Proof of Theorem coe1mul2lem2
Step | Hyp | Ref
| Expression |
1 | | df1o2 8279 |
. . . . 5
⊢
1o = {∅} |
2 | | nn0ex 12169 |
. . . . 5
⊢
ℕ0 ∈ V |
3 | | 0ex 5226 |
. . . . 5
⊢ ∅
∈ V |
4 | | eqid 2738 |
. . . . 5
⊢ (𝑐 ∈ (ℕ0
↑m 1o) ↦ (𝑐‘∅)) = (𝑐 ∈ (ℕ0
↑m 1o) ↦ (𝑐‘∅)) |
5 | 1, 2, 3, 4 | mapsnf1o2 8640 |
. . . 4
⊢ (𝑐 ∈ (ℕ0
↑m 1o) ↦ (𝑐‘∅)):(ℕ0
↑m 1o)–1-1-onto→ℕ0 |
6 | | f1of1 6699 |
. . . 4
⊢ ((𝑐 ∈ (ℕ0
↑m 1o) ↦ (𝑐‘∅)):(ℕ0
↑m 1o)–1-1-onto→ℕ0 → (𝑐 ∈ (ℕ0
↑m 1o) ↦ (𝑐‘∅)):(ℕ0
↑m 1o)–1-1→ℕ0) |
7 | 5, 6 | ax-mp 5 |
. . 3
⊢ (𝑐 ∈ (ℕ0
↑m 1o) ↦ (𝑐‘∅)):(ℕ0
↑m 1o)–1-1→ℕ0 |
8 | | coe1mul2lem2.h |
. . . . 5
⊢ 𝐻 = {𝑑 ∈ (ℕ0
↑m 1o) ∣ 𝑑 ∘r ≤ (1o
× {𝑘})} |
9 | 8 | ssrab3 4011 |
. . . 4
⊢ 𝐻 ⊆ (ℕ0
↑m 1o) |
10 | 9 | a1i 11 |
. . 3
⊢ (𝑘 ∈ ℕ0
→ 𝐻 ⊆
(ℕ0 ↑m 1o)) |
11 | | f1ores 6714 |
. . 3
⊢ (((𝑐 ∈ (ℕ0
↑m 1o) ↦ (𝑐‘∅)):(ℕ0
↑m 1o)–1-1→ℕ0 ∧ 𝐻 ⊆ (ℕ0
↑m 1o)) → ((𝑐 ∈ (ℕ0
↑m 1o) ↦ (𝑐‘∅)) ↾ 𝐻):𝐻–1-1-onto→((𝑐 ∈ (ℕ0
↑m 1o) ↦ (𝑐‘∅)) “ 𝐻)) |
12 | 7, 10, 11 | sylancr 586 |
. 2
⊢ (𝑘 ∈ ℕ0
→ ((𝑐 ∈
(ℕ0 ↑m 1o) ↦ (𝑐‘∅)) ↾ 𝐻):𝐻–1-1-onto→((𝑐 ∈ (ℕ0
↑m 1o) ↦ (𝑐‘∅)) “ 𝐻)) |
13 | | coe1mul2lem1 21348 |
. . . . . . . . 9
⊢ ((𝑘 ∈ ℕ0
∧ 𝑑 ∈
(ℕ0 ↑m 1o)) → (𝑑 ∘r ≤
(1o × {𝑘})
↔ (𝑑‘∅)
∈ (0...𝑘))) |
14 | 13 | rabbidva 3402 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ0
→ {𝑑 ∈
(ℕ0 ↑m 1o) ∣ 𝑑 ∘r ≤
(1o × {𝑘})} = {𝑑 ∈ (ℕ0
↑m 1o) ∣ (𝑑‘∅) ∈ (0...𝑘)}) |
15 | | fveq1 6755 |
. . . . . . . . . 10
⊢ (𝑐 = 𝑑 → (𝑐‘∅) = (𝑑‘∅)) |
16 | 15 | eleq1d 2823 |
. . . . . . . . 9
⊢ (𝑐 = 𝑑 → ((𝑐‘∅) ∈ (0...𝑘) ↔ (𝑑‘∅) ∈ (0...𝑘))) |
17 | 16 | cbvrabv 3416 |
. . . . . . . 8
⊢ {𝑐 ∈ (ℕ0
↑m 1o) ∣ (𝑐‘∅) ∈ (0...𝑘)} = {𝑑 ∈ (ℕ0
↑m 1o) ∣ (𝑑‘∅) ∈ (0...𝑘)} |
18 | 14, 17 | eqtr4di 2797 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ0
→ {𝑑 ∈
(ℕ0 ↑m 1o) ∣ 𝑑 ∘r ≤
(1o × {𝑘})} = {𝑐 ∈ (ℕ0
↑m 1o) ∣ (𝑐‘∅) ∈ (0...𝑘)}) |
19 | 4 | mptpreima 6130 |
. . . . . . 7
⊢ (◡(𝑐 ∈ (ℕ0
↑m 1o) ↦ (𝑐‘∅)) “ (0...𝑘)) = {𝑐 ∈ (ℕ0
↑m 1o) ∣ (𝑐‘∅) ∈ (0...𝑘)} |
20 | 18, 8, 19 | 3eqtr4g 2804 |
. . . . . 6
⊢ (𝑘 ∈ ℕ0
→ 𝐻 = (◡(𝑐 ∈ (ℕ0
↑m 1o) ↦ (𝑐‘∅)) “ (0...𝑘))) |
21 | 20 | imaeq2d 5958 |
. . . . 5
⊢ (𝑘 ∈ ℕ0
→ ((𝑐 ∈
(ℕ0 ↑m 1o) ↦ (𝑐‘∅)) “ 𝐻) = ((𝑐 ∈ (ℕ0
↑m 1o) ↦ (𝑐‘∅)) “ (◡(𝑐 ∈ (ℕ0
↑m 1o) ↦ (𝑐‘∅)) “ (0...𝑘)))) |
22 | | f1ofo 6707 |
. . . . . . 7
⊢ ((𝑐 ∈ (ℕ0
↑m 1o) ↦ (𝑐‘∅)):(ℕ0
↑m 1o)–1-1-onto→ℕ0 → (𝑐 ∈ (ℕ0
↑m 1o) ↦ (𝑐‘∅)):(ℕ0
↑m 1o)–onto→ℕ0) |
23 | 5, 22 | ax-mp 5 |
. . . . . 6
⊢ (𝑐 ∈ (ℕ0
↑m 1o) ↦ (𝑐‘∅)):(ℕ0
↑m 1o)–onto→ℕ0 |
24 | | fz0ssnn0 13280 |
. . . . . 6
⊢
(0...𝑘) ⊆
ℕ0 |
25 | | foimacnv 6717 |
. . . . . 6
⊢ (((𝑐 ∈ (ℕ0
↑m 1o) ↦ (𝑐‘∅)):(ℕ0
↑m 1o)–onto→ℕ0 ∧ (0...𝑘) ⊆ ℕ0)
→ ((𝑐 ∈
(ℕ0 ↑m 1o) ↦ (𝑐‘∅)) “ (◡(𝑐 ∈ (ℕ0
↑m 1o) ↦ (𝑐‘∅)) “ (0...𝑘))) = (0...𝑘)) |
26 | 23, 24, 25 | mp2an 688 |
. . . . 5
⊢ ((𝑐 ∈ (ℕ0
↑m 1o) ↦ (𝑐‘∅)) “ (◡(𝑐 ∈ (ℕ0
↑m 1o) ↦ (𝑐‘∅)) “ (0...𝑘))) = (0...𝑘) |
27 | 21, 26 | eqtrdi 2795 |
. . . 4
⊢ (𝑘 ∈ ℕ0
→ ((𝑐 ∈
(ℕ0 ↑m 1o) ↦ (𝑐‘∅)) “ 𝐻) = (0...𝑘)) |
28 | 27 | f1oeq3d 6697 |
. . 3
⊢ (𝑘 ∈ ℕ0
→ (((𝑐 ∈
(ℕ0 ↑m 1o) ↦ (𝑐‘∅)) ↾ 𝐻):𝐻–1-1-onto→((𝑐 ∈ (ℕ0
↑m 1o) ↦ (𝑐‘∅)) “ 𝐻) ↔ ((𝑐 ∈ (ℕ0
↑m 1o) ↦ (𝑐‘∅)) ↾ 𝐻):𝐻–1-1-onto→(0...𝑘))) |
29 | | resmpt 5934 |
. . . 4
⊢ (𝐻 ⊆ (ℕ0
↑m 1o) → ((𝑐 ∈ (ℕ0
↑m 1o) ↦ (𝑐‘∅)) ↾ 𝐻) = (𝑐 ∈ 𝐻 ↦ (𝑐‘∅))) |
30 | | f1oeq1 6688 |
. . . 4
⊢ (((𝑐 ∈ (ℕ0
↑m 1o) ↦ (𝑐‘∅)) ↾ 𝐻) = (𝑐 ∈ 𝐻 ↦ (𝑐‘∅)) → (((𝑐 ∈ (ℕ0
↑m 1o) ↦ (𝑐‘∅)) ↾ 𝐻):𝐻–1-1-onto→(0...𝑘) ↔ (𝑐 ∈ 𝐻 ↦ (𝑐‘∅)):𝐻–1-1-onto→(0...𝑘))) |
31 | 10, 29, 30 | 3syl 18 |
. . 3
⊢ (𝑘 ∈ ℕ0
→ (((𝑐 ∈
(ℕ0 ↑m 1o) ↦ (𝑐‘∅)) ↾ 𝐻):𝐻–1-1-onto→(0...𝑘) ↔ (𝑐 ∈ 𝐻 ↦ (𝑐‘∅)):𝐻–1-1-onto→(0...𝑘))) |
32 | 28, 31 | bitrd 278 |
. 2
⊢ (𝑘 ∈ ℕ0
→ (((𝑐 ∈
(ℕ0 ↑m 1o) ↦ (𝑐‘∅)) ↾ 𝐻):𝐻–1-1-onto→((𝑐 ∈ (ℕ0
↑m 1o) ↦ (𝑐‘∅)) “ 𝐻) ↔ (𝑐 ∈ 𝐻 ↦ (𝑐‘∅)):𝐻–1-1-onto→(0...𝑘))) |
33 | 12, 32 | mpbid 231 |
1
⊢ (𝑘 ∈ ℕ0
→ (𝑐 ∈ 𝐻 ↦ (𝑐‘∅)):𝐻–1-1-onto→(0...𝑘)) |