 |
. . . . 5
⊢ ((𝜑 ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → ((𝐺‘(𝑋 · 𝑌))( ·𝑠
‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑡)) = (((𝐺‘𝑋)(.r‘(Scalar‘((LCDual‘𝐾)‘𝑊)))(𝐺‘𝑌))( ·𝑠
‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑡))) |
| 50 | | eqid 2736 |
. . . . . 6
⊢
(0g‘((LCDual‘𝐾)‘𝑊)) =
(0g‘((LCDual‘𝐾)‘𝑊)) |
| 51 | 1, 7, 5 | lcdlvec 41594 |
. . . . . . 7
⊢ (𝜑 → ((LCDual‘𝐾)‘𝑊) ∈ LVec) |
| 52 | 51 | 3ad2ant1 1133 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → ((LCDual‘𝐾)‘𝑊) ∈ LVec) |
| 53 | 1, 2, 10, 11, 7, 12, 13, 14, 5, 46 | hgmapdcl 41893 |
. . . . . . 7
⊢ (𝜑 → (𝐺‘(𝑋 · 𝑌)) ∈
(Base‘(Scalar‘((LCDual‘𝐾)‘𝑊)))) |
| 54 | 53 | 3ad2ant1 1133 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → (𝐺‘(𝑋 · 𝑌)) ∈
(Base‘(Scalar‘((LCDual‘𝐾)‘𝑊)))) |
| 55 | 12, 13, 27 | lmodmcl 20872 |
. . . . . . . 8
⊢
((((LCDual‘𝐾)‘𝑊) ∈ LMod ∧ (𝐺‘𝑋) ∈
(Base‘(Scalar‘((LCDual‘𝐾)‘𝑊))) ∧ (𝐺‘𝑌) ∈
(Base‘(Scalar‘((LCDual‘𝐾)‘𝑊)))) → ((𝐺‘𝑋)(.r‘(Scalar‘((LCDual‘𝐾)‘𝑊)))(𝐺‘𝑌)) ∈ (Base‘(Scalar‘((LCDual‘𝐾)‘𝑊)))) |
| 56 | 8, 16, 19, 55 | syl3anc 1372 |
. . . . . . 7
⊢ (𝜑 → ((𝐺‘𝑋)(.r‘(Scalar‘((LCDual‘𝐾)‘𝑊)))(𝐺‘𝑌)) ∈ (Base‘(Scalar‘((LCDual‘𝐾)‘𝑊)))) |
| 57 | 56 | 3ad2ant1 1133 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → ((𝐺‘𝑋)(.r‘(Scalar‘((LCDual‘𝐾)‘𝑊)))(𝐺‘𝑌)) ∈ (Base‘(Scalar‘((LCDual‘𝐾)‘𝑊)))) |
| 58 | | simp3 1138 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → 𝑡 ≠ (0g‘𝑈)) |
| 59 | 1, 2, 3, 4, 7, 50,
22, 23, 24 | hdmapeq0 41847 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → ((((HDMap‘𝐾)‘𝑊)‘𝑡) = (0g‘((LCDual‘𝐾)‘𝑊)) ↔ 𝑡 = (0g‘𝑈))) |
| 60 | 59 | necon3bid 2984 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → ((((HDMap‘𝐾)‘𝑊)‘𝑡) ≠
(0g‘((LCDual‘𝐾)‘𝑊)) ↔ 𝑡 ≠ (0g‘𝑈))) |
| 61 | 58, 60 | mpbird 257 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → (((HDMap‘𝐾)‘𝑊)‘𝑡) ≠
(0g‘((LCDual‘𝐾)‘𝑊))) |
| 62 | 21, 26, 12, 13, 50, 52, 54, 57, 25, 61 | lvecvscan2 21115 |
. . . . 5
⊢ ((𝜑 ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → (((𝐺‘(𝑋 · 𝑌))( ·𝑠
‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑡)) = (((𝐺‘𝑋)(.r‘(Scalar‘((LCDual‘𝐾)‘𝑊)))(𝐺‘𝑌))( ·𝑠
‘((LCDual‘𝐾)‘𝑊))(((HDMap‘𝐾)‘𝑊)‘𝑡)) ↔ (𝐺‘(𝑋 · 𝑌)) = ((𝐺‘𝑋)(.r‘(Scalar‘((LCDual‘𝐾)‘𝑊)))(𝐺‘𝑌)))) |
| 63 | 49, 62 | mpbid 232 |
. . . 4
⊢ ((𝜑 ∧ 𝑡 ∈ (Base‘𝑈) ∧ 𝑡 ≠ (0g‘𝑈)) → (𝐺‘(𝑋 · 𝑌)) = ((𝐺‘𝑋)(.r‘(Scalar‘((LCDual‘𝐾)‘𝑊)))(𝐺‘𝑌))) |
| 64 | 63 | rexlimdv3a 3158 |
. . 3
⊢ (𝜑 → (∃𝑡 ∈ (Base‘𝑈)𝑡 ≠ (0g‘𝑈) → (𝐺‘(𝑋 · 𝑌)) = ((𝐺‘𝑋)(.r‘(Scalar‘((LCDual‘𝐾)‘𝑊)))(𝐺‘𝑌)))) |
| 65 | 6, 64 | mpd 15 |
. 2
⊢ (𝜑 → (𝐺‘(𝑋 · 𝑌)) = ((𝐺‘𝑋)(.r‘(Scalar‘((LCDual‘𝐾)‘𝑊)))(𝐺‘𝑌))) |
| 66 | 1, 2, 10, 11, 14, 5, 15 | hgmapcl 41892 |
. . 3
⊢ (𝜑 → (𝐺‘𝑋) ∈ 𝐵) |
| 67 | 1, 2, 10, 11, 14, 5, 18 | hgmapcl 41892 |
. . 3
⊢ (𝜑 → (𝐺‘𝑌) ∈ 𝐵) |
| 68 | 1, 2, 10, 11, 35, 7, 12, 27, 5, 66, 67 | lcdsmul 41605 |
. 2
⊢ (𝜑 → ((𝐺‘𝑋)(.r‘(Scalar‘((LCDual‘𝐾)‘𝑊)))(𝐺‘𝑌)) = ((𝐺‘𝑌) · (𝐺‘𝑋))) |
| 69 | 65, 68 | eqtrd 2776 |
1
⊢ (𝜑 → (𝐺‘(𝑋 · 𝑌)) = ((𝐺‘𝑌) · (𝐺‘𝑋))) |