MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coe1sfi Structured version   Visualization version   GIF version

Theorem coe1sfi 22215
Description: Finite support of univariate polynomial coefficient vectors. (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by AV, 19-Jul-2019.)
Hypotheses
Ref Expression
coe1sfi.a 𝐴 = (coe1𝐹)
coe1sfi.b 𝐵 = (Base‘𝑃)
coe1sfi.p 𝑃 = (Poly1𝑅)
coe1sfi.z 0 = (0g𝑅)
Assertion
Ref Expression
coe1sfi (𝐹𝐵𝐴 finSupp 0 )

Proof of Theorem coe1sfi
Dummy variables 𝑦 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 coe1sfi.a . . 3 𝐴 = (coe1𝐹)
2 coe1sfi.b . . 3 𝐵 = (Base‘𝑃)
3 coe1sfi.p . . 3 𝑃 = (Poly1𝑅)
4 df1o2 8513 . . . 4 1o = {∅}
5 nn0ex 12532 . . . 4 0 ∈ V
6 0ex 5307 . . . 4 ∅ ∈ V
7 eqid 2737 . . . 4 (𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅)) = (𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅))
84, 5, 6, 7mapsncnv 8933 . . 3 (𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅)) = (𝑦 ∈ ℕ0 ↦ (1o × {𝑦}))
91, 2, 3, 8coe1fval2 22212 . 2 (𝐹𝐵𝐴 = (𝐹(𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅))))
10 eqid 2737 . . . 4 (1o mPoly 𝑅) = (1o mPoly 𝑅)
11 eqid 2737 . . . 4 (Base‘(1o mPoly 𝑅)) = (Base‘(1o mPoly 𝑅))
12 coe1sfi.z . . . 4 0 = (0g𝑅)
133, 2ply1bascl2 22206 . . . 4 (𝐹𝐵𝐹 ∈ (Base‘(1o mPoly 𝑅)))
1410, 11, 12, 13mplelsfi 22015 . . 3 (𝐹𝐵𝐹 finSupp 0 )
154, 5, 6, 7mapsnf1o2 8934 . . . . 5 (𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅)):(ℕ0m 1o)–1-1-onto→ℕ0
16 f1ocnv 6860 . . . . 5 ((𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅)):(ℕ0m 1o)–1-1-onto→ℕ0(𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅)):ℕ01-1-onto→(ℕ0m 1o))
17 f1of1 6847 . . . . 5 ((𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅)):ℕ01-1-onto→(ℕ0m 1o) → (𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅)):ℕ01-1→(ℕ0m 1o))
1815, 16, 17mp2b 10 . . . 4 (𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅)):ℕ01-1→(ℕ0m 1o)
1918a1i 11 . . 3 (𝐹𝐵(𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅)):ℕ01-1→(ℕ0m 1o))
2012fvexi 6920 . . . 4 0 ∈ V
2120a1i 11 . . 3 (𝐹𝐵0 ∈ V)
22 id 22 . . 3 (𝐹𝐵𝐹𝐵)
2314, 19, 21, 22fsuppco 9442 . 2 (𝐹𝐵 → (𝐹(𝑥 ∈ (ℕ0m 1o) ↦ (𝑥‘∅))) finSupp 0 )
249, 23eqbrtrd 5165 1 (𝐹𝐵𝐴 finSupp 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  Vcvv 3480  c0 4333   class class class wbr 5143  cmpt 5225  ccnv 5684  ccom 5689  1-1wf1 6558  1-1-ontowf1o 6560  cfv 6561  (class class class)co 7431  1oc1o 8499  m cmap 8866   finSupp cfsupp 9401  0cn0 12526  Basecbs 17247  0gc0g 17484   mPoly cmpl 21926  Poly1cpl1 22178  coe1cco1 22179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-fz 13548  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-sca 17313  df-vsca 17314  df-tset 17316  df-ple 17317  df-psr 21929  df-mpl 21931  df-opsr 21933  df-psr1 22181  df-ply1 22183  df-coe1 22184
This theorem is referenced by:  coe1fsupp  22216  mptcoe1fsupp  22217  ply1coefsupp  22301  evls1fpws  22373  mptcoe1matfsupp  22808  mp2pm2mplem4  22815  plypf1  26251
  Copyright terms: Public domain W3C validator