MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumvsmul Structured version   Visualization version   GIF version

Theorem gsumvsmul 20102
Description: Pull a scalar multiplication out of a sum of vectors. This theorem properly generalizes gsummulc2 19761, since every ring is a left module over itself. (Contributed by Stefan O'Rear, 6-Feb-2015.) (Revised by Mario Carneiro, 5-May-2015.) (Revised by AV, 10-Jul-2019.)
Hypotheses
Ref Expression
gsumvsmul.b 𝐵 = (Base‘𝑅)
gsumvsmul.s 𝑆 = (Scalar‘𝑅)
gsumvsmul.k 𝐾 = (Base‘𝑆)
gsumvsmul.z 0 = (0g𝑅)
gsumvsmul.p + = (+g𝑅)
gsumvsmul.t · = ( ·𝑠𝑅)
gsumvsmul.r (𝜑𝑅 ∈ LMod)
gsumvsmul.a (𝜑𝐴𝑉)
gsumvsmul.x (𝜑𝑋𝐾)
gsumvsmul.y ((𝜑𝑘𝐴) → 𝑌𝐵)
gsumvsmul.n (𝜑 → (𝑘𝐴𝑌) finSupp 0 )
Assertion
Ref Expression
gsumvsmul (𝜑 → (𝑅 Σg (𝑘𝐴 ↦ (𝑋 · 𝑌))) = (𝑋 · (𝑅 Σg (𝑘𝐴𝑌))))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝜑,𝑘   · ,𝑘   𝑆,𝑘   𝑘,𝐾   𝑘,𝑋   0 ,𝑘
Allowed substitution hints:   + (𝑘)   𝑅(𝑘)   𝑉(𝑘)   𝑌(𝑘)

Proof of Theorem gsumvsmul
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 gsumvsmul.b . 2 𝐵 = (Base‘𝑅)
2 gsumvsmul.z . 2 0 = (0g𝑅)
3 gsumvsmul.r . . 3 (𝜑𝑅 ∈ LMod)
4 lmodcmn 20086 . . 3 (𝑅 ∈ LMod → 𝑅 ∈ CMnd)
53, 4syl 17 . 2 (𝜑𝑅 ∈ CMnd)
6 cmnmnd 19317 . . 3 (𝑅 ∈ CMnd → 𝑅 ∈ Mnd)
75, 6syl 17 . 2 (𝜑𝑅 ∈ Mnd)
8 gsumvsmul.a . 2 (𝜑𝐴𝑉)
9 gsumvsmul.x . . . 4 (𝜑𝑋𝐾)
10 gsumvsmul.s . . . . 5 𝑆 = (Scalar‘𝑅)
11 gsumvsmul.t . . . . 5 · = ( ·𝑠𝑅)
12 gsumvsmul.k . . . . 5 𝐾 = (Base‘𝑆)
131, 10, 11, 12lmodvsghm 20099 . . . 4 ((𝑅 ∈ LMod ∧ 𝑋𝐾) → (𝑦𝐵 ↦ (𝑋 · 𝑦)) ∈ (𝑅 GrpHom 𝑅))
143, 9, 13syl2anc 583 . . 3 (𝜑 → (𝑦𝐵 ↦ (𝑋 · 𝑦)) ∈ (𝑅 GrpHom 𝑅))
15 ghmmhm 18759 . . 3 ((𝑦𝐵 ↦ (𝑋 · 𝑦)) ∈ (𝑅 GrpHom 𝑅) → (𝑦𝐵 ↦ (𝑋 · 𝑦)) ∈ (𝑅 MndHom 𝑅))
1614, 15syl 17 . 2 (𝜑 → (𝑦𝐵 ↦ (𝑋 · 𝑦)) ∈ (𝑅 MndHom 𝑅))
17 gsumvsmul.y . 2 ((𝜑𝑘𝐴) → 𝑌𝐵)
18 gsumvsmul.n . 2 (𝜑 → (𝑘𝐴𝑌) finSupp 0 )
19 oveq2 7263 . 2 (𝑦 = 𝑌 → (𝑋 · 𝑦) = (𝑋 · 𝑌))
20 oveq2 7263 . 2 (𝑦 = (𝑅 Σg (𝑘𝐴𝑌)) → (𝑋 · 𝑦) = (𝑋 · (𝑅 Σg (𝑘𝐴𝑌))))
211, 2, 5, 7, 8, 16, 17, 18, 19, 20gsummhm2 19455 1 (𝜑 → (𝑅 Σg (𝑘𝐴 ↦ (𝑋 · 𝑌))) = (𝑋 · (𝑅 Σg (𝑘𝐴𝑌))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108   class class class wbr 5070  cmpt 5153  cfv 6418  (class class class)co 7255   finSupp cfsupp 9058  Basecbs 16840  +gcplusg 16888  Scalarcsca 16891   ·𝑠 cvsca 16892  0gc0g 17067   Σg cgsu 17068  Mndcmnd 18300   MndHom cmhm 18343   GrpHom cghm 18746  CMndccmn 19301  LModclmod 20038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-seq 13650  df-hash 13973  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-0g 17069  df-gsum 17070  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-grp 18495  df-minusg 18496  df-ghm 18747  df-cntz 18838  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-lmod 20040
This theorem is referenced by:  frlmup1  20915  lincscm  45659  lincresunit3lem2  45709
  Copyright terms: Public domain W3C validator