Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2at0mat0 Structured version   Visualization version   GIF version

Theorem 2at0mat0 38017
Description: Special case of 2atmat0 38018 where one atom could be zero. (Contributed by NM, 30-May-2013.)
Hypotheses
Ref Expression
2atmatz.j ∨ = (joinβ€˜πΎ)
2atmatz.m ∧ = (meetβ€˜πΎ)
2atmatz.z 0 = (0.β€˜πΎ)
2atmatz.a 𝐴 = (Atomsβ€˜πΎ)
Assertion
Ref Expression
2at0mat0 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∨ 𝑆 = 0 ) ∧ (𝑃 ∨ 𝑄) β‰  (𝑅 ∨ 𝑆))) β†’ (((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) ∈ 𝐴 ∨ ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) = 0 ))

Proof of Theorem 2at0mat0
StepHypRef Expression
1 simpll 766 . . 3 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∨ 𝑆 = 0 ) ∧ (𝑃 ∨ 𝑄) β‰  (𝑅 ∨ 𝑆))) ∧ 𝑆 ∈ 𝐴) β†’ (𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴))
2 simplr1 1216 . . 3 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∨ 𝑆 = 0 ) ∧ (𝑃 ∨ 𝑄) β‰  (𝑅 ∨ 𝑆))) ∧ 𝑆 ∈ 𝐴) β†’ 𝑅 ∈ 𝐴)
3 simpr 486 . . 3 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∨ 𝑆 = 0 ) ∧ (𝑃 ∨ 𝑄) β‰  (𝑅 ∨ 𝑆))) ∧ 𝑆 ∈ 𝐴) β†’ 𝑆 ∈ 𝐴)
4 simplr3 1218 . . 3 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∨ 𝑆 = 0 ) ∧ (𝑃 ∨ 𝑄) β‰  (𝑅 ∨ 𝑆))) ∧ 𝑆 ∈ 𝐴) β†’ (𝑃 ∨ 𝑄) β‰  (𝑅 ∨ 𝑆))
5 simpl1 1192 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) β‰  (𝑅 ∨ 𝑆))) β†’ 𝐾 ∈ HL)
6 hlol 37852 . . . . . . . 8 (𝐾 ∈ HL β†’ 𝐾 ∈ OL)
75, 6syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) β‰  (𝑅 ∨ 𝑆))) β†’ 𝐾 ∈ OL)
8 simpr1 1195 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) β‰  (𝑅 ∨ 𝑆))) β†’ 𝑅 ∈ 𝐴)
9 simpr2 1196 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) β‰  (𝑅 ∨ 𝑆))) β†’ 𝑆 ∈ 𝐴)
10 eqid 2737 . . . . . . . . 9 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
11 2atmatz.j . . . . . . . . 9 ∨ = (joinβ€˜πΎ)
12 2atmatz.a . . . . . . . . 9 𝐴 = (Atomsβ€˜πΎ)
1310, 11, 12hlatjcl 37858 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) β†’ (𝑅 ∨ 𝑆) ∈ (Baseβ€˜πΎ))
145, 8, 9, 13syl3anc 1372 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) β‰  (𝑅 ∨ 𝑆))) β†’ (𝑅 ∨ 𝑆) ∈ (Baseβ€˜πΎ))
15 simpl3 1194 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) β‰  (𝑅 ∨ 𝑆))) β†’ 𝑄 ∈ 𝐴)
16 2atmatz.m . . . . . . . 8 ∧ = (meetβ€˜πΎ)
17 2atmatz.z . . . . . . . 8 0 = (0.β€˜πΎ)
1810, 16, 17, 12meetat2 37788 . . . . . . 7 ((𝐾 ∈ OL ∧ (𝑅 ∨ 𝑆) ∈ (Baseβ€˜πΎ) ∧ 𝑄 ∈ 𝐴) β†’ (((𝑅 ∨ 𝑆) ∧ 𝑄) ∈ 𝐴 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑄) = 0 ))
197, 14, 15, 18syl3anc 1372 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) β‰  (𝑅 ∨ 𝑆))) β†’ (((𝑅 ∨ 𝑆) ∧ 𝑄) ∈ 𝐴 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑄) = 0 ))
2019adantr 482 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) β‰  (𝑅 ∨ 𝑆))) ∧ 𝑃 = 𝑄) β†’ (((𝑅 ∨ 𝑆) ∧ 𝑄) ∈ 𝐴 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑄) = 0 ))
21 oveq1 7369 . . . . . . . . . 10 (𝑃 = 𝑄 β†’ (𝑃 ∨ 𝑄) = (𝑄 ∨ 𝑄))
2211, 12hlatjidm 37860 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴) β†’ (𝑄 ∨ 𝑄) = 𝑄)
235, 15, 22syl2anc 585 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) β‰  (𝑅 ∨ 𝑆))) β†’ (𝑄 ∨ 𝑄) = 𝑄)
2421, 23sylan9eqr 2799 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) β‰  (𝑅 ∨ 𝑆))) ∧ 𝑃 = 𝑄) β†’ (𝑃 ∨ 𝑄) = 𝑄)
2524oveq1d 7377 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) β‰  (𝑅 ∨ 𝑆))) ∧ 𝑃 = 𝑄) β†’ ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) = (𝑄 ∧ (𝑅 ∨ 𝑆)))
265hllatd 37855 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) β‰  (𝑅 ∨ 𝑆))) β†’ 𝐾 ∈ Lat)
2710, 12atbase 37780 . . . . . . . . . . 11 (𝑄 ∈ 𝐴 β†’ 𝑄 ∈ (Baseβ€˜πΎ))
2815, 27syl 17 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) β‰  (𝑅 ∨ 𝑆))) β†’ 𝑄 ∈ (Baseβ€˜πΎ))
2910, 16latmcom 18359 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Baseβ€˜πΎ) ∧ (𝑅 ∨ 𝑆) ∈ (Baseβ€˜πΎ)) β†’ (𝑄 ∧ (𝑅 ∨ 𝑆)) = ((𝑅 ∨ 𝑆) ∧ 𝑄))
3026, 28, 14, 29syl3anc 1372 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) β‰  (𝑅 ∨ 𝑆))) β†’ (𝑄 ∧ (𝑅 ∨ 𝑆)) = ((𝑅 ∨ 𝑆) ∧ 𝑄))
3130adantr 482 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) β‰  (𝑅 ∨ 𝑆))) ∧ 𝑃 = 𝑄) β†’ (𝑄 ∧ (𝑅 ∨ 𝑆)) = ((𝑅 ∨ 𝑆) ∧ 𝑄))
3225, 31eqtrd 2777 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) β‰  (𝑅 ∨ 𝑆))) ∧ 𝑃 = 𝑄) β†’ ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) = ((𝑅 ∨ 𝑆) ∧ 𝑄))
3332eleq1d 2823 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) β‰  (𝑅 ∨ 𝑆))) ∧ 𝑃 = 𝑄) β†’ (((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) ∈ 𝐴 ↔ ((𝑅 ∨ 𝑆) ∧ 𝑄) ∈ 𝐴))
3432eqeq1d 2739 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) β‰  (𝑅 ∨ 𝑆))) ∧ 𝑃 = 𝑄) β†’ (((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) = 0 ↔ ((𝑅 ∨ 𝑆) ∧ 𝑄) = 0 ))
3533, 34orbi12d 918 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) β‰  (𝑅 ∨ 𝑆))) ∧ 𝑃 = 𝑄) β†’ ((((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) ∈ 𝐴 ∨ ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) = 0 ) ↔ (((𝑅 ∨ 𝑆) ∧ 𝑄) ∈ 𝐴 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑄) = 0 )))
3620, 35mpbird 257 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) β‰  (𝑅 ∨ 𝑆))) ∧ 𝑃 = 𝑄) β†’ (((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) ∈ 𝐴 ∨ ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) = 0 ))
3710, 11, 12hlatjcl 37858 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) β†’ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ))
3837adantr 482 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) β‰  (𝑅 ∨ 𝑆))) β†’ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ))
3910, 16, 17, 12meetat2 37788 . . . . . . . . 9 ((𝐾 ∈ OL ∧ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ) ∧ 𝑆 ∈ 𝐴) β†’ (((𝑃 ∨ 𝑄) ∧ 𝑆) ∈ 𝐴 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑆) = 0 ))
407, 38, 9, 39syl3anc 1372 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) β‰  (𝑅 ∨ 𝑆))) β†’ (((𝑃 ∨ 𝑄) ∧ 𝑆) ∈ 𝐴 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑆) = 0 ))
4140adantr 482 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) β‰  (𝑅 ∨ 𝑆))) ∧ 𝑅 = 𝑆) β†’ (((𝑃 ∨ 𝑄) ∧ 𝑆) ∈ 𝐴 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑆) = 0 ))
42 oveq1 7369 . . . . . . . . . . 11 (𝑅 = 𝑆 β†’ (𝑅 ∨ 𝑆) = (𝑆 ∨ 𝑆))
4311, 12hlatjidm 37860 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑆 ∈ 𝐴) β†’ (𝑆 ∨ 𝑆) = 𝑆)
445, 9, 43syl2anc 585 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) β‰  (𝑅 ∨ 𝑆))) β†’ (𝑆 ∨ 𝑆) = 𝑆)
4542, 44sylan9eqr 2799 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) β‰  (𝑅 ∨ 𝑆))) ∧ 𝑅 = 𝑆) β†’ (𝑅 ∨ 𝑆) = 𝑆)
4645oveq2d 7378 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) β‰  (𝑅 ∨ 𝑆))) ∧ 𝑅 = 𝑆) β†’ ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) = ((𝑃 ∨ 𝑄) ∧ 𝑆))
4746eleq1d 2823 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) β‰  (𝑅 ∨ 𝑆))) ∧ 𝑅 = 𝑆) β†’ (((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) ∈ 𝐴 ↔ ((𝑃 ∨ 𝑄) ∧ 𝑆) ∈ 𝐴))
4846eqeq1d 2739 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) β‰  (𝑅 ∨ 𝑆))) ∧ 𝑅 = 𝑆) β†’ (((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) = 0 ↔ ((𝑃 ∨ 𝑄) ∧ 𝑆) = 0 ))
4947, 48orbi12d 918 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) β‰  (𝑅 ∨ 𝑆))) ∧ 𝑅 = 𝑆) β†’ ((((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) ∈ 𝐴 ∨ ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) = 0 ) ↔ (((𝑃 ∨ 𝑄) ∧ 𝑆) ∈ 𝐴 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑆) = 0 )))
5041, 49mpbird 257 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) β‰  (𝑅 ∨ 𝑆))) ∧ 𝑅 = 𝑆) β†’ (((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) ∈ 𝐴 ∨ ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) = 0 ))
5150adantlr 714 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) β‰  (𝑅 ∨ 𝑆))) ∧ 𝑃 β‰  𝑄) ∧ 𝑅 = 𝑆) β†’ (((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) ∈ 𝐴 ∨ ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) = 0 ))
52 df-ne 2945 . . . . . . . 8 (((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) β‰  0 ↔ Β¬ ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) = 0 )
53 simpll1 1213 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) β‰  (𝑅 ∨ 𝑆))) ∧ (𝑃 β‰  𝑄 ∧ 𝑅 β‰  𝑆 ∧ ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) β‰  0 )) β†’ 𝐾 ∈ HL)
54 simpll2 1214 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) β‰  (𝑅 ∨ 𝑆))) ∧ (𝑃 β‰  𝑄 ∧ 𝑅 β‰  𝑆 ∧ ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) β‰  0 )) β†’ 𝑃 ∈ 𝐴)
55 simpll3 1215 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) β‰  (𝑅 ∨ 𝑆))) ∧ (𝑃 β‰  𝑄 ∧ 𝑅 β‰  𝑆 ∧ ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) β‰  0 )) β†’ 𝑄 ∈ 𝐴)
56 simpr1 1195 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) β‰  (𝑅 ∨ 𝑆))) ∧ (𝑃 β‰  𝑄 ∧ 𝑅 β‰  𝑆 ∧ ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) β‰  0 )) β†’ 𝑃 β‰  𝑄)
57 eqid 2737 . . . . . . . . . . . . 13 (LLinesβ€˜πΎ) = (LLinesβ€˜πΎ)
5811, 12, 57llni2 38004 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 β‰  𝑄) β†’ (𝑃 ∨ 𝑄) ∈ (LLinesβ€˜πΎ))
5953, 54, 55, 56, 58syl31anc 1374 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) β‰  (𝑅 ∨ 𝑆))) ∧ (𝑃 β‰  𝑄 ∧ 𝑅 β‰  𝑆 ∧ ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) β‰  0 )) β†’ (𝑃 ∨ 𝑄) ∈ (LLinesβ€˜πΎ))
60 simplr1 1216 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) β‰  (𝑅 ∨ 𝑆))) ∧ (𝑃 β‰  𝑄 ∧ 𝑅 β‰  𝑆 ∧ ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) β‰  0 )) β†’ 𝑅 ∈ 𝐴)
61 simplr2 1217 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) β‰  (𝑅 ∨ 𝑆))) ∧ (𝑃 β‰  𝑄 ∧ 𝑅 β‰  𝑆 ∧ ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) β‰  0 )) β†’ 𝑆 ∈ 𝐴)
62 simpr2 1196 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) β‰  (𝑅 ∨ 𝑆))) ∧ (𝑃 β‰  𝑄 ∧ 𝑅 β‰  𝑆 ∧ ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) β‰  0 )) β†’ 𝑅 β‰  𝑆)
6311, 12, 57llni2 38004 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑅 β‰  𝑆) β†’ (𝑅 ∨ 𝑆) ∈ (LLinesβ€˜πΎ))
6453, 60, 61, 62, 63syl31anc 1374 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) β‰  (𝑅 ∨ 𝑆))) ∧ (𝑃 β‰  𝑄 ∧ 𝑅 β‰  𝑆 ∧ ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) β‰  0 )) β†’ (𝑅 ∨ 𝑆) ∈ (LLinesβ€˜πΎ))
65 simplr3 1218 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) β‰  (𝑅 ∨ 𝑆))) ∧ (𝑃 β‰  𝑄 ∧ 𝑅 β‰  𝑆 ∧ ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) β‰  0 )) β†’ (𝑃 ∨ 𝑄) β‰  (𝑅 ∨ 𝑆))
66 simpr3 1197 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) β‰  (𝑅 ∨ 𝑆))) ∧ (𝑃 β‰  𝑄 ∧ 𝑅 β‰  𝑆 ∧ ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) β‰  0 )) β†’ ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) β‰  0 )
6716, 17, 12, 572llnmat 38016 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑃 ∨ 𝑄) ∈ (LLinesβ€˜πΎ) ∧ (𝑅 ∨ 𝑆) ∈ (LLinesβ€˜πΎ)) ∧ ((𝑃 ∨ 𝑄) β‰  (𝑅 ∨ 𝑆) ∧ ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) β‰  0 )) β†’ ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) ∈ 𝐴)
6853, 59, 64, 65, 66, 67syl32anc 1379 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) β‰  (𝑅 ∨ 𝑆))) ∧ (𝑃 β‰  𝑄 ∧ 𝑅 β‰  𝑆 ∧ ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) β‰  0 )) β†’ ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) ∈ 𝐴)
69683exp2 1355 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) β‰  (𝑅 ∨ 𝑆))) β†’ (𝑃 β‰  𝑄 β†’ (𝑅 β‰  𝑆 β†’ (((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) β‰  0 β†’ ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) ∈ 𝐴))))
7069imp31 419 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) β‰  (𝑅 ∨ 𝑆))) ∧ 𝑃 β‰  𝑄) ∧ 𝑅 β‰  𝑆) β†’ (((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) β‰  0 β†’ ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) ∈ 𝐴))
7152, 70biimtrrid 242 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) β‰  (𝑅 ∨ 𝑆))) ∧ 𝑃 β‰  𝑄) ∧ 𝑅 β‰  𝑆) β†’ (Β¬ ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) = 0 β†’ ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) ∈ 𝐴))
7271orrd 862 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) β‰  (𝑅 ∨ 𝑆))) ∧ 𝑃 β‰  𝑄) ∧ 𝑅 β‰  𝑆) β†’ (((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) = 0 ∨ ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) ∈ 𝐴))
7372orcomd 870 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) β‰  (𝑅 ∨ 𝑆))) ∧ 𝑃 β‰  𝑄) ∧ 𝑅 β‰  𝑆) β†’ (((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) ∈ 𝐴 ∨ ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) = 0 ))
7451, 73pm2.61dane 3033 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) β‰  (𝑅 ∨ 𝑆))) ∧ 𝑃 β‰  𝑄) β†’ (((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) ∈ 𝐴 ∨ ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) = 0 ))
7536, 74pm2.61dane 3033 . . 3 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) β‰  (𝑅 ∨ 𝑆))) β†’ (((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) ∈ 𝐴 ∨ ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) = 0 ))
761, 2, 3, 4, 75syl13anc 1373 . 2 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∨ 𝑆 = 0 ) ∧ (𝑃 ∨ 𝑄) β‰  (𝑅 ∨ 𝑆))) ∧ 𝑆 ∈ 𝐴) β†’ (((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) ∈ 𝐴 ∨ ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) = 0 ))
77 simpl1 1192 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∨ 𝑆 = 0 ) ∧ (𝑃 ∨ 𝑄) β‰  (𝑅 ∨ 𝑆))) β†’ 𝐾 ∈ HL)
7877, 6syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∨ 𝑆 = 0 ) ∧ (𝑃 ∨ 𝑄) β‰  (𝑅 ∨ 𝑆))) β†’ 𝐾 ∈ OL)
7937adantr 482 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∨ 𝑆 = 0 ) ∧ (𝑃 ∨ 𝑄) β‰  (𝑅 ∨ 𝑆))) β†’ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ))
80 simpr1 1195 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∨ 𝑆 = 0 ) ∧ (𝑃 ∨ 𝑄) β‰  (𝑅 ∨ 𝑆))) β†’ 𝑅 ∈ 𝐴)
8110, 16, 17, 12meetat2 37788 . . . . 5 ((𝐾 ∈ OL ∧ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ) ∧ 𝑅 ∈ 𝐴) β†’ (((𝑃 ∨ 𝑄) ∧ 𝑅) ∈ 𝐴 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑅) = 0 ))
8278, 79, 80, 81syl3anc 1372 . . . 4 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∨ 𝑆 = 0 ) ∧ (𝑃 ∨ 𝑄) β‰  (𝑅 ∨ 𝑆))) β†’ (((𝑃 ∨ 𝑄) ∧ 𝑅) ∈ 𝐴 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑅) = 0 ))
8382adantr 482 . . 3 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∨ 𝑆 = 0 ) ∧ (𝑃 ∨ 𝑄) β‰  (𝑅 ∨ 𝑆))) ∧ 𝑆 = 0 ) β†’ (((𝑃 ∨ 𝑄) ∧ 𝑅) ∈ 𝐴 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑅) = 0 ))
84 oveq2 7370 . . . . . . 7 (𝑆 = 0 β†’ (𝑅 ∨ 𝑆) = (𝑅 ∨ 0 ))
8510, 12atbase 37780 . . . . . . . . 9 (𝑅 ∈ 𝐴 β†’ 𝑅 ∈ (Baseβ€˜πΎ))
8680, 85syl 17 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∨ 𝑆 = 0 ) ∧ (𝑃 ∨ 𝑄) β‰  (𝑅 ∨ 𝑆))) β†’ 𝑅 ∈ (Baseβ€˜πΎ))
8710, 11, 17olj01 37716 . . . . . . . 8 ((𝐾 ∈ OL ∧ 𝑅 ∈ (Baseβ€˜πΎ)) β†’ (𝑅 ∨ 0 ) = 𝑅)
8878, 86, 87syl2anc 585 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∨ 𝑆 = 0 ) ∧ (𝑃 ∨ 𝑄) β‰  (𝑅 ∨ 𝑆))) β†’ (𝑅 ∨ 0 ) = 𝑅)
8984, 88sylan9eqr 2799 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∨ 𝑆 = 0 ) ∧ (𝑃 ∨ 𝑄) β‰  (𝑅 ∨ 𝑆))) ∧ 𝑆 = 0 ) β†’ (𝑅 ∨ 𝑆) = 𝑅)
9089oveq2d 7378 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∨ 𝑆 = 0 ) ∧ (𝑃 ∨ 𝑄) β‰  (𝑅 ∨ 𝑆))) ∧ 𝑆 = 0 ) β†’ ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) = ((𝑃 ∨ 𝑄) ∧ 𝑅))
9190eleq1d 2823 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∨ 𝑆 = 0 ) ∧ (𝑃 ∨ 𝑄) β‰  (𝑅 ∨ 𝑆))) ∧ 𝑆 = 0 ) β†’ (((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) ∈ 𝐴 ↔ ((𝑃 ∨ 𝑄) ∧ 𝑅) ∈ 𝐴))
9290eqeq1d 2739 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∨ 𝑆 = 0 ) ∧ (𝑃 ∨ 𝑄) β‰  (𝑅 ∨ 𝑆))) ∧ 𝑆 = 0 ) β†’ (((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) = 0 ↔ ((𝑃 ∨ 𝑄) ∧ 𝑅) = 0 ))
9391, 92orbi12d 918 . . 3 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∨ 𝑆 = 0 ) ∧ (𝑃 ∨ 𝑄) β‰  (𝑅 ∨ 𝑆))) ∧ 𝑆 = 0 ) β†’ ((((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) ∈ 𝐴 ∨ ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) = 0 ) ↔ (((𝑃 ∨ 𝑄) ∧ 𝑅) ∈ 𝐴 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑅) = 0 )))
9483, 93mpbird 257 . 2 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∨ 𝑆 = 0 ) ∧ (𝑃 ∨ 𝑄) β‰  (𝑅 ∨ 𝑆))) ∧ 𝑆 = 0 ) β†’ (((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) ∈ 𝐴 ∨ ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) = 0 ))
95 simpr2 1196 . 2 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∨ 𝑆 = 0 ) ∧ (𝑃 ∨ 𝑄) β‰  (𝑅 ∨ 𝑆))) β†’ (𝑆 ∈ 𝐴 ∨ 𝑆 = 0 ))
9676, 94, 95mpjaodan 958 1 (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∨ 𝑆 = 0 ) ∧ (𝑃 ∨ 𝑄) β‰  (𝑅 ∨ 𝑆))) β†’ (((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) ∈ 𝐴 ∨ ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 397   ∨ wo 846   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107   β‰  wne 2944  β€˜cfv 6501  (class class class)co 7362  Basecbs 17090  joincjn 18207  meetcmee 18208  0.cp0 18319  Latclat 18327  OLcol 37665  Atomscatm 37754  HLchlt 37841  LLinesclln 37983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-id 5536  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-proset 18191  df-poset 18209  df-plt 18226  df-lub 18242  df-glb 18243  df-join 18244  df-meet 18245  df-p0 18321  df-lat 18328  df-clat 18395  df-oposet 37667  df-ol 37669  df-oml 37670  df-covers 37757  df-ats 37758  df-atl 37789  df-cvlat 37813  df-hlat 37842  df-llines 37990
This theorem is referenced by:  2atmat0  38018  cdlemg31b0a  39187
  Copyright terms: Public domain W3C validator