Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > coe1sfi | Structured version Visualization version GIF version |
Description: Finite support of univariate polynomial coefficient vectors. (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by AV, 19-Jul-2019.) |
Ref | Expression |
---|---|
coe1sfi.a | ⊢ 𝐴 = (coe1‘𝐹) |
coe1sfi.b | ⊢ 𝐵 = (Base‘𝑃) |
coe1sfi.p | ⊢ 𝑃 = (Poly1‘𝑅) |
coe1sfi.z | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
coe1sfi | ⊢ (𝐹 ∈ 𝐵 → 𝐴 finSupp 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coe1sfi.a | . . 3 ⊢ 𝐴 = (coe1‘𝐹) | |
2 | coe1sfi.b | . . 3 ⊢ 𝐵 = (Base‘𝑃) | |
3 | coe1sfi.p | . . 3 ⊢ 𝑃 = (Poly1‘𝑅) | |
4 | df1o2 8304 | . . . 4 ⊢ 1o = {∅} | |
5 | nn0ex 12239 | . . . 4 ⊢ ℕ0 ∈ V | |
6 | 0ex 5231 | . . . 4 ⊢ ∅ ∈ V | |
7 | eqid 2738 | . . . 4 ⊢ (𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)) = (𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)) | |
8 | 4, 5, 6, 7 | mapsncnv 8681 | . . 3 ⊢ ◡(𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)) = (𝑦 ∈ ℕ0 ↦ (1o × {𝑦})) |
9 | 1, 2, 3, 8 | coe1fval2 21381 | . 2 ⊢ (𝐹 ∈ 𝐵 → 𝐴 = (𝐹 ∘ ◡(𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)))) |
10 | eqid 2738 | . . . 4 ⊢ (1o mPoly 𝑅) = (1o mPoly 𝑅) | |
11 | eqid 2738 | . . . 4 ⊢ (Base‘(1o mPoly 𝑅)) = (Base‘(1o mPoly 𝑅)) | |
12 | coe1sfi.z | . . . 4 ⊢ 0 = (0g‘𝑅) | |
13 | 3, 2 | ply1bascl2 21375 | . . . 4 ⊢ (𝐹 ∈ 𝐵 → 𝐹 ∈ (Base‘(1o mPoly 𝑅))) |
14 | 3, 2 | elbasfv 16918 | . . . 4 ⊢ (𝐹 ∈ 𝐵 → 𝑅 ∈ V) |
15 | 10, 11, 12, 13, 14 | mplelsfi 21201 | . . 3 ⊢ (𝐹 ∈ 𝐵 → 𝐹 finSupp 0 ) |
16 | 4, 5, 6, 7 | mapsnf1o2 8682 | . . . . 5 ⊢ (𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)):(ℕ0 ↑m 1o)–1-1-onto→ℕ0 |
17 | f1ocnv 6728 | . . . . 5 ⊢ ((𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)):(ℕ0 ↑m 1o)–1-1-onto→ℕ0 → ◡(𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)):ℕ0–1-1-onto→(ℕ0 ↑m 1o)) | |
18 | f1of1 6715 | . . . . 5 ⊢ (◡(𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)):ℕ0–1-1-onto→(ℕ0 ↑m 1o) → ◡(𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)):ℕ0–1-1→(ℕ0 ↑m 1o)) | |
19 | 16, 17, 18 | mp2b 10 | . . . 4 ⊢ ◡(𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)):ℕ0–1-1→(ℕ0 ↑m 1o) |
20 | 19 | a1i 11 | . . 3 ⊢ (𝐹 ∈ 𝐵 → ◡(𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)):ℕ0–1-1→(ℕ0 ↑m 1o)) |
21 | 12 | fvexi 6788 | . . . 4 ⊢ 0 ∈ V |
22 | 21 | a1i 11 | . . 3 ⊢ (𝐹 ∈ 𝐵 → 0 ∈ V) |
23 | id 22 | . . 3 ⊢ (𝐹 ∈ 𝐵 → 𝐹 ∈ 𝐵) | |
24 | 15, 20, 22, 23 | fsuppco 9161 | . 2 ⊢ (𝐹 ∈ 𝐵 → (𝐹 ∘ ◡(𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅))) finSupp 0 ) |
25 | 9, 24 | eqbrtrd 5096 | 1 ⊢ (𝐹 ∈ 𝐵 → 𝐴 finSupp 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ∅c0 4256 class class class wbr 5074 ↦ cmpt 5157 ◡ccnv 5588 ∘ ccom 5593 –1-1→wf1 6430 –1-1-onto→wf1o 6432 ‘cfv 6433 (class class class)co 7275 1oc1o 8290 ↑m cmap 8615 finSupp cfsupp 9128 ℕ0cn0 12233 Basecbs 16912 0gc0g 17150 mPoly cmpl 21109 Poly1cpl1 21348 coe1cco1 21349 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-om 7713 df-1st 7831 df-2nd 7832 df-supp 7978 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-fsupp 9129 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-fz 13240 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-sca 16978 df-vsca 16979 df-tset 16981 df-ple 16982 df-psr 21112 df-mpl 21114 df-opsr 21116 df-psr1 21351 df-ply1 21353 df-coe1 21354 |
This theorem is referenced by: coe1fsupp 21385 mptcoe1fsupp 21386 ply1coefsupp 21466 mptcoe1matfsupp 21951 mp2pm2mplem4 21958 plypf1 25373 |
Copyright terms: Public domain | W3C validator |