MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coe1mul2lem2 Structured version   Visualization version   GIF version

Theorem coe1mul2lem2 22154
Description: An equivalence for coe1mul2 22155. (Contributed by Stefan O'Rear, 25-Mar-2015.)
Hypothesis
Ref Expression
coe1mul2lem2.h 𝐻 = {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})}
Assertion
Ref Expression
coe1mul2lem2 (𝑘 ∈ ℕ0 → (𝑐𝐻 ↦ (𝑐‘∅)):𝐻1-1-onto→(0...𝑘))
Distinct variable groups:   𝐻,𝑐   𝑐,𝑑,𝑘
Allowed substitution hints:   𝐻(𝑘,𝑑)

Proof of Theorem coe1mul2lem2
StepHypRef Expression
1 df1o2 8441 . . . . 5 1o = {∅}
2 nn0ex 12448 . . . . 5 0 ∈ V
3 0ex 5262 . . . . 5 ∅ ∈ V
4 eqid 2729 . . . . 5 (𝑐 ∈ (ℕ0m 1o) ↦ (𝑐‘∅)) = (𝑐 ∈ (ℕ0m 1o) ↦ (𝑐‘∅))
51, 2, 3, 4mapsnf1o2 8867 . . . 4 (𝑐 ∈ (ℕ0m 1o) ↦ (𝑐‘∅)):(ℕ0m 1o)–1-1-onto→ℕ0
6 f1of1 6799 . . . 4 ((𝑐 ∈ (ℕ0m 1o) ↦ (𝑐‘∅)):(ℕ0m 1o)–1-1-onto→ℕ0 → (𝑐 ∈ (ℕ0m 1o) ↦ (𝑐‘∅)):(ℕ0m 1o)–1-1→ℕ0)
75, 6ax-mp 5 . . 3 (𝑐 ∈ (ℕ0m 1o) ↦ (𝑐‘∅)):(ℕ0m 1o)–1-1→ℕ0
8 coe1mul2lem2.h . . . . 5 𝐻 = {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})}
98ssrab3 4045 . . . 4 𝐻 ⊆ (ℕ0m 1o)
109a1i 11 . . 3 (𝑘 ∈ ℕ0𝐻 ⊆ (ℕ0m 1o))
11 f1ores 6814 . . 3 (((𝑐 ∈ (ℕ0m 1o) ↦ (𝑐‘∅)):(ℕ0m 1o)–1-1→ℕ0𝐻 ⊆ (ℕ0m 1o)) → ((𝑐 ∈ (ℕ0m 1o) ↦ (𝑐‘∅)) ↾ 𝐻):𝐻1-1-onto→((𝑐 ∈ (ℕ0m 1o) ↦ (𝑐‘∅)) “ 𝐻))
127, 10, 11sylancr 587 . 2 (𝑘 ∈ ℕ0 → ((𝑐 ∈ (ℕ0m 1o) ↦ (𝑐‘∅)) ↾ 𝐻):𝐻1-1-onto→((𝑐 ∈ (ℕ0m 1o) ↦ (𝑐‘∅)) “ 𝐻))
13 coe1mul2lem1 22153 . . . . . . . . 9 ((𝑘 ∈ ℕ0𝑑 ∈ (ℕ0m 1o)) → (𝑑r ≤ (1o × {𝑘}) ↔ (𝑑‘∅) ∈ (0...𝑘)))
1413rabbidva 3412 . . . . . . . 8 (𝑘 ∈ ℕ0 → {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})} = {𝑑 ∈ (ℕ0m 1o) ∣ (𝑑‘∅) ∈ (0...𝑘)})
15 fveq1 6857 . . . . . . . . . 10 (𝑐 = 𝑑 → (𝑐‘∅) = (𝑑‘∅))
1615eleq1d 2813 . . . . . . . . 9 (𝑐 = 𝑑 → ((𝑐‘∅) ∈ (0...𝑘) ↔ (𝑑‘∅) ∈ (0...𝑘)))
1716cbvrabv 3416 . . . . . . . 8 {𝑐 ∈ (ℕ0m 1o) ∣ (𝑐‘∅) ∈ (0...𝑘)} = {𝑑 ∈ (ℕ0m 1o) ∣ (𝑑‘∅) ∈ (0...𝑘)}
1814, 17eqtr4di 2782 . . . . . . 7 (𝑘 ∈ ℕ0 → {𝑑 ∈ (ℕ0m 1o) ∣ 𝑑r ≤ (1o × {𝑘})} = {𝑐 ∈ (ℕ0m 1o) ∣ (𝑐‘∅) ∈ (0...𝑘)})
194mptpreima 6211 . . . . . . 7 ((𝑐 ∈ (ℕ0m 1o) ↦ (𝑐‘∅)) “ (0...𝑘)) = {𝑐 ∈ (ℕ0m 1o) ∣ (𝑐‘∅) ∈ (0...𝑘)}
2018, 8, 193eqtr4g 2789 . . . . . 6 (𝑘 ∈ ℕ0𝐻 = ((𝑐 ∈ (ℕ0m 1o) ↦ (𝑐‘∅)) “ (0...𝑘)))
2120imaeq2d 6031 . . . . 5 (𝑘 ∈ ℕ0 → ((𝑐 ∈ (ℕ0m 1o) ↦ (𝑐‘∅)) “ 𝐻) = ((𝑐 ∈ (ℕ0m 1o) ↦ (𝑐‘∅)) “ ((𝑐 ∈ (ℕ0m 1o) ↦ (𝑐‘∅)) “ (0...𝑘))))
22 f1ofo 6807 . . . . . . 7 ((𝑐 ∈ (ℕ0m 1o) ↦ (𝑐‘∅)):(ℕ0m 1o)–1-1-onto→ℕ0 → (𝑐 ∈ (ℕ0m 1o) ↦ (𝑐‘∅)):(ℕ0m 1o)–onto→ℕ0)
235, 22ax-mp 5 . . . . . 6 (𝑐 ∈ (ℕ0m 1o) ↦ (𝑐‘∅)):(ℕ0m 1o)–onto→ℕ0
24 fz0ssnn0 13583 . . . . . 6 (0...𝑘) ⊆ ℕ0
25 foimacnv 6817 . . . . . 6 (((𝑐 ∈ (ℕ0m 1o) ↦ (𝑐‘∅)):(ℕ0m 1o)–onto→ℕ0 ∧ (0...𝑘) ⊆ ℕ0) → ((𝑐 ∈ (ℕ0m 1o) ↦ (𝑐‘∅)) “ ((𝑐 ∈ (ℕ0m 1o) ↦ (𝑐‘∅)) “ (0...𝑘))) = (0...𝑘))
2623, 24, 25mp2an 692 . . . . 5 ((𝑐 ∈ (ℕ0m 1o) ↦ (𝑐‘∅)) “ ((𝑐 ∈ (ℕ0m 1o) ↦ (𝑐‘∅)) “ (0...𝑘))) = (0...𝑘)
2721, 26eqtrdi 2780 . . . 4 (𝑘 ∈ ℕ0 → ((𝑐 ∈ (ℕ0m 1o) ↦ (𝑐‘∅)) “ 𝐻) = (0...𝑘))
2827f1oeq3d 6797 . . 3 (𝑘 ∈ ℕ0 → (((𝑐 ∈ (ℕ0m 1o) ↦ (𝑐‘∅)) ↾ 𝐻):𝐻1-1-onto→((𝑐 ∈ (ℕ0m 1o) ↦ (𝑐‘∅)) “ 𝐻) ↔ ((𝑐 ∈ (ℕ0m 1o) ↦ (𝑐‘∅)) ↾ 𝐻):𝐻1-1-onto→(0...𝑘)))
29 resmpt 6008 . . . 4 (𝐻 ⊆ (ℕ0m 1o) → ((𝑐 ∈ (ℕ0m 1o) ↦ (𝑐‘∅)) ↾ 𝐻) = (𝑐𝐻 ↦ (𝑐‘∅)))
30 f1oeq1 6788 . . . 4 (((𝑐 ∈ (ℕ0m 1o) ↦ (𝑐‘∅)) ↾ 𝐻) = (𝑐𝐻 ↦ (𝑐‘∅)) → (((𝑐 ∈ (ℕ0m 1o) ↦ (𝑐‘∅)) ↾ 𝐻):𝐻1-1-onto→(0...𝑘) ↔ (𝑐𝐻 ↦ (𝑐‘∅)):𝐻1-1-onto→(0...𝑘)))
3110, 29, 303syl 18 . . 3 (𝑘 ∈ ℕ0 → (((𝑐 ∈ (ℕ0m 1o) ↦ (𝑐‘∅)) ↾ 𝐻):𝐻1-1-onto→(0...𝑘) ↔ (𝑐𝐻 ↦ (𝑐‘∅)):𝐻1-1-onto→(0...𝑘)))
3228, 31bitrd 279 . 2 (𝑘 ∈ ℕ0 → (((𝑐 ∈ (ℕ0m 1o) ↦ (𝑐‘∅)) ↾ 𝐻):𝐻1-1-onto→((𝑐 ∈ (ℕ0m 1o) ↦ (𝑐‘∅)) “ 𝐻) ↔ (𝑐𝐻 ↦ (𝑐‘∅)):𝐻1-1-onto→(0...𝑘)))
3312, 32mpbid 232 1 (𝑘 ∈ ℕ0 → (𝑐𝐻 ↦ (𝑐‘∅)):𝐻1-1-onto→(0...𝑘))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  {crab 3405  wss 3914  c0 4296  {csn 4589   class class class wbr 5107  cmpt 5188   × cxp 5636  ccnv 5637  cres 5640  cima 5641  1-1wf1 6508  ontowfo 6509  1-1-ontowf1o 6510  cfv 6511  (class class class)co 7387  r cofr 7652  1oc1o 8427  m cmap 8799  0cc0 11068  cle 11209  0cn0 12442  ...cfz 13468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-ofr 7654  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469
This theorem is referenced by:  coe1mul2  22155
  Copyright terms: Public domain W3C validator