Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > gsumvsmul | Structured version Visualization version GIF version |
Description: Pull a scalar multiplication out of a sum of vectors. This theorem properly generalizes gsummulc2 19761, since every ring is a left module over itself. (Contributed by Stefan O'Rear, 6-Feb-2015.) (Revised by Mario Carneiro, 5-May-2015.) (Revised by AV, 10-Jul-2019.) |
Ref | Expression |
---|---|
gsumvsmul.b | ⊢ 𝐵 = (Base‘𝑅) |
gsumvsmul.s | ⊢ 𝑆 = (Scalar‘𝑅) |
gsumvsmul.k | ⊢ 𝐾 = (Base‘𝑆) |
gsumvsmul.z | ⊢ 0 = (0g‘𝑅) |
gsumvsmul.p | ⊢ + = (+g‘𝑅) |
gsumvsmul.t | ⊢ · = ( ·𝑠 ‘𝑅) |
gsumvsmul.r | ⊢ (𝜑 → 𝑅 ∈ LMod) |
gsumvsmul.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
gsumvsmul.x | ⊢ (𝜑 → 𝑋 ∈ 𝐾) |
gsumvsmul.y | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑌 ∈ 𝐵) |
gsumvsmul.n | ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝑌) finSupp 0 ) |
Ref | Expression |
---|---|
gsumvsmul | ⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ 𝐴 ↦ (𝑋 · 𝑌))) = (𝑋 · (𝑅 Σg (𝑘 ∈ 𝐴 ↦ 𝑌)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumvsmul.b | . 2 ⊢ 𝐵 = (Base‘𝑅) | |
2 | gsumvsmul.z | . 2 ⊢ 0 = (0g‘𝑅) | |
3 | gsumvsmul.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ LMod) | |
4 | lmodcmn 20086 | . . 3 ⊢ (𝑅 ∈ LMod → 𝑅 ∈ CMnd) | |
5 | 3, 4 | syl 17 | . 2 ⊢ (𝜑 → 𝑅 ∈ CMnd) |
6 | cmnmnd 19317 | . . 3 ⊢ (𝑅 ∈ CMnd → 𝑅 ∈ Mnd) | |
7 | 5, 6 | syl 17 | . 2 ⊢ (𝜑 → 𝑅 ∈ Mnd) |
8 | gsumvsmul.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
9 | gsumvsmul.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐾) | |
10 | gsumvsmul.s | . . . . 5 ⊢ 𝑆 = (Scalar‘𝑅) | |
11 | gsumvsmul.t | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑅) | |
12 | gsumvsmul.k | . . . . 5 ⊢ 𝐾 = (Base‘𝑆) | |
13 | 1, 10, 11, 12 | lmodvsghm 20099 | . . . 4 ⊢ ((𝑅 ∈ LMod ∧ 𝑋 ∈ 𝐾) → (𝑦 ∈ 𝐵 ↦ (𝑋 · 𝑦)) ∈ (𝑅 GrpHom 𝑅)) |
14 | 3, 9, 13 | syl2anc 583 | . . 3 ⊢ (𝜑 → (𝑦 ∈ 𝐵 ↦ (𝑋 · 𝑦)) ∈ (𝑅 GrpHom 𝑅)) |
15 | ghmmhm 18759 | . . 3 ⊢ ((𝑦 ∈ 𝐵 ↦ (𝑋 · 𝑦)) ∈ (𝑅 GrpHom 𝑅) → (𝑦 ∈ 𝐵 ↦ (𝑋 · 𝑦)) ∈ (𝑅 MndHom 𝑅)) | |
16 | 14, 15 | syl 17 | . 2 ⊢ (𝜑 → (𝑦 ∈ 𝐵 ↦ (𝑋 · 𝑦)) ∈ (𝑅 MndHom 𝑅)) |
17 | gsumvsmul.y | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑌 ∈ 𝐵) | |
18 | gsumvsmul.n | . 2 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝑌) finSupp 0 ) | |
19 | oveq2 7263 | . 2 ⊢ (𝑦 = 𝑌 → (𝑋 · 𝑦) = (𝑋 · 𝑌)) | |
20 | oveq2 7263 | . 2 ⊢ (𝑦 = (𝑅 Σg (𝑘 ∈ 𝐴 ↦ 𝑌)) → (𝑋 · 𝑦) = (𝑋 · (𝑅 Σg (𝑘 ∈ 𝐴 ↦ 𝑌)))) | |
21 | 1, 2, 5, 7, 8, 16, 17, 18, 19, 20 | gsummhm2 19455 | 1 ⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ 𝐴 ↦ (𝑋 · 𝑌))) = (𝑋 · (𝑅 Σg (𝑘 ∈ 𝐴 ↦ 𝑌)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 class class class wbr 5070 ↦ cmpt 5153 ‘cfv 6418 (class class class)co 7255 finSupp cfsupp 9058 Basecbs 16840 +gcplusg 16888 Scalarcsca 16891 ·𝑠 cvsca 16892 0gc0g 17067 Σg cgsu 17068 Mndcmnd 18300 MndHom cmhm 18343 GrpHom cghm 18746 CMndccmn 19301 LModclmod 20038 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-fzo 13312 df-seq 13650 df-hash 13973 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-plusg 16901 df-0g 17069 df-gsum 17070 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-mhm 18345 df-grp 18495 df-minusg 18496 df-ghm 18747 df-cntz 18838 df-cmn 19303 df-abl 19304 df-mgp 19636 df-ur 19653 df-ring 19700 df-lmod 20040 |
This theorem is referenced by: frlmup1 20915 lincscm 45659 lincresunit3lem2 45709 |
Copyright terms: Public domain | W3C validator |