![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > coe1sfi | Structured version Visualization version GIF version |
Description: Finite support of univariate polynomial coefficient vectors. (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by AV, 19-Jul-2019.) |
Ref | Expression |
---|---|
coe1sfi.a | ⊢ 𝐴 = (coe1‘𝐹) |
coe1sfi.b | ⊢ 𝐵 = (Base‘𝑃) |
coe1sfi.p | ⊢ 𝑃 = (Poly1‘𝑅) |
coe1sfi.z | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
coe1sfi | ⊢ (𝐹 ∈ 𝐵 → 𝐴 finSupp 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coe1sfi.a | . . 3 ⊢ 𝐴 = (coe1‘𝐹) | |
2 | coe1sfi.b | . . 3 ⊢ 𝐵 = (Base‘𝑃) | |
3 | coe1sfi.p | . . 3 ⊢ 𝑃 = (Poly1‘𝑅) | |
4 | df1o2 8420 | . . . 4 ⊢ 1o = {∅} | |
5 | nn0ex 12424 | . . . 4 ⊢ ℕ0 ∈ V | |
6 | 0ex 5265 | . . . 4 ⊢ ∅ ∈ V | |
7 | eqid 2733 | . . . 4 ⊢ (𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)) = (𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)) | |
8 | 4, 5, 6, 7 | mapsncnv 8834 | . . 3 ⊢ ◡(𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)) = (𝑦 ∈ ℕ0 ↦ (1o × {𝑦})) |
9 | 1, 2, 3, 8 | coe1fval2 21597 | . 2 ⊢ (𝐹 ∈ 𝐵 → 𝐴 = (𝐹 ∘ ◡(𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)))) |
10 | eqid 2733 | . . . 4 ⊢ (1o mPoly 𝑅) = (1o mPoly 𝑅) | |
11 | eqid 2733 | . . . 4 ⊢ (Base‘(1o mPoly 𝑅)) = (Base‘(1o mPoly 𝑅)) | |
12 | coe1sfi.z | . . . 4 ⊢ 0 = (0g‘𝑅) | |
13 | 3, 2 | ply1bascl2 21591 | . . . 4 ⊢ (𝐹 ∈ 𝐵 → 𝐹 ∈ (Base‘(1o mPoly 𝑅))) |
14 | 3, 2 | elbasfv 17094 | . . . 4 ⊢ (𝐹 ∈ 𝐵 → 𝑅 ∈ V) |
15 | 10, 11, 12, 13, 14 | mplelsfi 21417 | . . 3 ⊢ (𝐹 ∈ 𝐵 → 𝐹 finSupp 0 ) |
16 | 4, 5, 6, 7 | mapsnf1o2 8835 | . . . . 5 ⊢ (𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)):(ℕ0 ↑m 1o)–1-1-onto→ℕ0 |
17 | f1ocnv 6797 | . . . . 5 ⊢ ((𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)):(ℕ0 ↑m 1o)–1-1-onto→ℕ0 → ◡(𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)):ℕ0–1-1-onto→(ℕ0 ↑m 1o)) | |
18 | f1of1 6784 | . . . . 5 ⊢ (◡(𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)):ℕ0–1-1-onto→(ℕ0 ↑m 1o) → ◡(𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)):ℕ0–1-1→(ℕ0 ↑m 1o)) | |
19 | 16, 17, 18 | mp2b 10 | . . . 4 ⊢ ◡(𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)):ℕ0–1-1→(ℕ0 ↑m 1o) |
20 | 19 | a1i 11 | . . 3 ⊢ (𝐹 ∈ 𝐵 → ◡(𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)):ℕ0–1-1→(ℕ0 ↑m 1o)) |
21 | 12 | fvexi 6857 | . . . 4 ⊢ 0 ∈ V |
22 | 21 | a1i 11 | . . 3 ⊢ (𝐹 ∈ 𝐵 → 0 ∈ V) |
23 | id 22 | . . 3 ⊢ (𝐹 ∈ 𝐵 → 𝐹 ∈ 𝐵) | |
24 | 15, 20, 22, 23 | fsuppco 9343 | . 2 ⊢ (𝐹 ∈ 𝐵 → (𝐹 ∘ ◡(𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅))) finSupp 0 ) |
25 | 9, 24 | eqbrtrd 5128 | 1 ⊢ (𝐹 ∈ 𝐵 → 𝐴 finSupp 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 Vcvv 3444 ∅c0 4283 class class class wbr 5106 ↦ cmpt 5189 ◡ccnv 5633 ∘ ccom 5638 –1-1→wf1 6494 –1-1-onto→wf1o 6496 ‘cfv 6497 (class class class)co 7358 1oc1o 8406 ↑m cmap 8768 finSupp cfsupp 9308 ℕ0cn0 12418 Basecbs 17088 0gc0g 17326 mPoly cmpl 21324 Poly1cpl1 21564 coe1cco1 21565 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5243 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-cnex 11112 ax-resscn 11113 ax-1cn 11114 ax-icn 11115 ax-addcl 11116 ax-addrcl 11117 ax-mulcl 11118 ax-mulrcl 11119 ax-mulcom 11120 ax-addass 11121 ax-mulass 11122 ax-distr 11123 ax-i2m1 11124 ax-1ne0 11125 ax-1rid 11126 ax-rnegex 11127 ax-rrecex 11128 ax-cnre 11129 ax-pre-lttri 11130 ax-pre-lttrn 11131 ax-pre-ltadd 11132 ax-pre-mulgt0 11133 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3930 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-tp 4592 df-op 4594 df-uni 4867 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-tr 5224 df-id 5532 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5589 df-we 5591 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-pred 6254 df-ord 6321 df-on 6322 df-lim 6323 df-suc 6324 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-riota 7314 df-ov 7361 df-oprab 7362 df-mpo 7363 df-of 7618 df-om 7804 df-1st 7922 df-2nd 7923 df-supp 8094 df-frecs 8213 df-wrecs 8244 df-recs 8318 df-rdg 8357 df-1o 8413 df-er 8651 df-map 8770 df-en 8887 df-dom 8888 df-sdom 8889 df-fin 8890 df-fsupp 9309 df-pnf 11196 df-mnf 11197 df-xr 11198 df-ltxr 11199 df-le 11200 df-sub 11392 df-neg 11393 df-nn 12159 df-2 12221 df-3 12222 df-4 12223 df-5 12224 df-6 12225 df-7 12226 df-8 12227 df-9 12228 df-n0 12419 df-z 12505 df-dec 12624 df-uz 12769 df-fz 13431 df-struct 17024 df-sets 17041 df-slot 17059 df-ndx 17071 df-base 17089 df-ress 17118 df-plusg 17151 df-mulr 17152 df-sca 17154 df-vsca 17155 df-tset 17157 df-ple 17158 df-psr 21327 df-mpl 21329 df-opsr 21331 df-psr1 21567 df-ply1 21569 df-coe1 21570 |
This theorem is referenced by: coe1fsupp 21601 mptcoe1fsupp 21602 ply1coefsupp 21682 mptcoe1matfsupp 22167 mp2pm2mplem4 22174 plypf1 25589 evls1fpws 32320 |
Copyright terms: Public domain | W3C validator |