| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coe1sfi | Structured version Visualization version GIF version | ||
| Description: Finite support of univariate polynomial coefficient vectors. (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by AV, 19-Jul-2019.) |
| Ref | Expression |
|---|---|
| coe1sfi.a | ⊢ 𝐴 = (coe1‘𝐹) |
| coe1sfi.b | ⊢ 𝐵 = (Base‘𝑃) |
| coe1sfi.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| coe1sfi.z | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| coe1sfi | ⊢ (𝐹 ∈ 𝐵 → 𝐴 finSupp 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coe1sfi.a | . . 3 ⊢ 𝐴 = (coe1‘𝐹) | |
| 2 | coe1sfi.b | . . 3 ⊢ 𝐵 = (Base‘𝑃) | |
| 3 | coe1sfi.p | . . 3 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 4 | df1o2 8395 | . . . 4 ⊢ 1o = {∅} | |
| 5 | nn0ex 12390 | . . . 4 ⊢ ℕ0 ∈ V | |
| 6 | 0ex 5246 | . . . 4 ⊢ ∅ ∈ V | |
| 7 | eqid 2729 | . . . 4 ⊢ (𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)) = (𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)) | |
| 8 | 4, 5, 6, 7 | mapsncnv 8820 | . . 3 ⊢ ◡(𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)) = (𝑦 ∈ ℕ0 ↦ (1o × {𝑦})) |
| 9 | 1, 2, 3, 8 | coe1fval2 22093 | . 2 ⊢ (𝐹 ∈ 𝐵 → 𝐴 = (𝐹 ∘ ◡(𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)))) |
| 10 | eqid 2729 | . . . 4 ⊢ (1o mPoly 𝑅) = (1o mPoly 𝑅) | |
| 11 | eqid 2729 | . . . 4 ⊢ (Base‘(1o mPoly 𝑅)) = (Base‘(1o mPoly 𝑅)) | |
| 12 | coe1sfi.z | . . . 4 ⊢ 0 = (0g‘𝑅) | |
| 13 | 3, 2 | ply1bascl2 22087 | . . . 4 ⊢ (𝐹 ∈ 𝐵 → 𝐹 ∈ (Base‘(1o mPoly 𝑅))) |
| 14 | 10, 11, 12, 13 | mplelsfi 21902 | . . 3 ⊢ (𝐹 ∈ 𝐵 → 𝐹 finSupp 0 ) |
| 15 | 4, 5, 6, 7 | mapsnf1o2 8821 | . . . . 5 ⊢ (𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)):(ℕ0 ↑m 1o)–1-1-onto→ℕ0 |
| 16 | f1ocnv 6776 | . . . . 5 ⊢ ((𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)):(ℕ0 ↑m 1o)–1-1-onto→ℕ0 → ◡(𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)):ℕ0–1-1-onto→(ℕ0 ↑m 1o)) | |
| 17 | f1of1 6763 | . . . . 5 ⊢ (◡(𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)):ℕ0–1-1-onto→(ℕ0 ↑m 1o) → ◡(𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)):ℕ0–1-1→(ℕ0 ↑m 1o)) | |
| 18 | 15, 16, 17 | mp2b 10 | . . . 4 ⊢ ◡(𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)):ℕ0–1-1→(ℕ0 ↑m 1o) |
| 19 | 18 | a1i 11 | . . 3 ⊢ (𝐹 ∈ 𝐵 → ◡(𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅)):ℕ0–1-1→(ℕ0 ↑m 1o)) |
| 20 | 12 | fvexi 6836 | . . . 4 ⊢ 0 ∈ V |
| 21 | 20 | a1i 11 | . . 3 ⊢ (𝐹 ∈ 𝐵 → 0 ∈ V) |
| 22 | id 22 | . . 3 ⊢ (𝐹 ∈ 𝐵 → 𝐹 ∈ 𝐵) | |
| 23 | 14, 19, 21, 22 | fsuppco 9292 | . 2 ⊢ (𝐹 ∈ 𝐵 → (𝐹 ∘ ◡(𝑥 ∈ (ℕ0 ↑m 1o) ↦ (𝑥‘∅))) finSupp 0 ) |
| 24 | 9, 23 | eqbrtrd 5114 | 1 ⊢ (𝐹 ∈ 𝐵 → 𝐴 finSupp 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3436 ∅c0 4284 class class class wbr 5092 ↦ cmpt 5173 ◡ccnv 5618 ∘ ccom 5623 –1-1→wf1 6479 –1-1-onto→wf1o 6481 ‘cfv 6482 (class class class)co 7349 1oc1o 8381 ↑m cmap 8753 finSupp cfsupp 9251 ℕ0cn0 12384 Basecbs 17120 0gc0g 17343 mPoly cmpl 21813 Poly1cpl1 22059 coe1cco1 22060 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7613 df-om 7800 df-1st 7924 df-2nd 7925 df-supp 8094 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-map 8755 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-fsupp 9252 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-fz 13411 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-sca 17177 df-vsca 17178 df-tset 17180 df-ple 17181 df-psr 21816 df-mpl 21818 df-opsr 21820 df-psr1 22062 df-ply1 22064 df-coe1 22065 |
| This theorem is referenced by: coe1fsupp 22097 mptcoe1fsupp 22098 ply1coefsupp 22182 evls1fpws 22254 mptcoe1matfsupp 22687 mp2pm2mplem4 22694 plypf1 26115 |
| Copyright terms: Public domain | W3C validator |