![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lsmidl | Structured version Visualization version GIF version |
Description: The sum of two ideals is an ideal. (Contributed by Thierry Arnoux, 21-Jan-2024.) |
Ref | Expression |
---|---|
lsmidl.1 | โข ๐ต = (Baseโ๐ ) |
lsmidl.3 | โข โ = (LSSumโ๐ ) |
lsmidl.4 | โข ๐พ = (RSpanโ๐ ) |
lsmidl.5 | โข (๐ โ ๐ โ Ring) |
lsmidl.6 | โข (๐ โ ๐ผ โ (LIdealโ๐ )) |
lsmidl.7 | โข (๐ โ ๐ฝ โ (LIdealโ๐ )) |
Ref | Expression |
---|---|
lsmidl | โข (๐ โ (๐ผ โ ๐ฝ) โ (LIdealโ๐ )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsmidl.1 | . . 3 โข ๐ต = (Baseโ๐ ) | |
2 | lsmidl.3 | . . 3 โข โ = (LSSumโ๐ ) | |
3 | lsmidl.4 | . . 3 โข ๐พ = (RSpanโ๐ ) | |
4 | lsmidl.5 | . . 3 โข (๐ โ ๐ โ Ring) | |
5 | lsmidl.6 | . . 3 โข (๐ โ ๐ผ โ (LIdealโ๐ )) | |
6 | lsmidl.7 | . . 3 โข (๐ โ ๐ฝ โ (LIdealโ๐ )) | |
7 | 1, 2, 3, 4, 5, 6 | lsmidllsp 33134 | . 2 โข (๐ โ (๐ผ โ ๐ฝ) = (๐พโ(๐ผ โช ๐ฝ))) |
8 | rlmlmod 21103 | . . . 4 โข (๐ โ Ring โ (ringLModโ๐ ) โ LMod) | |
9 | 4, 8 | syl 17 | . . 3 โข (๐ โ (ringLModโ๐ ) โ LMod) |
10 | eqid 2728 | . . . . . 6 โข (LIdealโ๐ ) = (LIdealโ๐ ) | |
11 | 1, 10 | lidlss 21115 | . . . . 5 โข (๐ผ โ (LIdealโ๐ ) โ ๐ผ โ ๐ต) |
12 | 5, 11 | syl 17 | . . . 4 โข (๐ โ ๐ผ โ ๐ต) |
13 | 1, 10 | lidlss 21115 | . . . . 5 โข (๐ฝ โ (LIdealโ๐ ) โ ๐ฝ โ ๐ต) |
14 | 6, 13 | syl 17 | . . . 4 โข (๐ โ ๐ฝ โ ๐ต) |
15 | 12, 14 | unssd 4188 | . . 3 โข (๐ โ (๐ผ โช ๐ฝ) โ ๐ต) |
16 | rlmbas 21093 | . . . . 5 โข (Baseโ๐ ) = (Baseโ(ringLModโ๐ )) | |
17 | 1, 16 | eqtri 2756 | . . . 4 โข ๐ต = (Baseโ(ringLModโ๐ )) |
18 | lidlval 21113 | . . . 4 โข (LIdealโ๐ ) = (LSubSpโ(ringLModโ๐ )) | |
19 | rspval 21114 | . . . . 5 โข (RSpanโ๐ ) = (LSpanโ(ringLModโ๐ )) | |
20 | 3, 19 | eqtri 2756 | . . . 4 โข ๐พ = (LSpanโ(ringLModโ๐ )) |
21 | 17, 18, 20 | lspcl 20867 | . . 3 โข (((ringLModโ๐ ) โ LMod โง (๐ผ โช ๐ฝ) โ ๐ต) โ (๐พโ(๐ผ โช ๐ฝ)) โ (LIdealโ๐ )) |
22 | 9, 15, 21 | syl2anc 582 | . 2 โข (๐ โ (๐พโ(๐ผ โช ๐ฝ)) โ (LIdealโ๐ )) |
23 | 7, 22 | eqeltrd 2829 | 1 โข (๐ โ (๐ผ โ ๐ฝ) โ (LIdealโ๐ )) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 = wceq 1533 โ wcel 2098 โช cun 3947 โ wss 3949 โcfv 6553 (class class class)co 7426 Basecbs 17187 LSSumclsm 19596 Ringcrg 20180 LModclmod 20750 LSpanclspn 20862 ringLModcrglmod 21064 LIdealclidl 21109 RSpancrsp 21110 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-int 4954 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7877 df-1st 7999 df-2nd 8000 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-er 8731 df-en 8971 df-dom 8972 df-sdom 8973 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-nn 12251 df-2 12313 df-3 12314 df-4 12315 df-5 12316 df-6 12317 df-7 12318 df-8 12319 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17188 df-ress 17217 df-plusg 17253 df-mulr 17254 df-sca 17256 df-vsca 17257 df-ip 17258 df-0g 17430 df-mgm 18607 df-sgrp 18686 df-mnd 18702 df-submnd 18748 df-grp 18900 df-minusg 18901 df-sbg 18902 df-subg 19085 df-cntz 19275 df-lsm 19598 df-cmn 19744 df-abl 19745 df-mgp 20082 df-ur 20129 df-ring 20182 df-subrg 20515 df-lmod 20752 df-lss 20823 df-lsp 20863 df-sra 21065 df-rgmod 21066 df-lidl 21111 df-rsp 21112 |
This theorem is referenced by: mxidlprm 33208 idlsrgmnd 33250 |
Copyright terms: Public domain | W3C validator |