MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coe1sfi Structured version   Visualization version   GIF version

Theorem coe1sfi 21737
Description: Finite support of univariate polynomial coefficient vectors. (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by AV, 19-Jul-2019.)
Hypotheses
Ref Expression
coe1sfi.a 𝐴 = (coe1𝐹)
coe1sfi.b 𝐵 = (Base‘𝑃)
coe1sfi.p 𝑃 = (Poly1𝑅)
coe1sfi.z 0 = (0g𝑅)
Assertion
Ref Expression
coe1sfi (𝐹𝐵𝐴 finSupp 0 )

Proof of Theorem coe1sfi
Dummy variables 𝑦 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 coe1sfi.a . . 3 𝐴 = (coe1𝐹)
2 coe1sfi.b . . 3 𝐵 = (Base‘𝑃)
3 coe1sfi.p . . 3 𝑃 = (Poly1𝑅)
4 df1o2 8473 . . . 4 1o = {∅}
5 nn0ex 12478 . . . 4 0 ∈ V
6 0ex 5308 . . . 4 ∅ ∈ V
7 eqid 2733 . . . 4 (𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅)) = (𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅))
84, 5, 6, 7mapsncnv 8887 . . 3 (𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅)) = (𝑦 ∈ ℕ0 ↦ (1o × {𝑦}))
91, 2, 3, 8coe1fval2 21734 . 2 (𝐹𝐵𝐴 = (𝐹(𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅))))
10 eqid 2733 . . . 4 (1o mPoly 𝑅) = (1o mPoly 𝑅)
11 eqid 2733 . . . 4 (Base‘(1o mPoly 𝑅)) = (Base‘(1o mPoly 𝑅))
12 coe1sfi.z . . . 4 0 = (0g𝑅)
133, 2ply1bascl2 21728 . . . 4 (𝐹𝐵𝐹 ∈ (Base‘(1o mPoly 𝑅)))
143, 2elbasfv 17150 . . . 4 (𝐹𝐵𝑅 ∈ V)
1510, 11, 12, 13, 14mplelsfi 21554 . . 3 (𝐹𝐵𝐹 finSupp 0 )
164, 5, 6, 7mapsnf1o2 8888 . . . . 5 (𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅)):(ℕ0m 1o)–1-1-onto→ℕ0
17 f1ocnv 6846 . . . . 5 ((𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅)):(ℕ0m 1o)–1-1-onto→ℕ0(𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅)):ℕ01-1-onto→(ℕ0m 1o))
18 f1of1 6833 . . . . 5 ((𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅)):ℕ01-1-onto→(ℕ0m 1o) → (𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅)):ℕ01-1→(ℕ0m 1o))
1916, 17, 18mp2b 10 . . . 4 (𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅)):ℕ01-1→(ℕ0m 1o)
2019a1i 11 . . 3 (𝐹𝐵(𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅)):ℕ01-1→(ℕ0m 1o))
2112fvexi 6906 . . . 4 0 ∈ V
2221a1i 11 . . 3 (𝐹𝐵0 ∈ V)
23 id 22 . . 3 (𝐹𝐵𝐹𝐵)
2415, 20, 22, 23fsuppco 9397 . 2 (𝐹𝐵 → (𝐹(𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅))) finSupp 0 )
259, 24eqbrtrd 5171 1 (𝐹𝐵𝐴 finSupp 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2107  Vcvv 3475  c0 4323   class class class wbr 5149  cmpt 5232  ccnv 5676  ccom 5681  1-1wf1 6541  1-1-ontowf1o 6543  cfv 6544  (class class class)co 7409  1oc1o 8459  m cmap 8820   finSupp cfsupp 9361  0cn0 12472  Basecbs 17144  0gc0g 17385   mPoly cmpl 21459  Poly1cpl1 21701  coe1cco1 21702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-of 7670  df-om 7856  df-1st 7975  df-2nd 7976  df-supp 8147  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-er 8703  df-map 8822  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-fsupp 9362  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-nn 12213  df-2 12275  df-3 12276  df-4 12277  df-5 12278  df-6 12279  df-7 12280  df-8 12281  df-9 12282  df-n0 12473  df-z 12559  df-dec 12678  df-uz 12823  df-fz 13485  df-struct 17080  df-sets 17097  df-slot 17115  df-ndx 17127  df-base 17145  df-ress 17174  df-plusg 17210  df-mulr 17211  df-sca 17213  df-vsca 17214  df-tset 17216  df-ple 17217  df-psr 21462  df-mpl 21464  df-opsr 21466  df-psr1 21704  df-ply1 21706  df-coe1 21707
This theorem is referenced by:  coe1fsupp  21738  mptcoe1fsupp  21739  ply1coefsupp  21819  mptcoe1matfsupp  22304  mp2pm2mplem4  22311  plypf1  25726  evls1fpws  32646
  Copyright terms: Public domain W3C validator