Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2at0mat0 Structured version   Visualization version   GIF version

Theorem 2at0mat0 39482
Description: Special case of 2atmat0 39483 where one atom could be zero. (Contributed by NM, 30-May-2013.)
Hypotheses
Ref Expression
2atmatz.j = (join‘𝐾)
2atmatz.m = (meet‘𝐾)
2atmatz.z 0 = (0.‘𝐾)
2atmatz.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
2at0mat0 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → (((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴 ∨ ((𝑃 𝑄) (𝑅 𝑆)) = 0 ))

Proof of Theorem 2at0mat0
StepHypRef Expression
1 simpll 766 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑆𝐴) → (𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴))
2 simplr1 1215 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑆𝐴) → 𝑅𝐴)
3 simpr 484 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑆𝐴) → 𝑆𝐴)
4 simplr3 1217 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑆𝐴) → (𝑃 𝑄) ≠ (𝑅 𝑆))
5 simpl1 1191 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝐾 ∈ HL)
6 hlol 39317 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ OL)
75, 6syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝐾 ∈ OL)
8 simpr1 1194 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝑅𝐴)
9 simpr2 1195 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝑆𝐴)
10 eqid 2740 . . . . . . . . 9 (Base‘𝐾) = (Base‘𝐾)
11 2atmatz.j . . . . . . . . 9 = (join‘𝐾)
12 2atmatz.a . . . . . . . . 9 𝐴 = (Atoms‘𝐾)
1310, 11, 12hlatjcl 39323 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑆𝐴) → (𝑅 𝑆) ∈ (Base‘𝐾))
145, 8, 9, 13syl3anc 1371 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → (𝑅 𝑆) ∈ (Base‘𝐾))
15 simpl3 1193 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝑄𝐴)
16 2atmatz.m . . . . . . . 8 = (meet‘𝐾)
17 2atmatz.z . . . . . . . 8 0 = (0.‘𝐾)
1810, 16, 17, 12meetat2 39253 . . . . . . 7 ((𝐾 ∈ OL ∧ (𝑅 𝑆) ∈ (Base‘𝐾) ∧ 𝑄𝐴) → (((𝑅 𝑆) 𝑄) ∈ 𝐴 ∨ ((𝑅 𝑆) 𝑄) = 0 ))
197, 14, 15, 18syl3anc 1371 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → (((𝑅 𝑆) 𝑄) ∈ 𝐴 ∨ ((𝑅 𝑆) 𝑄) = 0 ))
2019adantr 480 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑃 = 𝑄) → (((𝑅 𝑆) 𝑄) ∈ 𝐴 ∨ ((𝑅 𝑆) 𝑄) = 0 ))
21 oveq1 7455 . . . . . . . . . 10 (𝑃 = 𝑄 → (𝑃 𝑄) = (𝑄 𝑄))
2211, 12hlatjidm 39325 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑄𝐴) → (𝑄 𝑄) = 𝑄)
235, 15, 22syl2anc 583 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → (𝑄 𝑄) = 𝑄)
2421, 23sylan9eqr 2802 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑃 = 𝑄) → (𝑃 𝑄) = 𝑄)
2524oveq1d 7463 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑃 = 𝑄) → ((𝑃 𝑄) (𝑅 𝑆)) = (𝑄 (𝑅 𝑆)))
265hllatd 39320 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝐾 ∈ Lat)
2710, 12atbase 39245 . . . . . . . . . . 11 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
2815, 27syl 17 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝑄 ∈ (Base‘𝐾))
2910, 16latmcom 18533 . . . . . . . . . 10 ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾) ∧ (𝑅 𝑆) ∈ (Base‘𝐾)) → (𝑄 (𝑅 𝑆)) = ((𝑅 𝑆) 𝑄))
3026, 28, 14, 29syl3anc 1371 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → (𝑄 (𝑅 𝑆)) = ((𝑅 𝑆) 𝑄))
3130adantr 480 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑃 = 𝑄) → (𝑄 (𝑅 𝑆)) = ((𝑅 𝑆) 𝑄))
3225, 31eqtrd 2780 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑃 = 𝑄) → ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑅 𝑆) 𝑄))
3332eleq1d 2829 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑃 = 𝑄) → (((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴 ↔ ((𝑅 𝑆) 𝑄) ∈ 𝐴))
3432eqeq1d 2742 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑃 = 𝑄) → (((𝑃 𝑄) (𝑅 𝑆)) = 0 ↔ ((𝑅 𝑆) 𝑄) = 0 ))
3533, 34orbi12d 917 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑃 = 𝑄) → ((((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴 ∨ ((𝑃 𝑄) (𝑅 𝑆)) = 0 ) ↔ (((𝑅 𝑆) 𝑄) ∈ 𝐴 ∨ ((𝑅 𝑆) 𝑄) = 0 )))
3620, 35mpbird 257 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑃 = 𝑄) → (((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴 ∨ ((𝑃 𝑄) (𝑅 𝑆)) = 0 ))
3710, 11, 12hlatjcl 39323 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
3837adantr 480 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → (𝑃 𝑄) ∈ (Base‘𝐾))
3910, 16, 17, 12meetat2 39253 . . . . . . . . 9 ((𝐾 ∈ OL ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑆𝐴) → (((𝑃 𝑄) 𝑆) ∈ 𝐴 ∨ ((𝑃 𝑄) 𝑆) = 0 ))
407, 38, 9, 39syl3anc 1371 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → (((𝑃 𝑄) 𝑆) ∈ 𝐴 ∨ ((𝑃 𝑄) 𝑆) = 0 ))
4140adantr 480 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑅 = 𝑆) → (((𝑃 𝑄) 𝑆) ∈ 𝐴 ∨ ((𝑃 𝑄) 𝑆) = 0 ))
42 oveq1 7455 . . . . . . . . . . 11 (𝑅 = 𝑆 → (𝑅 𝑆) = (𝑆 𝑆))
4311, 12hlatjidm 39325 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑆𝐴) → (𝑆 𝑆) = 𝑆)
445, 9, 43syl2anc 583 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → (𝑆 𝑆) = 𝑆)
4542, 44sylan9eqr 2802 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑅 = 𝑆) → (𝑅 𝑆) = 𝑆)
4645oveq2d 7464 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑅 = 𝑆) → ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑃 𝑄) 𝑆))
4746eleq1d 2829 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑅 = 𝑆) → (((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴 ↔ ((𝑃 𝑄) 𝑆) ∈ 𝐴))
4846eqeq1d 2742 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑅 = 𝑆) → (((𝑃 𝑄) (𝑅 𝑆)) = 0 ↔ ((𝑃 𝑄) 𝑆) = 0 ))
4947, 48orbi12d 917 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑅 = 𝑆) → ((((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴 ∨ ((𝑃 𝑄) (𝑅 𝑆)) = 0 ) ↔ (((𝑃 𝑄) 𝑆) ∈ 𝐴 ∨ ((𝑃 𝑄) 𝑆) = 0 )))
5041, 49mpbird 257 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑅 = 𝑆) → (((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴 ∨ ((𝑃 𝑄) (𝑅 𝑆)) = 0 ))
5150adantlr 714 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑃𝑄) ∧ 𝑅 = 𝑆) → (((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴 ∨ ((𝑃 𝑄) (𝑅 𝑆)) = 0 ))
52 df-ne 2947 . . . . . . . 8 (((𝑃 𝑄) (𝑅 𝑆)) ≠ 0 ↔ ¬ ((𝑃 𝑄) (𝑅 𝑆)) = 0 )
53 simpll1 1212 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ (𝑃𝑄𝑅𝑆 ∧ ((𝑃 𝑄) (𝑅 𝑆)) ≠ 0 )) → 𝐾 ∈ HL)
54 simpll2 1213 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ (𝑃𝑄𝑅𝑆 ∧ ((𝑃 𝑄) (𝑅 𝑆)) ≠ 0 )) → 𝑃𝐴)
55 simpll3 1214 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ (𝑃𝑄𝑅𝑆 ∧ ((𝑃 𝑄) (𝑅 𝑆)) ≠ 0 )) → 𝑄𝐴)
56 simpr1 1194 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ (𝑃𝑄𝑅𝑆 ∧ ((𝑃 𝑄) (𝑅 𝑆)) ≠ 0 )) → 𝑃𝑄)
57 eqid 2740 . . . . . . . . . . . . 13 (LLines‘𝐾) = (LLines‘𝐾)
5811, 12, 57llni2 39469 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ 𝑃𝑄) → (𝑃 𝑄) ∈ (LLines‘𝐾))
5953, 54, 55, 56, 58syl31anc 1373 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ (𝑃𝑄𝑅𝑆 ∧ ((𝑃 𝑄) (𝑅 𝑆)) ≠ 0 )) → (𝑃 𝑄) ∈ (LLines‘𝐾))
60 simplr1 1215 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ (𝑃𝑄𝑅𝑆 ∧ ((𝑃 𝑄) (𝑅 𝑆)) ≠ 0 )) → 𝑅𝐴)
61 simplr2 1216 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ (𝑃𝑄𝑅𝑆 ∧ ((𝑃 𝑄) (𝑅 𝑆)) ≠ 0 )) → 𝑆𝐴)
62 simpr2 1195 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ (𝑃𝑄𝑅𝑆 ∧ ((𝑃 𝑄) (𝑅 𝑆)) ≠ 0 )) → 𝑅𝑆)
6311, 12, 57llni2 39469 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑅𝐴𝑆𝐴) ∧ 𝑅𝑆) → (𝑅 𝑆) ∈ (LLines‘𝐾))
6453, 60, 61, 62, 63syl31anc 1373 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ (𝑃𝑄𝑅𝑆 ∧ ((𝑃 𝑄) (𝑅 𝑆)) ≠ 0 )) → (𝑅 𝑆) ∈ (LLines‘𝐾))
65 simplr3 1217 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ (𝑃𝑄𝑅𝑆 ∧ ((𝑃 𝑄) (𝑅 𝑆)) ≠ 0 )) → (𝑃 𝑄) ≠ (𝑅 𝑆))
66 simpr3 1196 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ (𝑃𝑄𝑅𝑆 ∧ ((𝑃 𝑄) (𝑅 𝑆)) ≠ 0 )) → ((𝑃 𝑄) (𝑅 𝑆)) ≠ 0 )
6716, 17, 12, 572llnmat 39481 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑃 𝑄) ∈ (LLines‘𝐾) ∧ (𝑅 𝑆) ∈ (LLines‘𝐾)) ∧ ((𝑃 𝑄) ≠ (𝑅 𝑆) ∧ ((𝑃 𝑄) (𝑅 𝑆)) ≠ 0 )) → ((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴)
6853, 59, 64, 65, 66, 67syl32anc 1378 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ (𝑃𝑄𝑅𝑆 ∧ ((𝑃 𝑄) (𝑅 𝑆)) ≠ 0 )) → ((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴)
69683exp2 1354 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → (𝑃𝑄 → (𝑅𝑆 → (((𝑃 𝑄) (𝑅 𝑆)) ≠ 0 → ((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴))))
7069imp31 417 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑃𝑄) ∧ 𝑅𝑆) → (((𝑃 𝑄) (𝑅 𝑆)) ≠ 0 → ((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴))
7152, 70biimtrrid 243 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑃𝑄) ∧ 𝑅𝑆) → (¬ ((𝑃 𝑄) (𝑅 𝑆)) = 0 → ((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴))
7271orrd 862 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑃𝑄) ∧ 𝑅𝑆) → (((𝑃 𝑄) (𝑅 𝑆)) = 0 ∨ ((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴))
7372orcomd 870 . . . . 5 (((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑃𝑄) ∧ 𝑅𝑆) → (((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴 ∨ ((𝑃 𝑄) (𝑅 𝑆)) = 0 ))
7451, 73pm2.61dane 3035 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑃𝑄) → (((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴 ∨ ((𝑃 𝑄) (𝑅 𝑆)) = 0 ))
7536, 74pm2.61dane 3035 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴 ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → (((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴 ∨ ((𝑃 𝑄) (𝑅 𝑆)) = 0 ))
761, 2, 3, 4, 75syl13anc 1372 . 2 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑆𝐴) → (((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴 ∨ ((𝑃 𝑄) (𝑅 𝑆)) = 0 ))
77 simpl1 1191 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝐾 ∈ HL)
7877, 6syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝐾 ∈ OL)
7937adantr 480 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → (𝑃 𝑄) ∈ (Base‘𝐾))
80 simpr1 1194 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝑅𝐴)
8110, 16, 17, 12meetat2 39253 . . . . 5 ((𝐾 ∈ OL ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑅𝐴) → (((𝑃 𝑄) 𝑅) ∈ 𝐴 ∨ ((𝑃 𝑄) 𝑅) = 0 ))
8278, 79, 80, 81syl3anc 1371 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → (((𝑃 𝑄) 𝑅) ∈ 𝐴 ∨ ((𝑃 𝑄) 𝑅) = 0 ))
8382adantr 480 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑆 = 0 ) → (((𝑃 𝑄) 𝑅) ∈ 𝐴 ∨ ((𝑃 𝑄) 𝑅) = 0 ))
84 oveq2 7456 . . . . . . 7 (𝑆 = 0 → (𝑅 𝑆) = (𝑅 0 ))
8510, 12atbase 39245 . . . . . . . . 9 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
8680, 85syl 17 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → 𝑅 ∈ (Base‘𝐾))
8710, 11, 17olj01 39181 . . . . . . . 8 ((𝐾 ∈ OL ∧ 𝑅 ∈ (Base‘𝐾)) → (𝑅 0 ) = 𝑅)
8878, 86, 87syl2anc 583 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → (𝑅 0 ) = 𝑅)
8984, 88sylan9eqr 2802 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑆 = 0 ) → (𝑅 𝑆) = 𝑅)
9089oveq2d 7464 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑆 = 0 ) → ((𝑃 𝑄) (𝑅 𝑆)) = ((𝑃 𝑄) 𝑅))
9190eleq1d 2829 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑆 = 0 ) → (((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴 ↔ ((𝑃 𝑄) 𝑅) ∈ 𝐴))
9290eqeq1d 2742 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑆 = 0 ) → (((𝑃 𝑄) (𝑅 𝑆)) = 0 ↔ ((𝑃 𝑄) 𝑅) = 0 ))
9391, 92orbi12d 917 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑆 = 0 ) → ((((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴 ∨ ((𝑃 𝑄) (𝑅 𝑆)) = 0 ) ↔ (((𝑃 𝑄) 𝑅) ∈ 𝐴 ∨ ((𝑃 𝑄) 𝑅) = 0 )))
9483, 93mpbird 257 . 2 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) ∧ 𝑆 = 0 ) → (((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴 ∨ ((𝑃 𝑄) (𝑅 𝑆)) = 0 ))
95 simpr2 1195 . 2 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → (𝑆𝐴𝑆 = 0 ))
9676, 94, 95mpjaodan 959 1 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴 ∧ (𝑆𝐴𝑆 = 0 ) ∧ (𝑃 𝑄) ≠ (𝑅 𝑆))) → (((𝑃 𝑄) (𝑅 𝑆)) ∈ 𝐴 ∨ ((𝑃 𝑄) (𝑅 𝑆)) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  wne 2946  cfv 6573  (class class class)co 7448  Basecbs 17258  joincjn 18381  meetcmee 18382  0.cp0 18493  Latclat 18501  OLcol 39130  Atomscatm 39219  HLchlt 39306  LLinesclln 39448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-proset 18365  df-poset 18383  df-plt 18400  df-lub 18416  df-glb 18417  df-join 18418  df-meet 18419  df-p0 18495  df-lat 18502  df-clat 18569  df-oposet 39132  df-ol 39134  df-oml 39135  df-covers 39222  df-ats 39223  df-atl 39254  df-cvlat 39278  df-hlat 39307  df-llines 39455
This theorem is referenced by:  2atmat0  39483  cdlemg31b0a  40652
  Copyright terms: Public domain W3C validator