MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coe1mul2lem2 Structured version   Visualization version   GIF version

Theorem coe1mul2lem2 20897
Description: An equivalence for coe1mul2 20898. (Contributed by Stefan O'Rear, 25-Mar-2015.)
Hypothesis
Ref Expression
coe1mul2lem2.h 𝐻 = {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})}
Assertion
Ref Expression
coe1mul2lem2 (𝑘 ∈ ℕ0 → (𝑐𝐻 ↦ (𝑐‘∅)):𝐻1-1-onto→(0...𝑘))
Distinct variable groups:   𝐻,𝑐   𝑐,𝑑,𝑘
Allowed substitution hints:   𝐻(𝑘,𝑑)

Proof of Theorem coe1mul2lem2
StepHypRef Expression
1 df1o2 8099 . . . . 5 1o = {∅}
2 nn0ex 11891 . . . . 5 0 ∈ V
3 0ex 5175 . . . . 5 ∅ ∈ V
4 eqid 2798 . . . . 5 (𝑐 ∈ (ℕ0m 1o) ↦ (𝑐‘∅)) = (𝑐 ∈ (ℕ0m 1o) ↦ (𝑐‘∅))
51, 2, 3, 4mapsnf1o2 8441 . . . 4 (𝑐 ∈ (ℕ0m 1o) ↦ (𝑐‘∅)):(ℕ0m 1o)–1-1-onto→ℕ0
6 f1of1 6589 . . . 4 ((𝑐 ∈ (ℕ0m 1o) ↦ (𝑐‘∅)):(ℕ0m 1o)–1-1-onto→ℕ0 → (𝑐 ∈ (ℕ0m 1o) ↦ (𝑐‘∅)):(ℕ0m 1o)–1-1→ℕ0)
75, 6ax-mp 5 . . 3 (𝑐 ∈ (ℕ0m 1o) ↦ (𝑐‘∅)):(ℕ0m 1o)–1-1→ℕ0
8 coe1mul2lem2.h . . . . 5 𝐻 = {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})}
98ssrab3 4008 . . . 4 𝐻 ⊆ (ℕ0m 1o)
109a1i 11 . . 3 (𝑘 ∈ ℕ0𝐻 ⊆ (ℕ0m 1o))
11 f1ores 6604 . . 3 (((𝑐 ∈ (ℕ0m 1o) ↦ (𝑐‘∅)):(ℕ0m 1o)–1-1→ℕ0𝐻 ⊆ (ℕ0m 1o)) → ((𝑐 ∈ (ℕ0m 1o) ↦ (𝑐‘∅)) ↾ 𝐻):𝐻1-1-onto→((𝑐 ∈ (ℕ0m 1o) ↦ (𝑐‘∅)) “ 𝐻))
127, 10, 11sylancr 590 . 2 (𝑘 ∈ ℕ0 → ((𝑐 ∈ (ℕ0m 1o) ↦ (𝑐‘∅)) ↾ 𝐻):𝐻1-1-onto→((𝑐 ∈ (ℕ0m 1o) ↦ (𝑐‘∅)) “ 𝐻))
13 coe1mul2lem1 20896 . . . . . . . . 9 ((𝑘 ∈ ℕ0𝑑 ∈ (ℕ0m 1o)) → (𝑑r ≤ (1o × {𝑘}) ↔ (𝑑‘∅) ∈ (0...𝑘)))
1413rabbidva 3425 . . . . . . . 8 (𝑘 ∈ ℕ0 → {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})} = {𝑑 ∈ (ℕ0m 1o) ∣ (𝑑‘∅) ∈ (0...𝑘)})
15 fveq1 6644 . . . . . . . . . 10 (𝑐 = 𝑑 → (𝑐‘∅) = (𝑑‘∅))
1615eleq1d 2874 . . . . . . . . 9 (𝑐 = 𝑑 → ((𝑐‘∅) ∈ (0...𝑘) ↔ (𝑑‘∅) ∈ (0...𝑘)))
1716cbvrabv 3439 . . . . . . . 8 {𝑐 ∈ (ℕ0m 1o) ∣ (𝑐‘∅) ∈ (0...𝑘)} = {𝑑 ∈ (ℕ0m 1o) ∣ (𝑑‘∅) ∈ (0...𝑘)}
1814, 17eqtr4di 2851 . . . . . . 7 (𝑘 ∈ ℕ0 → {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})} = {𝑐 ∈ (ℕ0m 1o) ∣ (𝑐‘∅) ∈ (0...𝑘)})
194mptpreima 6059 . . . . . . 7 ((𝑐 ∈ (ℕ0m 1o) ↦ (𝑐‘∅)) “ (0...𝑘)) = {𝑐 ∈ (ℕ0m 1o) ∣ (𝑐‘∅) ∈ (0...𝑘)}
2018, 8, 193eqtr4g 2858 . . . . . 6 (𝑘 ∈ ℕ0𝐻 = ((𝑐 ∈ (ℕ0m 1o) ↦ (𝑐‘∅)) “ (0...𝑘)))
2120imaeq2d 5896 . . . . 5 (𝑘 ∈ ℕ0 → ((𝑐 ∈ (ℕ0m 1o) ↦ (𝑐‘∅)) “ 𝐻) = ((𝑐 ∈ (ℕ0m 1o) ↦ (𝑐‘∅)) “ ((𝑐 ∈ (ℕ0m 1o) ↦ (𝑐‘∅)) “ (0...𝑘))))
22 f1ofo 6597 . . . . . . 7 ((𝑐 ∈ (ℕ0m 1o) ↦ (𝑐‘∅)):(ℕ0m 1o)–1-1-onto→ℕ0 → (𝑐 ∈ (ℕ0m 1o) ↦ (𝑐‘∅)):(ℕ0m 1o)–onto→ℕ0)
235, 22ax-mp 5 . . . . . 6 (𝑐 ∈ (ℕ0m 1o) ↦ (𝑐‘∅)):(ℕ0m 1o)–onto→ℕ0
24 fz0ssnn0 12997 . . . . . 6 (0...𝑘) ⊆ ℕ0
25 foimacnv 6607 . . . . . 6 (((𝑐 ∈ (ℕ0m 1o) ↦ (𝑐‘∅)):(ℕ0m 1o)–onto→ℕ0 ∧ (0...𝑘) ⊆ ℕ0) → ((𝑐 ∈ (ℕ0m 1o) ↦ (𝑐‘∅)) “ ((𝑐 ∈ (ℕ0m 1o) ↦ (𝑐‘∅)) “ (0...𝑘))) = (0...𝑘))
2623, 24, 25mp2an 691 . . . . 5 ((𝑐 ∈ (ℕ0m 1o) ↦ (𝑐‘∅)) “ ((𝑐 ∈ (ℕ0m 1o) ↦ (𝑐‘∅)) “ (0...𝑘))) = (0...𝑘)
2721, 26eqtrdi 2849 . . . 4 (𝑘 ∈ ℕ0 → ((𝑐 ∈ (ℕ0m 1o) ↦ (𝑐‘∅)) “ 𝐻) = (0...𝑘))
2827f1oeq3d 6587 . . 3 (𝑘 ∈ ℕ0 → (((𝑐 ∈ (ℕ0m 1o) ↦ (𝑐‘∅)) ↾ 𝐻):𝐻1-1-onto→((𝑐 ∈ (ℕ0m 1o) ↦ (𝑐‘∅)) “ 𝐻) ↔ ((𝑐 ∈ (ℕ0m 1o) ↦ (𝑐‘∅)) ↾ 𝐻):𝐻1-1-onto→(0...𝑘)))
29 resmpt 5872 . . . 4 (𝐻 ⊆ (ℕ0m 1o) → ((𝑐 ∈ (ℕ0m 1o) ↦ (𝑐‘∅)) ↾ 𝐻) = (𝑐𝐻 ↦ (𝑐‘∅)))
30 f1oeq1 6579 . . . 4 (((𝑐 ∈ (ℕ0m 1o) ↦ (𝑐‘∅)) ↾ 𝐻) = (𝑐𝐻 ↦ (𝑐‘∅)) → (((𝑐 ∈ (ℕ0m 1o) ↦ (𝑐‘∅)) ↾ 𝐻):𝐻1-1-onto→(0...𝑘) ↔ (𝑐𝐻 ↦ (𝑐‘∅)):𝐻1-1-onto→(0...𝑘)))
3110, 29, 303syl 18 . . 3 (𝑘 ∈ ℕ0 → (((𝑐 ∈ (ℕ0m 1o) ↦ (𝑐‘∅)) ↾ 𝐻):𝐻1-1-onto→(0...𝑘) ↔ (𝑐𝐻 ↦ (𝑐‘∅)):𝐻1-1-onto→(0...𝑘)))
3228, 31bitrd 282 . 2 (𝑘 ∈ ℕ0 → (((𝑐 ∈ (ℕ0m 1o) ↦ (𝑐‘∅)) ↾ 𝐻):𝐻1-1-onto→((𝑐 ∈ (ℕ0m 1o) ↦ (𝑐‘∅)) “ 𝐻) ↔ (𝑐𝐻 ↦ (𝑐‘∅)):𝐻1-1-onto→(0...𝑘)))
3312, 32mpbid 235 1 (𝑘 ∈ ℕ0 → (𝑐𝐻 ↦ (𝑐‘∅)):𝐻1-1-onto→(0...𝑘))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209   = wceq 1538  wcel 2111  {crab 3110  wss 3881  c0 4243  {csn 4525   class class class wbr 5030  cmpt 5110   × cxp 5517  ccnv 5518  cres 5521  cima 5522  1-1wf1 6321  ontowfo 6322  1-1-ontowf1o 6323  cfv 6324  (class class class)co 7135  r cofr 7388  1oc1o 8078  m cmap 8389  0cc0 10526  cle 10665  0cn0 11885  ...cfz 12885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-ofr 7390  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886
This theorem is referenced by:  coe1mul2  20898
  Copyright terms: Public domain W3C validator