Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2at0mat0 Structured version   Visualization version   GIF version

Theorem 2at0mat0 39507
Description: Special case of 2atmat0 39508 where one atom could be zero. (Contributed by NM, 30-May-2013.)
Hypotheses
Ref Expression
2atmatz.j = (join‘𝐾)
2atmatz.m = (meet‘𝐾)
2atmatz.z 0 = (0.‘𝐾)
2atmatz.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
2at0mat0 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → (((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴 ∨ ((𝑃 𝑄) (𝑅 𝑆)) = 0 ))

Proof of Theorem 2at0mat0
StepHypRef Expression
1 simpll 767 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑆𝐴) → (𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴))
2 simplr1 1214 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑆𝐴) → 𝑅𝐴)
3 simpr 484 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑆𝐴) → 𝑆𝐴)
4 simplr3 1216 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑆𝐴) → (𝑃 𝑄) ≠ (𝑅 𝑆))
5 simpl1 1190 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝐾 ∈ HL)
6 hlol 39342 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ OL)
75, 6syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝐾 ∈ OL)
8 simpr1 1193 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝑅𝐴)
9 simpr2 1194 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝑆𝐴)
10 eqid 2734 . . . . . . . . 9 (Base‘𝐾) = (Base‘𝐾)
11 2atmatz.j . . . . . . . . 9 = (join‘𝐾)
12 2atmatz.a . . . . . . . . 9 𝐴 = (Atoms‘𝐾)
1310, 11, 12hlatjcl 39348 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑆𝐴) → (𝑅 𝑆) ∈ (Base‘𝐾))
145, 8, 9, 13syl3anc 1370 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → (𝑅 𝑆) ∈ (Base‘𝐾))
15 simpl3 1192 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝑄𝐴)
16 2atmatz.m . . . . . . . 8 = (meet‘𝐾)
17 2atmatz.z . . . . . . . 8 0 = (0.‘𝐾)
1810, 16, 17, 12meetat2 39278 . . . . . . 7 ((𝐾 ∈ OL ∧ (𝑅 𝑆) ∈ (Base‘𝐾) ∧ 𝑄𝐴) → (((𝑅 𝑆) 𝑄) ∈ 𝐴 ∨ ((𝑅 𝑆) 𝑄) = 0 ))
197, 14, 15, 18syl3anc 1370 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → (((𝑅 𝑆) 𝑄) ∈ 𝐴 ∨ ((𝑅 𝑆) 𝑄) = 0 ))
2019adantr 480 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑃 = 𝑄) → (((𝑅 𝑆) 𝑄) ∈ 𝐴 ∨ ((𝑅 𝑆) 𝑄) = 0 ))
21 oveq1 7437 . . . . . . . . . 10 (𝑃 = 𝑄 → (𝑃 𝑄) = (𝑄 𝑄))
2211, 12hlatjidm 39350 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑄𝐴) → (𝑄 𝑄) = 𝑄)
235, 15, 22syl2anc 584 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → (𝑄 𝑄) = 𝑄)
2421, 23sylan9eqr 2796 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑃 = 𝑄) → (𝑃 𝑄) = 𝑄)
2524oveq1d 7445 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑃 = 𝑄) → ((𝑃 𝑄) (𝑅 𝑆)) = (𝑄 (𝑅 𝑆)))
265hllatd 39345 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝐾 ∈ Lat)
2710, 12atbase 39270 . . . . . . . . . . 11 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
2815, 27syl 17 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝑄 ∈ (Base‘𝐾))
2910, 16latmcom 18520 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾) ∧ (𝑅 𝑆) ∈ (Base‘𝐾)) → (𝑄 (𝑅 𝑆)) = ((𝑅 𝑆) 𝑄))
3026, 28, 14, 29syl3anc 1370 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → (𝑄 (𝑅 𝑆)) = ((𝑅 𝑆) 𝑄))
3130adantr 480 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑃 = 𝑄) → (𝑄 (𝑅 𝑆)) = ((𝑅 𝑆) 𝑄))
3225, 31eqtrd 2774 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑃 = 𝑄) → ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑅 𝑆) 𝑄))
3332eleq1d 2823 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑃 = 𝑄) → (((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴 ↔ ((𝑅 𝑆) 𝑄) ∈ 𝐴))
3432eqeq1d 2736 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑃 = 𝑄) → (((𝑃 𝑄) (𝑅 𝑆)) = 0 ↔ ((𝑅 𝑆) 𝑄) = 0 ))
3533, 34orbi12d 918 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑃 = 𝑄) → ((((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴 ∨ ((𝑃 𝑄) (𝑅 𝑆)) = 0 ) ↔ (((𝑅 𝑆) 𝑄) ∈ 𝐴 ∨ ((𝑅 𝑆) 𝑄) = 0 )))
3620, 35mpbird 257 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑃 = 𝑄) → (((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴 ∨ ((𝑃 𝑄) (𝑅 𝑆)) = 0 ))
3710, 11, 12hlatjcl 39348 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
3837adantr 480 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → (𝑃 𝑄) ∈ (Base‘𝐾))
3910, 16, 17, 12meetat2 39278 . . . . . . . . 9 ((𝐾 ∈ OL ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑆𝐴) → (((𝑃 𝑄) 𝑆) ∈ 𝐴 ∨ ((𝑃 𝑄) 𝑆) = 0 ))
407, 38, 9, 39syl3anc 1370 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → (((𝑃 𝑄) 𝑆) ∈ 𝐴 ∨ ((𝑃 𝑄) 𝑆) = 0 ))
4140adantr 480 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑅 = 𝑆) → (((𝑃 𝑄) 𝑆) ∈ 𝐴 ∨ ((𝑃 𝑄) 𝑆) = 0 ))
42 oveq1 7437 . . . . . . . . . . 11 (𝑅 = 𝑆 → (𝑅 𝑆) = (𝑆 𝑆))
4311, 12hlatjidm 39350 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑆𝐴) → (𝑆 𝑆) = 𝑆)
445, 9, 43syl2anc 584 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → (𝑆 𝑆) = 𝑆)
4542, 44sylan9eqr 2796 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑅 = 𝑆) → (𝑅 𝑆) = 𝑆)
4645oveq2d 7446 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑅 = 𝑆) → ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑃 𝑄) 𝑆))
4746eleq1d 2823 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑅 = 𝑆) → (((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴 ↔ ((𝑃 𝑄) 𝑆) ∈ 𝐴))
4846eqeq1d 2736 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑅 = 𝑆) → (((𝑃 𝑄) (𝑅 𝑆)) = 0 ↔ ((𝑃 𝑄) 𝑆) = 0 ))
4947, 48orbi12d 918 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑅 = 𝑆) → ((((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴 ∨ ((𝑃 𝑄) (𝑅 𝑆)) = 0 ) ↔ (((𝑃 𝑄) 𝑆) ∈ 𝐴 ∨ ((𝑃 𝑄) 𝑆) = 0 )))
5041, 49mpbird 257 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑅 = 𝑆) → (((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴 ∨ ((𝑃 𝑄) (𝑅 𝑆)) = 0 ))
5150adantlr 715 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑃𝑄) ∧ 𝑅 = 𝑆) → (((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴 ∨ ((𝑃 𝑄) (𝑅 𝑆)) = 0 ))
52 df-ne 2938 . . . . . . . 8 (((𝑃 𝑄) (𝑅 𝑆)) ≠ 0 ↔ ¬ ((𝑃 𝑄) (𝑅 𝑆)) = 0 )
53 simpll1 1211 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ (𝑃𝑄𝑅𝑆 ∧ ((𝑃 𝑄) (𝑅 𝑆)) ≠ 0 )) → 𝐾 ∈ HL)
54 simpll2 1212 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ (𝑃𝑄𝑅𝑆 ∧ ((𝑃 𝑄) (𝑅 𝑆)) ≠ 0 )) → 𝑃𝐴)
55 simpll3 1213 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ (𝑃𝑄𝑅𝑆 ∧ ((𝑃 𝑄) (𝑅 𝑆)) ≠ 0 )) → 𝑄𝐴)
56 simpr1 1193 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ (𝑃𝑄𝑅𝑆 ∧ ((𝑃 𝑄) (𝑅 𝑆)) ≠ 0 )) → 𝑃𝑄)
57 eqid 2734 . . . . . . . . . . . . 13 (LLines‘𝐾) = (LLines‘𝐾)
5811, 12, 57llni2 39494 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → (𝑃 𝑄) ∈ (LLines‘𝐾))
5953, 54, 55, 56, 58syl31anc 1372 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ (𝑃𝑄𝑅𝑆 ∧ ((𝑃 𝑄) (𝑅 𝑆)) ≠ 0 )) → (𝑃 𝑄) ∈ (LLines‘𝐾))
60 simplr1 1214 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ (𝑃𝑄𝑅𝑆 ∧ ((𝑃 𝑄) (𝑅 𝑆)) ≠ 0 )) → 𝑅𝐴)
61 simplr2 1215 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ (𝑃𝑄𝑅𝑆 ∧ ((𝑃 𝑄) (𝑅 𝑆)) ≠ 0 )) → 𝑆𝐴)
62 simpr2 1194 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ (𝑃𝑄𝑅𝑆 ∧ ((𝑃 𝑄) (𝑅 𝑆)) ≠ 0 )) → 𝑅𝑆)
6311, 12, 57llni2 39494 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑅𝐴𝑆𝐴) ∧ 𝑅𝑆) → (𝑅 𝑆) ∈ (LLines‘𝐾))
6453, 60, 61, 62, 63syl31anc 1372 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ (𝑃𝑄𝑅𝑆 ∧ ((𝑃 𝑄) (𝑅 𝑆)) ≠ 0 )) → (𝑅 𝑆) ∈ (LLines‘𝐾))
65 simplr3 1216 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ (𝑃𝑄𝑅𝑆 ∧ ((𝑃 𝑄) (𝑅 𝑆)) ≠ 0 )) → (𝑃 𝑄) ≠ (𝑅 𝑆))
66 simpr3 1195 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ (𝑃𝑄𝑅𝑆 ∧ ((𝑃 𝑄) (𝑅 𝑆)) ≠ 0 )) → ((𝑃 𝑄) (𝑅 𝑆)) ≠ 0 )
6716, 17, 12, 572llnmat 39506 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑃 𝑄) ∈ (LLines‘𝐾) ∧ (𝑅 𝑆) ∈ (LLines‘𝐾)) ∧ ((𝑃 𝑄) ≠ (𝑅 𝑆) ∧ ((𝑃 𝑄) (𝑅 𝑆)) ≠ 0 )) → ((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴)
6853, 59, 64, 65, 66, 67syl32anc 1377 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ (𝑃𝑄𝑅𝑆 ∧ ((𝑃 𝑄) (𝑅 𝑆)) ≠ 0 )) → ((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴)
69683exp2 1353 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → (𝑃𝑄 → (𝑅𝑆 → (((𝑃 𝑄) (𝑅 𝑆)) ≠ 0 → ((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴))))
7069imp31 417 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑃𝑄) ∧ 𝑅𝑆) → (((𝑃 𝑄) (𝑅 𝑆)) ≠ 0 → ((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴))
7152, 70biimtrrid 243 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑃𝑄) ∧ 𝑅𝑆) → (¬ ((𝑃 𝑄) (𝑅 𝑆)) = 0 → ((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴))
7271orrd 863 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑃𝑄) ∧ 𝑅𝑆) → (((𝑃 𝑄) (𝑅 𝑆)) = 0 ∨ ((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴))
7372orcomd 871 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑃𝑄) ∧ 𝑅𝑆) → (((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴 ∨ ((𝑃 𝑄) (𝑅 𝑆)) = 0 ))
7451, 73pm2.61dane 3026 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑃𝑄) → (((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴 ∨ ((𝑃 𝑄) (𝑅 𝑆)) = 0 ))
7536, 74pm2.61dane 3026 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → (((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴 ∨ ((𝑃 𝑄) (𝑅 𝑆)) = 0 ))
761, 2, 3, 4, 75syl13anc 1371 . 2 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑆𝐴) → (((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴 ∨ ((𝑃 𝑄) (𝑅 𝑆)) = 0 ))
77 simpl1 1190 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝐾 ∈ HL)
7877, 6syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝐾 ∈ OL)
7937adantr 480 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → (𝑃 𝑄) ∈ (Base‘𝐾))
80 simpr1 1193 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝑅𝐴)
8110, 16, 17, 12meetat2 39278 . . . . 5 ((𝐾 ∈ OL ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑅𝐴) → (((𝑃 𝑄) 𝑅) ∈ 𝐴 ∨ ((𝑃 𝑄) 𝑅) = 0 ))
8278, 79, 80, 81syl3anc 1370 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → (((𝑃 𝑄) 𝑅) ∈ 𝐴 ∨ ((𝑃 𝑄) 𝑅) = 0 ))
8382adantr 480 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑆 = 0 ) → (((𝑃 𝑄) 𝑅) ∈ 𝐴 ∨ ((𝑃 𝑄) 𝑅) = 0 ))
84 oveq2 7438 . . . . . . 7 (𝑆 = 0 → (𝑅 𝑆) = (𝑅 0 ))
8510, 12atbase 39270 . . . . . . . . 9 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
8680, 85syl 17 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝑅 ∈ (Base‘𝐾))
8710, 11, 17olj01 39206 . . . . . . . 8 ((𝐾 ∈ OL ∧ 𝑅 ∈ (Base‘𝐾)) → (𝑅 0 ) = 𝑅)
8878, 86, 87syl2anc 584 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → (𝑅 0 ) = 𝑅)
8984, 88sylan9eqr 2796 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑆 = 0 ) → (𝑅 𝑆) = 𝑅)
9089oveq2d 7446 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑆 = 0 ) → ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑃 𝑄) 𝑅))
9190eleq1d 2823 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑆 = 0 ) → (((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴 ↔ ((𝑃 𝑄) 𝑅) ∈ 𝐴))
9290eqeq1d 2736 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑆 = 0 ) → (((𝑃 𝑄) (𝑅 𝑆)) = 0 ↔ ((𝑃 𝑄) 𝑅) = 0 ))
9391, 92orbi12d 918 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑆 = 0 ) → ((((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴 ∨ ((𝑃 𝑄) (𝑅 𝑆)) = 0 ) ↔ (((𝑃 𝑄) 𝑅) ∈ 𝐴 ∨ ((𝑃 𝑄) 𝑅) = 0 )))
9483, 93mpbird 257 . 2 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑆 = 0 ) → (((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴 ∨ ((𝑃 𝑄) (𝑅 𝑆)) = 0 ))
95 simpr2 1194 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → (𝑆𝐴𝑆 = 0 ))
9676, 94, 95mpjaodan 960 1 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → (((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴 ∨ ((𝑃 𝑄) (𝑅 𝑆)) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  w3a 1086   = wceq 1536  wcel 2105  wne 2937  cfv 6562  (class class class)co 7430  Basecbs 17244  joincjn 18368  meetcmee 18369  0.cp0 18480  Latclat 18488  OLcol 39155  Atomscatm 39244  HLchlt 39331  LLinesclln 39473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5582  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-proset 18351  df-poset 18370  df-plt 18387  df-lub 18403  df-glb 18404  df-join 18405  df-meet 18406  df-p0 18482  df-lat 18489  df-clat 18556  df-oposet 39157  df-ol 39159  df-oml 39160  df-covers 39247  df-ats 39248  df-atl 39279  df-cvlat 39303  df-hlat 39332  df-llines 39480
This theorem is referenced by:  2atmat0  39508  cdlemg31b0a  40677
  Copyright terms: Public domain W3C validator