MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coe1sfi Structured version   Visualization version   GIF version

Theorem coe1sfi 21294
Description: Finite support of univariate polynomial coefficient vectors. (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by AV, 19-Jul-2019.)
Hypotheses
Ref Expression
coe1sfi.a 𝐴 = (coe1𝐹)
coe1sfi.b 𝐵 = (Base‘𝑃)
coe1sfi.p 𝑃 = (Poly1𝑅)
coe1sfi.z 0 = (0g𝑅)
Assertion
Ref Expression
coe1sfi (𝐹𝐵𝐴 finSupp 0 )

Proof of Theorem coe1sfi
Dummy variables 𝑦 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 coe1sfi.a . . 3 𝐴 = (coe1𝐹)
2 coe1sfi.b . . 3 𝐵 = (Base‘𝑃)
3 coe1sfi.p . . 3 𝑃 = (Poly1𝑅)
4 df1o2 8279 . . . 4 1o = {∅}
5 nn0ex 12169 . . . 4 0 ∈ V
6 0ex 5226 . . . 4 ∅ ∈ V
7 eqid 2738 . . . 4 (𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅)) = (𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅))
84, 5, 6, 7mapsncnv 8639 . . 3 (𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅)) = (𝑦 ∈ ℕ0 ↦ (1o × {𝑦}))
91, 2, 3, 8coe1fval2 21291 . 2 (𝐹𝐵𝐴 = (𝐹(𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅))))
10 eqid 2738 . . . 4 (1o mPoly 𝑅) = (1o mPoly 𝑅)
11 eqid 2738 . . . 4 (Base‘(1o mPoly 𝑅)) = (Base‘(1o mPoly 𝑅))
12 coe1sfi.z . . . 4 0 = (0g𝑅)
133, 2ply1bascl2 21285 . . . 4 (𝐹𝐵𝐹 ∈ (Base‘(1o mPoly 𝑅)))
143, 2elbasfv 16846 . . . 4 (𝐹𝐵𝑅 ∈ V)
1510, 11, 12, 13, 14mplelsfi 21111 . . 3 (𝐹𝐵𝐹 finSupp 0 )
164, 5, 6, 7mapsnf1o2 8640 . . . . 5 (𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅)):(ℕ0m 1o)–1-1-onto→ℕ0
17 f1ocnv 6712 . . . . 5 ((𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅)):(ℕ0m 1o)–1-1-onto→ℕ0(𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅)):ℕ01-1-onto→(ℕ0m 1o))
18 f1of1 6699 . . . . 5 ((𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅)):ℕ01-1-onto→(ℕ0m 1o) → (𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅)):ℕ01-1→(ℕ0m 1o))
1916, 17, 18mp2b 10 . . . 4 (𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅)):ℕ01-1→(ℕ0m 1o)
2019a1i 11 . . 3 (𝐹𝐵(𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅)):ℕ01-1→(ℕ0m 1o))
2112fvexi 6770 . . . 4 0 ∈ V
2221a1i 11 . . 3 (𝐹𝐵0 ∈ V)
23 id 22 . . 3 (𝐹𝐵𝐹𝐵)
2415, 20, 22, 23fsuppco 9091 . 2 (𝐹𝐵 → (𝐹(𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅))) finSupp 0 )
259, 24eqbrtrd 5092 1 (𝐹𝐵𝐴 finSupp 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  Vcvv 3422  c0 4253   class class class wbr 5070  cmpt 5153  ccnv 5579  ccom 5584  1-1wf1 6415  1-1-ontowf1o 6417  cfv 6418  (class class class)co 7255  1oc1o 8260  m cmap 8573   finSupp cfsupp 9058  0cn0 12163  Basecbs 16840  0gc0g 17067   mPoly cmpl 21019  Poly1cpl1 21258  coe1cco1 21259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-sca 16904  df-vsca 16905  df-tset 16907  df-ple 16908  df-psr 21022  df-mpl 21024  df-opsr 21026  df-psr1 21261  df-ply1 21263  df-coe1 21264
This theorem is referenced by:  coe1fsupp  21295  mptcoe1fsupp  21296  ply1coefsupp  21376  mptcoe1matfsupp  21859  mp2pm2mplem4  21866  plypf1  25278
  Copyright terms: Public domain W3C validator