| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gsumvsmul | Structured version Visualization version GIF version | ||
| Description: Pull a scalar multiplication out of a sum of vectors. This theorem properly generalizes gsummulc2 20275, since every ring is a left module over itself. (Contributed by Stefan O'Rear, 6-Feb-2015.) (Revised by Mario Carneiro, 5-May-2015.) (Revised by AV, 10-Jul-2019.) |
| Ref | Expression |
|---|---|
| gsumvsmul.b | ⊢ 𝐵 = (Base‘𝑅) |
| gsumvsmul.s | ⊢ 𝑆 = (Scalar‘𝑅) |
| gsumvsmul.k | ⊢ 𝐾 = (Base‘𝑆) |
| gsumvsmul.z | ⊢ 0 = (0g‘𝑅) |
| gsumvsmul.p | ⊢ + = (+g‘𝑅) |
| gsumvsmul.t | ⊢ · = ( ·𝑠 ‘𝑅) |
| gsumvsmul.r | ⊢ (𝜑 → 𝑅 ∈ LMod) |
| gsumvsmul.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| gsumvsmul.x | ⊢ (𝜑 → 𝑋 ∈ 𝐾) |
| gsumvsmul.y | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑌 ∈ 𝐵) |
| gsumvsmul.n | ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝑌) finSupp 0 ) |
| Ref | Expression |
|---|---|
| gsumvsmul | ⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ 𝐴 ↦ (𝑋 · 𝑌))) = (𝑋 · (𝑅 Σg (𝑘 ∈ 𝐴 ↦ 𝑌)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumvsmul.b | . 2 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | gsumvsmul.z | . 2 ⊢ 0 = (0g‘𝑅) | |
| 3 | gsumvsmul.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ LMod) | |
| 4 | lmodcmn 20865 | . . 3 ⊢ (𝑅 ∈ LMod → 𝑅 ∈ CMnd) | |
| 5 | 3, 4 | syl 17 | . 2 ⊢ (𝜑 → 𝑅 ∈ CMnd) |
| 6 | cmnmnd 19776 | . . 3 ⊢ (𝑅 ∈ CMnd → 𝑅 ∈ Mnd) | |
| 7 | 5, 6 | syl 17 | . 2 ⊢ (𝜑 → 𝑅 ∈ Mnd) |
| 8 | gsumvsmul.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 9 | gsumvsmul.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐾) | |
| 10 | gsumvsmul.s | . . . . 5 ⊢ 𝑆 = (Scalar‘𝑅) | |
| 11 | gsumvsmul.t | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑅) | |
| 12 | gsumvsmul.k | . . . . 5 ⊢ 𝐾 = (Base‘𝑆) | |
| 13 | 1, 10, 11, 12 | lmodvsghm 20878 | . . . 4 ⊢ ((𝑅 ∈ LMod ∧ 𝑋 ∈ 𝐾) → (𝑦 ∈ 𝐵 ↦ (𝑋 · 𝑦)) ∈ (𝑅 GrpHom 𝑅)) |
| 14 | 3, 9, 13 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑦 ∈ 𝐵 ↦ (𝑋 · 𝑦)) ∈ (𝑅 GrpHom 𝑅)) |
| 15 | ghmmhm 19207 | . . 3 ⊢ ((𝑦 ∈ 𝐵 ↦ (𝑋 · 𝑦)) ∈ (𝑅 GrpHom 𝑅) → (𝑦 ∈ 𝐵 ↦ (𝑋 · 𝑦)) ∈ (𝑅 MndHom 𝑅)) | |
| 16 | 14, 15 | syl 17 | . 2 ⊢ (𝜑 → (𝑦 ∈ 𝐵 ↦ (𝑋 · 𝑦)) ∈ (𝑅 MndHom 𝑅)) |
| 17 | gsumvsmul.y | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑌 ∈ 𝐵) | |
| 18 | gsumvsmul.n | . 2 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝑌) finSupp 0 ) | |
| 19 | oveq2 7411 | . 2 ⊢ (𝑦 = 𝑌 → (𝑋 · 𝑦) = (𝑋 · 𝑌)) | |
| 20 | oveq2 7411 | . 2 ⊢ (𝑦 = (𝑅 Σg (𝑘 ∈ 𝐴 ↦ 𝑌)) → (𝑋 · 𝑦) = (𝑋 · (𝑅 Σg (𝑘 ∈ 𝐴 ↦ 𝑌)))) | |
| 21 | 1, 2, 5, 7, 8, 16, 17, 18, 19, 20 | gsummhm2 19918 | 1 ⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ 𝐴 ↦ (𝑋 · 𝑌))) = (𝑋 · (𝑅 Σg (𝑘 ∈ 𝐴 ↦ 𝑌)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 class class class wbr 5119 ↦ cmpt 5201 ‘cfv 6530 (class class class)co 7403 finSupp cfsupp 9371 Basecbs 17226 +gcplusg 17269 Scalarcsca 17272 ·𝑠 cvsca 17273 0gc0g 17451 Σg cgsu 17452 Mndcmnd 18710 MndHom cmhm 18757 GrpHom cghm 19193 CMndccmn 19759 LModclmod 20815 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-isom 6539 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-supp 8158 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-er 8717 df-map 8840 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-fsupp 9372 df-oi 9522 df-card 9951 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-nn 12239 df-2 12301 df-n0 12500 df-z 12587 df-uz 12851 df-fz 13523 df-fzo 13670 df-seq 14018 df-hash 14347 df-sets 17181 df-slot 17199 df-ndx 17211 df-base 17227 df-plusg 17282 df-0g 17453 df-gsum 17454 df-mgm 18616 df-sgrp 18695 df-mnd 18711 df-mhm 18759 df-grp 18917 df-minusg 18918 df-ghm 19194 df-cntz 19298 df-cmn 19761 df-abl 19762 df-mgp 20099 df-ur 20140 df-ring 20193 df-lmod 20817 |
| This theorem is referenced by: frlmup1 21756 lincscm 48354 lincresunit3lem2 48404 |
| Copyright terms: Public domain | W3C validator |