Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2at0mat0 Structured version   Visualization version   GIF version

Theorem 2at0mat0 36821
Description: Special case of 2atmat0 36822 where one atom could be zero. (Contributed by NM, 30-May-2013.)
Hypotheses
Ref Expression
2atmatz.j = (join‘𝐾)
2atmatz.m = (meet‘𝐾)
2atmatz.z 0 = (0.‘𝐾)
2atmatz.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
2at0mat0 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → (((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴 ∨ ((𝑃 𝑄) (𝑅 𝑆)) = 0 ))

Proof of Theorem 2at0mat0
StepHypRef Expression
1 simpll 766 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑆𝐴) → (𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴))
2 simplr1 1212 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑆𝐴) → 𝑅𝐴)
3 simpr 488 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑆𝐴) → 𝑆𝐴)
4 simplr3 1214 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑆𝐴) → (𝑃 𝑄) ≠ (𝑅 𝑆))
5 simpl1 1188 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝐾 ∈ HL)
6 hlol 36657 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ OL)
75, 6syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝐾 ∈ OL)
8 simpr1 1191 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝑅𝐴)
9 simpr2 1192 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝑆𝐴)
10 eqid 2798 . . . . . . . . 9 (Base‘𝐾) = (Base‘𝐾)
11 2atmatz.j . . . . . . . . 9 = (join‘𝐾)
12 2atmatz.a . . . . . . . . 9 𝐴 = (Atoms‘𝐾)
1310, 11, 12hlatjcl 36663 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑆𝐴) → (𝑅 𝑆) ∈ (Base‘𝐾))
145, 8, 9, 13syl3anc 1368 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → (𝑅 𝑆) ∈ (Base‘𝐾))
15 simpl3 1190 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝑄𝐴)
16 2atmatz.m . . . . . . . 8 = (meet‘𝐾)
17 2atmatz.z . . . . . . . 8 0 = (0.‘𝐾)
1810, 16, 17, 12meetat2 36593 . . . . . . 7 ((𝐾 ∈ OL ∧ (𝑅 𝑆) ∈ (Base‘𝐾) ∧ 𝑄𝐴) → (((𝑅 𝑆) 𝑄) ∈ 𝐴 ∨ ((𝑅 𝑆) 𝑄) = 0 ))
197, 14, 15, 18syl3anc 1368 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → (((𝑅 𝑆) 𝑄) ∈ 𝐴 ∨ ((𝑅 𝑆) 𝑄) = 0 ))
2019adantr 484 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑃 = 𝑄) → (((𝑅 𝑆) 𝑄) ∈ 𝐴 ∨ ((𝑅 𝑆) 𝑄) = 0 ))
21 oveq1 7142 . . . . . . . . . 10 (𝑃 = 𝑄 → (𝑃 𝑄) = (𝑄 𝑄))
2211, 12hlatjidm 36665 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑄𝐴) → (𝑄 𝑄) = 𝑄)
235, 15, 22syl2anc 587 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → (𝑄 𝑄) = 𝑄)
2421, 23sylan9eqr 2855 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑃 = 𝑄) → (𝑃 𝑄) = 𝑄)
2524oveq1d 7150 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑃 = 𝑄) → ((𝑃 𝑄) (𝑅 𝑆)) = (𝑄 (𝑅 𝑆)))
265hllatd 36660 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝐾 ∈ Lat)
2710, 12atbase 36585 . . . . . . . . . . 11 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
2815, 27syl 17 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝑄 ∈ (Base‘𝐾))
2910, 16latmcom 17677 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾) ∧ (𝑅 𝑆) ∈ (Base‘𝐾)) → (𝑄 (𝑅 𝑆)) = ((𝑅 𝑆) 𝑄))
3026, 28, 14, 29syl3anc 1368 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → (𝑄 (𝑅 𝑆)) = ((𝑅 𝑆) 𝑄))
3130adantr 484 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑃 = 𝑄) → (𝑄 (𝑅 𝑆)) = ((𝑅 𝑆) 𝑄))
3225, 31eqtrd 2833 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑃 = 𝑄) → ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑅 𝑆) 𝑄))
3332eleq1d 2874 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑃 = 𝑄) → (((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴 ↔ ((𝑅 𝑆) 𝑄) ∈ 𝐴))
3432eqeq1d 2800 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑃 = 𝑄) → (((𝑃 𝑄) (𝑅 𝑆)) = 0 ↔ ((𝑅 𝑆) 𝑄) = 0 ))
3533, 34orbi12d 916 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑃 = 𝑄) → ((((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴 ∨ ((𝑃 𝑄) (𝑅 𝑆)) = 0 ) ↔ (((𝑅 𝑆) 𝑄) ∈ 𝐴 ∨ ((𝑅 𝑆) 𝑄) = 0 )))
3620, 35mpbird 260 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑃 = 𝑄) → (((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴 ∨ ((𝑃 𝑄) (𝑅 𝑆)) = 0 ))
3710, 11, 12hlatjcl 36663 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
3837adantr 484 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → (𝑃 𝑄) ∈ (Base‘𝐾))
3910, 16, 17, 12meetat2 36593 . . . . . . . . 9 ((𝐾 ∈ OL ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑆𝐴) → (((𝑃 𝑄) 𝑆) ∈ 𝐴 ∨ ((𝑃 𝑄) 𝑆) = 0 ))
407, 38, 9, 39syl3anc 1368 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → (((𝑃 𝑄) 𝑆) ∈ 𝐴 ∨ ((𝑃 𝑄) 𝑆) = 0 ))
4140adantr 484 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑅 = 𝑆) → (((𝑃 𝑄) 𝑆) ∈ 𝐴 ∨ ((𝑃 𝑄) 𝑆) = 0 ))
42 oveq1 7142 . . . . . . . . . . 11 (𝑅 = 𝑆 → (𝑅 𝑆) = (𝑆 𝑆))
4311, 12hlatjidm 36665 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑆𝐴) → (𝑆 𝑆) = 𝑆)
445, 9, 43syl2anc 587 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → (𝑆 𝑆) = 𝑆)
4542, 44sylan9eqr 2855 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑅 = 𝑆) → (𝑅 𝑆) = 𝑆)
4645oveq2d 7151 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑅 = 𝑆) → ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑃 𝑄) 𝑆))
4746eleq1d 2874 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑅 = 𝑆) → (((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴 ↔ ((𝑃 𝑄) 𝑆) ∈ 𝐴))
4846eqeq1d 2800 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑅 = 𝑆) → (((𝑃 𝑄) (𝑅 𝑆)) = 0 ↔ ((𝑃 𝑄) 𝑆) = 0 ))
4947, 48orbi12d 916 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑅 = 𝑆) → ((((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴 ∨ ((𝑃 𝑄) (𝑅 𝑆)) = 0 ) ↔ (((𝑃 𝑄) 𝑆) ∈ 𝐴 ∨ ((𝑃 𝑄) 𝑆) = 0 )))
5041, 49mpbird 260 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑅 = 𝑆) → (((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴 ∨ ((𝑃 𝑄) (𝑅 𝑆)) = 0 ))
5150adantlr 714 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑃𝑄) ∧ 𝑅 = 𝑆) → (((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴 ∨ ((𝑃 𝑄) (𝑅 𝑆)) = 0 ))
52 df-ne 2988 . . . . . . . 8 (((𝑃 𝑄) (𝑅 𝑆)) ≠ 0 ↔ ¬ ((𝑃 𝑄) (𝑅 𝑆)) = 0 )
53 simpll1 1209 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ (𝑃𝑄𝑅𝑆 ∧ ((𝑃 𝑄) (𝑅 𝑆)) ≠ 0 )) → 𝐾 ∈ HL)
54 simpll2 1210 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ (𝑃𝑄𝑅𝑆 ∧ ((𝑃 𝑄) (𝑅 𝑆)) ≠ 0 )) → 𝑃𝐴)
55 simpll3 1211 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ (𝑃𝑄𝑅𝑆 ∧ ((𝑃 𝑄) (𝑅 𝑆)) ≠ 0 )) → 𝑄𝐴)
56 simpr1 1191 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ (𝑃𝑄𝑅𝑆 ∧ ((𝑃 𝑄) (𝑅 𝑆)) ≠ 0 )) → 𝑃𝑄)
57 eqid 2798 . . . . . . . . . . . . 13 (LLines‘𝐾) = (LLines‘𝐾)
5811, 12, 57llni2 36808 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → (𝑃 𝑄) ∈ (LLines‘𝐾))
5953, 54, 55, 56, 58syl31anc 1370 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ (𝑃𝑄𝑅𝑆 ∧ ((𝑃 𝑄) (𝑅 𝑆)) ≠ 0 )) → (𝑃 𝑄) ∈ (LLines‘𝐾))
60 simplr1 1212 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ (𝑃𝑄𝑅𝑆 ∧ ((𝑃 𝑄) (𝑅 𝑆)) ≠ 0 )) → 𝑅𝐴)
61 simplr2 1213 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ (𝑃𝑄𝑅𝑆 ∧ ((𝑃 𝑄) (𝑅 𝑆)) ≠ 0 )) → 𝑆𝐴)
62 simpr2 1192 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ (𝑃𝑄𝑅𝑆 ∧ ((𝑃 𝑄) (𝑅 𝑆)) ≠ 0 )) → 𝑅𝑆)
6311, 12, 57llni2 36808 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑅𝐴𝑆𝐴) ∧ 𝑅𝑆) → (𝑅 𝑆) ∈ (LLines‘𝐾))
6453, 60, 61, 62, 63syl31anc 1370 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ (𝑃𝑄𝑅𝑆 ∧ ((𝑃 𝑄) (𝑅 𝑆)) ≠ 0 )) → (𝑅 𝑆) ∈ (LLines‘𝐾))
65 simplr3 1214 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ (𝑃𝑄𝑅𝑆 ∧ ((𝑃 𝑄) (𝑅 𝑆)) ≠ 0 )) → (𝑃 𝑄) ≠ (𝑅 𝑆))
66 simpr3 1193 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ (𝑃𝑄𝑅𝑆 ∧ ((𝑃 𝑄) (𝑅 𝑆)) ≠ 0 )) → ((𝑃 𝑄) (𝑅 𝑆)) ≠ 0 )
6716, 17, 12, 572llnmat 36820 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑃 𝑄) ∈ (LLines‘𝐾) ∧ (𝑅 𝑆) ∈ (LLines‘𝐾)) ∧ ((𝑃 𝑄) ≠ (𝑅 𝑆) ∧ ((𝑃 𝑄) (𝑅 𝑆)) ≠ 0 )) → ((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴)
6853, 59, 64, 65, 66, 67syl32anc 1375 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ (𝑃𝑄𝑅𝑆 ∧ ((𝑃 𝑄) (𝑅 𝑆)) ≠ 0 )) → ((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴)
69683exp2 1351 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → (𝑃𝑄 → (𝑅𝑆 → (((𝑃 𝑄) (𝑅 𝑆)) ≠ 0 → ((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴))))
7069imp31 421 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑃𝑄) ∧ 𝑅𝑆) → (((𝑃 𝑄) (𝑅 𝑆)) ≠ 0 → ((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴))
7152, 70syl5bir 246 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑃𝑄) ∧ 𝑅𝑆) → (¬ ((𝑃 𝑄) (𝑅 𝑆)) = 0 → ((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴))
7271orrd 860 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑃𝑄) ∧ 𝑅𝑆) → (((𝑃 𝑄) (𝑅 𝑆)) = 0 ∨ ((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴))
7372orcomd 868 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑃𝑄) ∧ 𝑅𝑆) → (((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴 ∨ ((𝑃 𝑄) (𝑅 𝑆)) = 0 ))
7451, 73pm2.61dane 3074 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑃𝑄) → (((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴 ∨ ((𝑃 𝑄) (𝑅 𝑆)) = 0 ))
7536, 74pm2.61dane 3074 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → (((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴 ∨ ((𝑃 𝑄) (𝑅 𝑆)) = 0 ))
761, 2, 3, 4, 75syl13anc 1369 . 2 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑆𝐴) → (((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴 ∨ ((𝑃 𝑄) (𝑅 𝑆)) = 0 ))
77 simpl1 1188 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝐾 ∈ HL)
7877, 6syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝐾 ∈ OL)
7937adantr 484 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → (𝑃 𝑄) ∈ (Base‘𝐾))
80 simpr1 1191 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝑅𝐴)
8110, 16, 17, 12meetat2 36593 . . . . 5 ((𝐾 ∈ OL ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑅𝐴) → (((𝑃 𝑄) 𝑅) ∈ 𝐴 ∨ ((𝑃 𝑄) 𝑅) = 0 ))
8278, 79, 80, 81syl3anc 1368 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → (((𝑃 𝑄) 𝑅) ∈ 𝐴 ∨ ((𝑃 𝑄) 𝑅) = 0 ))
8382adantr 484 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑆 = 0 ) → (((𝑃 𝑄) 𝑅) ∈ 𝐴 ∨ ((𝑃 𝑄) 𝑅) = 0 ))
84 oveq2 7143 . . . . . . 7 (𝑆 = 0 → (𝑅 𝑆) = (𝑅 0 ))
8510, 12atbase 36585 . . . . . . . . 9 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
8680, 85syl 17 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝑅 ∈ (Base‘𝐾))
8710, 11, 17olj01 36521 . . . . . . . 8 ((𝐾 ∈ OL ∧ 𝑅 ∈ (Base‘𝐾)) → (𝑅 0 ) = 𝑅)
8878, 86, 87syl2anc 587 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → (𝑅 0 ) = 𝑅)
8984, 88sylan9eqr 2855 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑆 = 0 ) → (𝑅 𝑆) = 𝑅)
9089oveq2d 7151 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑆 = 0 ) → ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑃 𝑄) 𝑅))
9190eleq1d 2874 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑆 = 0 ) → (((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴 ↔ ((𝑃 𝑄) 𝑅) ∈ 𝐴))
9290eqeq1d 2800 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑆 = 0 ) → (((𝑃 𝑄) (𝑅 𝑆)) = 0 ↔ ((𝑃 𝑄) 𝑅) = 0 ))
9391, 92orbi12d 916 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑆 = 0 ) → ((((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴 ∨ ((𝑃 𝑄) (𝑅 𝑆)) = 0 ) ↔ (((𝑃 𝑄) 𝑅) ∈ 𝐴 ∨ ((𝑃 𝑄) 𝑅) = 0 )))
9483, 93mpbird 260 . 2 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑆 = 0 ) → (((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴 ∨ ((𝑃 𝑄) (𝑅 𝑆)) = 0 ))
95 simpr2 1192 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → (𝑆𝐴𝑆 = 0 ))
9676, 94, 95mpjaodan 956 1 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → (((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴 ∨ ((𝑃 𝑄) (𝑅 𝑆)) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  wo 844  w3a 1084   = wceq 1538  wcel 2111  wne 2987  cfv 6324  (class class class)co 7135  Basecbs 16475  joincjn 17546  meetcmee 17547  0.cp0 17639  Latclat 17647  OLcol 36470  Atomscatm 36559  HLchlt 36646  LLinesclln 36787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-proset 17530  df-poset 17548  df-plt 17560  df-lub 17576  df-glb 17577  df-join 17578  df-meet 17579  df-p0 17641  df-lat 17648  df-clat 17710  df-oposet 36472  df-ol 36474  df-oml 36475  df-covers 36562  df-ats 36563  df-atl 36594  df-cvlat 36618  df-hlat 36647  df-llines 36794
This theorem is referenced by:  2atmat0  36822  cdlemg31b0a  37991
  Copyright terms: Public domain W3C validator