MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coe1mul2lem2 Structured version   Visualization version   GIF version

Theorem coe1mul2lem2 22011
Description: An equivalence for coe1mul2 22012. (Contributed by Stefan O'Rear, 25-Mar-2015.)
Hypothesis
Ref Expression
coe1mul2lem2.h 𝐻 = {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})}
Assertion
Ref Expression
coe1mul2lem2 (𝑘 ∈ ℕ0 → (𝑐𝐻 ↦ (𝑐‘∅)):𝐻1-1-onto→(0...𝑘))
Distinct variable groups:   𝐻,𝑐   𝑐,𝑑,𝑘
Allowed substitution hints:   𝐻(𝑘,𝑑)

Proof of Theorem coe1mul2lem2
StepHypRef Expression
1 df1o2 8476 . . . . 5 1o = {∅}
2 nn0ex 12483 . . . . 5 0 ∈ V
3 0ex 5308 . . . . 5 ∅ ∈ V
4 eqid 2731 . . . . 5 (𝑐 ∈ (ℕ0m 1o) ↦ (𝑐‘∅)) = (𝑐 ∈ (ℕ0m 1o) ↦ (𝑐‘∅))
51, 2, 3, 4mapsnf1o2 8891 . . . 4 (𝑐 ∈ (ℕ0m 1o) ↦ (𝑐‘∅)):(ℕ0m 1o)–1-1-onto→ℕ0
6 f1of1 6833 . . . 4 ((𝑐 ∈ (ℕ0m 1o) ↦ (𝑐‘∅)):(ℕ0m 1o)–1-1-onto→ℕ0 → (𝑐 ∈ (ℕ0m 1o) ↦ (𝑐‘∅)):(ℕ0m 1o)–1-1→ℕ0)
75, 6ax-mp 5 . . 3 (𝑐 ∈ (ℕ0m 1o) ↦ (𝑐‘∅)):(ℕ0m 1o)–1-1→ℕ0
8 coe1mul2lem2.h . . . . 5 𝐻 = {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})}
98ssrab3 4081 . . . 4 𝐻 ⊆ (ℕ0m 1o)
109a1i 11 . . 3 (𝑘 ∈ ℕ0𝐻 ⊆ (ℕ0m 1o))
11 f1ores 6848 . . 3 (((𝑐 ∈ (ℕ0m 1o) ↦ (𝑐‘∅)):(ℕ0m 1o)–1-1→ℕ0𝐻 ⊆ (ℕ0m 1o)) → ((𝑐 ∈ (ℕ0m 1o) ↦ (𝑐‘∅)) ↾ 𝐻):𝐻1-1-onto→((𝑐 ∈ (ℕ0m 1o) ↦ (𝑐‘∅)) “ 𝐻))
127, 10, 11sylancr 586 . 2 (𝑘 ∈ ℕ0 → ((𝑐 ∈ (ℕ0m 1o) ↦ (𝑐‘∅)) ↾ 𝐻):𝐻1-1-onto→((𝑐 ∈ (ℕ0m 1o) ↦ (𝑐‘∅)) “ 𝐻))
13 coe1mul2lem1 22010 . . . . . . . . 9 ((𝑘 ∈ ℕ0𝑑 ∈ (ℕ0m 1o)) → (𝑑r ≤ (1o × {𝑘}) ↔ (𝑑‘∅) ∈ (0...𝑘)))
1413rabbidva 3438 . . . . . . . 8 (𝑘 ∈ ℕ0 → {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})} = {𝑑 ∈ (ℕ0m 1o) ∣ (𝑑‘∅) ∈ (0...𝑘)})
15 fveq1 6891 . . . . . . . . . 10 (𝑐 = 𝑑 → (𝑐‘∅) = (𝑑‘∅))
1615eleq1d 2817 . . . . . . . . 9 (𝑐 = 𝑑 → ((𝑐‘∅) ∈ (0...𝑘) ↔ (𝑑‘∅) ∈ (0...𝑘)))
1716cbvrabv 3441 . . . . . . . 8 {𝑐 ∈ (ℕ0m 1o) ∣ (𝑐‘∅) ∈ (0...𝑘)} = {𝑑 ∈ (ℕ0m 1o) ∣ (𝑑‘∅) ∈ (0...𝑘)}
1814, 17eqtr4di 2789 . . . . . . 7 (𝑘 ∈ ℕ0 → {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})} = {𝑐 ∈ (ℕ0m 1o) ∣ (𝑐‘∅) ∈ (0...𝑘)})
194mptpreima 6238 . . . . . . 7 ((𝑐 ∈ (ℕ0m 1o) ↦ (𝑐‘∅)) “ (0...𝑘)) = {𝑐 ∈ (ℕ0m 1o) ∣ (𝑐‘∅) ∈ (0...𝑘)}
2018, 8, 193eqtr4g 2796 . . . . . 6 (𝑘 ∈ ℕ0𝐻 = ((𝑐 ∈ (ℕ0m 1o) ↦ (𝑐‘∅)) “ (0...𝑘)))
2120imaeq2d 6060 . . . . 5 (𝑘 ∈ ℕ0 → ((𝑐 ∈ (ℕ0m 1o) ↦ (𝑐‘∅)) “ 𝐻) = ((𝑐 ∈ (ℕ0m 1o) ↦ (𝑐‘∅)) “ ((𝑐 ∈ (ℕ0m 1o) ↦ (𝑐‘∅)) “ (0...𝑘))))
22 f1ofo 6841 . . . . . . 7 ((𝑐 ∈ (ℕ0m 1o) ↦ (𝑐‘∅)):(ℕ0m 1o)–1-1-onto→ℕ0 → (𝑐 ∈ (ℕ0m 1o) ↦ (𝑐‘∅)):(ℕ0m 1o)–onto→ℕ0)
235, 22ax-mp 5 . . . . . 6 (𝑐 ∈ (ℕ0m 1o) ↦ (𝑐‘∅)):(ℕ0m 1o)–onto→ℕ0
24 fz0ssnn0 13601 . . . . . 6 (0...𝑘) ⊆ ℕ0
25 foimacnv 6851 . . . . . 6 (((𝑐 ∈ (ℕ0m 1o) ↦ (𝑐‘∅)):(ℕ0m 1o)–onto→ℕ0 ∧ (0...𝑘) ⊆ ℕ0) → ((𝑐 ∈ (ℕ0m 1o) ↦ (𝑐‘∅)) “ ((𝑐 ∈ (ℕ0m 1o) ↦ (𝑐‘∅)) “ (0...𝑘))) = (0...𝑘))
2623, 24, 25mp2an 689 . . . . 5 ((𝑐 ∈ (ℕ0m 1o) ↦ (𝑐‘∅)) “ ((𝑐 ∈ (ℕ0m 1o) ↦ (𝑐‘∅)) “ (0...𝑘))) = (0...𝑘)
2721, 26eqtrdi 2787 . . . 4 (𝑘 ∈ ℕ0 → ((𝑐 ∈ (ℕ0m 1o) ↦ (𝑐‘∅)) “ 𝐻) = (0...𝑘))
2827f1oeq3d 6831 . . 3 (𝑘 ∈ ℕ0 → (((𝑐 ∈ (ℕ0m 1o) ↦ (𝑐‘∅)) ↾ 𝐻):𝐻1-1-onto→((𝑐 ∈ (ℕ0m 1o) ↦ (𝑐‘∅)) “ 𝐻) ↔ ((𝑐 ∈ (ℕ0m 1o) ↦ (𝑐‘∅)) ↾ 𝐻):𝐻1-1-onto→(0...𝑘)))
29 resmpt 6038 . . . 4 (𝐻 ⊆ (ℕ0m 1o) → ((𝑐 ∈ (ℕ0m 1o) ↦ (𝑐‘∅)) ↾ 𝐻) = (𝑐𝐻 ↦ (𝑐‘∅)))
30 f1oeq1 6822 . . . 4 (((𝑐 ∈ (ℕ0m 1o) ↦ (𝑐‘∅)) ↾ 𝐻) = (𝑐𝐻 ↦ (𝑐‘∅)) → (((𝑐 ∈ (ℕ0m 1o) ↦ (𝑐‘∅)) ↾ 𝐻):𝐻1-1-onto→(0...𝑘) ↔ (𝑐𝐻 ↦ (𝑐‘∅)):𝐻1-1-onto→(0...𝑘)))
3110, 29, 303syl 18 . . 3 (𝑘 ∈ ℕ0 → (((𝑐 ∈ (ℕ0m 1o) ↦ (𝑐‘∅)) ↾ 𝐻):𝐻1-1-onto→(0...𝑘) ↔ (𝑐𝐻 ↦ (𝑐‘∅)):𝐻1-1-onto→(0...𝑘)))
3228, 31bitrd 278 . 2 (𝑘 ∈ ℕ0 → (((𝑐 ∈ (ℕ0m 1o) ↦ (𝑐‘∅)) ↾ 𝐻):𝐻1-1-onto→((𝑐 ∈ (ℕ0m 1o) ↦ (𝑐‘∅)) “ 𝐻) ↔ (𝑐𝐻 ↦ (𝑐‘∅)):𝐻1-1-onto→(0...𝑘)))
3312, 32mpbid 231 1 (𝑘 ∈ ℕ0 → (𝑐𝐻 ↦ (𝑐‘∅)):𝐻1-1-onto→(0...𝑘))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1540  wcel 2105  {crab 3431  wss 3949  c0 4323  {csn 4629   class class class wbr 5149  cmpt 5232   × cxp 5675  ccnv 5676  cres 5679  cima 5680  1-1wf1 6541  ontowfo 6542  1-1-ontowf1o 6543  cfv 6544  (class class class)co 7412  r cofr 7672  1oc1o 8462  m cmap 8823  0cc0 11113  cle 11254  0cn0 12477  ...cfz 13489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7728  ax-cnex 11169  ax-resscn 11170  ax-1cn 11171  ax-icn 11172  ax-addcl 11173  ax-addrcl 11174  ax-mulcl 11175  ax-mulrcl 11176  ax-mulcom 11177  ax-addass 11178  ax-mulass 11179  ax-distr 11180  ax-i2m1 11181  ax-1ne0 11182  ax-1rid 11183  ax-rnegex 11184  ax-rrecex 11185  ax-cnre 11186  ax-pre-lttri 11187  ax-pre-lttrn 11188  ax-pre-ltadd 11189  ax-pre-mulgt0 11190
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-ofr 7674  df-om 7859  df-1st 7978  df-2nd 7979  df-frecs 8269  df-wrecs 8300  df-recs 8374  df-rdg 8413  df-1o 8469  df-er 8706  df-map 8825  df-en 8943  df-dom 8944  df-sdom 8945  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-nn 12218  df-n0 12478  df-z 12564  df-uz 12828  df-fz 13490
This theorem is referenced by:  coe1mul2  22012
  Copyright terms: Public domain W3C validator