| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coe1sfi | Structured version Visualization version GIF version | ||
| Description: Finite support of univariate polynomial coefficient vectors. (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by AV, 19-Jul-2019.) |
| Ref | Expression |
|---|---|
| coe1sfi.a | ⊢ 𝐴 = (coe1‘𝐹) |
| coe1sfi.b | ⊢ 𝐵 = (Base‘𝑃) |
| coe1sfi.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| coe1sfi.z | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| coe1sfi | ⊢ (𝐹 ∈ 𝐵 → 𝐴 finSupp 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coe1sfi.a | . . 3 ⊢ 𝐴 = (coe1‘𝐹) | |
| 2 | coe1sfi.b | . . 3 ⊢ 𝐵 = (Base‘𝑃) | |
| 3 | coe1sfi.p | . . 3 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 4 | df1o2 8487 | . . . 4 ⊢ 1o = {∅} | |
| 5 | nn0ex 12507 | . . . 4 ⊢ ℕ0 ∈ V | |
| 6 | 0ex 5277 | . . . 4 ⊢ ∅ ∈ V | |
| 7 | eqid 2735 | . . . 4 ⊢ (𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)) = (𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)) | |
| 8 | 4, 5, 6, 7 | mapsncnv 8907 | . . 3 ⊢ ◡(𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)) = (𝑦 ∈ ℕ0 ↦ (1o × {𝑦})) |
| 9 | 1, 2, 3, 8 | coe1fval2 22146 | . 2 ⊢ (𝐹 ∈ 𝐵 → 𝐴 = (𝐹 ∘ ◡(𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)))) |
| 10 | eqid 2735 | . . . 4 ⊢ (1o mPoly 𝑅) = (1o mPoly 𝑅) | |
| 11 | eqid 2735 | . . . 4 ⊢ (Base‘(1o mPoly 𝑅)) = (Base‘(1o mPoly 𝑅)) | |
| 12 | coe1sfi.z | . . . 4 ⊢ 0 = (0g‘𝑅) | |
| 13 | 3, 2 | ply1bascl2 22140 | . . . 4 ⊢ (𝐹 ∈ 𝐵 → 𝐹 ∈ (Base‘(1o mPoly 𝑅))) |
| 14 | 10, 11, 12, 13 | mplelsfi 21955 | . . 3 ⊢ (𝐹 ∈ 𝐵 → 𝐹 finSupp 0 ) |
| 15 | 4, 5, 6, 7 | mapsnf1o2 8908 | . . . . 5 ⊢ (𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)):(ℕ0 ↑m 1o)–1-1-onto→ℕ0 |
| 16 | f1ocnv 6830 | . . . . 5 ⊢ ((𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)):(ℕ0 ↑m 1o)–1-1-onto→ℕ0 → ◡(𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)):ℕ0–1-1-onto→(ℕ0 ↑m 1o)) | |
| 17 | f1of1 6817 | . . . . 5 ⊢ (◡(𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)):ℕ0–1-1-onto→(ℕ0 ↑m 1o) → ◡(𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)):ℕ0–1-1→(ℕ0 ↑m 1o)) | |
| 18 | 15, 16, 17 | mp2b 10 | . . . 4 ⊢ ◡(𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)):ℕ0–1-1→(ℕ0 ↑m 1o) |
| 19 | 18 | a1i 11 | . . 3 ⊢ (𝐹 ∈ 𝐵 → ◡(𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)):ℕ0–1-1→(ℕ0 ↑m 1o)) |
| 20 | 12 | fvexi 6890 | . . . 4 ⊢ 0 ∈ V |
| 21 | 20 | a1i 11 | . . 3 ⊢ (𝐹 ∈ 𝐵 → 0 ∈ V) |
| 22 | id 22 | . . 3 ⊢ (𝐹 ∈ 𝐵 → 𝐹 ∈ 𝐵) | |
| 23 | 14, 19, 21, 22 | fsuppco 9414 | . 2 ⊢ (𝐹 ∈ 𝐵 → (𝐹 ∘ ◡(𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅))) finSupp 0 ) |
| 24 | 9, 23 | eqbrtrd 5141 | 1 ⊢ (𝐹 ∈ 𝐵 → 𝐴 finSupp 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ∅c0 4308 class class class wbr 5119 ↦ cmpt 5201 ◡ccnv 5653 ∘ ccom 5658 –1-1→wf1 6528 –1-1-onto→wf1o 6530 ‘cfv 6531 (class class class)co 7405 1oc1o 8473 ↑m cmap 8840 finSupp cfsupp 9373 ℕ0cn0 12501 Basecbs 17228 0gc0g 17453 mPoly cmpl 21866 Poly1cpl1 22112 coe1cco1 22113 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7671 df-om 7862 df-1st 7988 df-2nd 7989 df-supp 8160 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-map 8842 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-fsupp 9374 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-fz 13525 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-mulr 17285 df-sca 17287 df-vsca 17288 df-tset 17290 df-ple 17291 df-psr 21869 df-mpl 21871 df-opsr 21873 df-psr1 22115 df-ply1 22117 df-coe1 22118 |
| This theorem is referenced by: coe1fsupp 22150 mptcoe1fsupp 22151 ply1coefsupp 22235 evls1fpws 22307 mptcoe1matfsupp 22740 mp2pm2mplem4 22747 plypf1 26169 |
| Copyright terms: Public domain | W3C validator |