![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > coe1sfi | Structured version Visualization version GIF version |
Description: Finite support of univariate polynomial coefficient vectors. (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by AV, 19-Jul-2019.) |
Ref | Expression |
---|---|
coe1sfi.a | ⊢ 𝐴 = (coe1‘𝐹) |
coe1sfi.b | ⊢ 𝐵 = (Base‘𝑃) |
coe1sfi.p | ⊢ 𝑃 = (Poly1‘𝑅) |
coe1sfi.z | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
coe1sfi | ⊢ (𝐹 ∈ 𝐵 → 𝐴 finSupp 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coe1sfi.a | . . 3 ⊢ 𝐴 = (coe1‘𝐹) | |
2 | coe1sfi.b | . . 3 ⊢ 𝐵 = (Base‘𝑃) | |
3 | coe1sfi.p | . . 3 ⊢ 𝑃 = (Poly1‘𝑅) | |
4 | df1o2 8500 | . . . 4 ⊢ 1o = {∅} | |
5 | nn0ex 12516 | . . . 4 ⊢ ℕ0 ∈ V | |
6 | 0ex 5311 | . . . 4 ⊢ ∅ ∈ V | |
7 | eqid 2728 | . . . 4 ⊢ (𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)) = (𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)) | |
8 | 4, 5, 6, 7 | mapsncnv 8918 | . . 3 ⊢ ◡(𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)) = (𝑦 ∈ ℕ0 ↦ (1o × {𝑦})) |
9 | 1, 2, 3, 8 | coe1fval2 22136 | . 2 ⊢ (𝐹 ∈ 𝐵 → 𝐴 = (𝐹 ∘ ◡(𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)))) |
10 | eqid 2728 | . . . 4 ⊢ (1o mPoly 𝑅) = (1o mPoly 𝑅) | |
11 | eqid 2728 | . . . 4 ⊢ (Base‘(1o mPoly 𝑅)) = (Base‘(1o mPoly 𝑅)) | |
12 | coe1sfi.z | . . . 4 ⊢ 0 = (0g‘𝑅) | |
13 | 3, 2 | ply1bascl2 22130 | . . . 4 ⊢ (𝐹 ∈ 𝐵 → 𝐹 ∈ (Base‘(1o mPoly 𝑅))) |
14 | 3, 2 | elbasfv 17193 | . . . 4 ⊢ (𝐹 ∈ 𝐵 → 𝑅 ∈ V) |
15 | 10, 11, 12, 13, 14 | mplelsfi 21944 | . . 3 ⊢ (𝐹 ∈ 𝐵 → 𝐹 finSupp 0 ) |
16 | 4, 5, 6, 7 | mapsnf1o2 8919 | . . . . 5 ⊢ (𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)):(ℕ0 ↑m 1o)–1-1-onto→ℕ0 |
17 | f1ocnv 6856 | . . . . 5 ⊢ ((𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)):(ℕ0 ↑m 1o)–1-1-onto→ℕ0 → ◡(𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)):ℕ0–1-1-onto→(ℕ0 ↑m 1o)) | |
18 | f1of1 6843 | . . . . 5 ⊢ (◡(𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)):ℕ0–1-1-onto→(ℕ0 ↑m 1o) → ◡(𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)):ℕ0–1-1→(ℕ0 ↑m 1o)) | |
19 | 16, 17, 18 | mp2b 10 | . . . 4 ⊢ ◡(𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)):ℕ0–1-1→(ℕ0 ↑m 1o) |
20 | 19 | a1i 11 | . . 3 ⊢ (𝐹 ∈ 𝐵 → ◡(𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)):ℕ0–1-1→(ℕ0 ↑m 1o)) |
21 | 12 | fvexi 6916 | . . . 4 ⊢ 0 ∈ V |
22 | 21 | a1i 11 | . . 3 ⊢ (𝐹 ∈ 𝐵 → 0 ∈ V) |
23 | id 22 | . . 3 ⊢ (𝐹 ∈ 𝐵 → 𝐹 ∈ 𝐵) | |
24 | 15, 20, 22, 23 | fsuppco 9433 | . 2 ⊢ (𝐹 ∈ 𝐵 → (𝐹 ∘ ◡(𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅))) finSupp 0 ) |
25 | 9, 24 | eqbrtrd 5174 | 1 ⊢ (𝐹 ∈ 𝐵 → 𝐴 finSupp 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 Vcvv 3473 ∅c0 4326 class class class wbr 5152 ↦ cmpt 5235 ◡ccnv 5681 ∘ ccom 5686 –1-1→wf1 6550 –1-1-onto→wf1o 6552 ‘cfv 6553 (class class class)co 7426 1oc1o 8486 ↑m cmap 8851 finSupp cfsupp 9393 ℕ0cn0 12510 Basecbs 17187 0gc0g 17428 mPoly cmpl 21846 Poly1cpl1 22103 coe1cco1 22104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-tp 4637 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-of 7691 df-om 7877 df-1st 7999 df-2nd 8000 df-supp 8172 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-1o 8493 df-er 8731 df-map 8853 df-en 8971 df-dom 8972 df-sdom 8973 df-fin 8974 df-fsupp 9394 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-nn 12251 df-2 12313 df-3 12314 df-4 12315 df-5 12316 df-6 12317 df-7 12318 df-8 12319 df-9 12320 df-n0 12511 df-z 12597 df-dec 12716 df-uz 12861 df-fz 13525 df-struct 17123 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17188 df-ress 17217 df-plusg 17253 df-mulr 17254 df-sca 17256 df-vsca 17257 df-tset 17259 df-ple 17260 df-psr 21849 df-mpl 21851 df-opsr 21853 df-psr1 22106 df-ply1 22108 df-coe1 22109 |
This theorem is referenced by: coe1fsupp 22140 mptcoe1fsupp 22141 ply1coefsupp 22223 evls1fpws 22295 mptcoe1matfsupp 22724 mp2pm2mplem4 22731 plypf1 26166 |
Copyright terms: Public domain | W3C validator |