Proof of Theorem 2at0mat0
| Step | Hyp | Ref
| Expression |
| 1 | | simpll 767 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∨ 𝑆 = 0 ) ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) ∧ 𝑆 ∈ 𝐴) → (𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) |
| 2 | | simplr1 1216 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∨ 𝑆 = 0 ) ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) ∧ 𝑆 ∈ 𝐴) → 𝑅 ∈ 𝐴) |
| 3 | | simpr 484 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∨ 𝑆 = 0 ) ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) ∧ 𝑆 ∈ 𝐴) → 𝑆 ∈ 𝐴) |
| 4 | | simplr3 1218 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∨ 𝑆 = 0 ) ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) ∧ 𝑆 ∈ 𝐴) → (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆)) |
| 5 | | simpl1 1192 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) → 𝐾 ∈ HL) |
| 6 | | hlol 39362 |
. . . . . . . 8
⊢ (𝐾 ∈ HL → 𝐾 ∈ OL) |
| 7 | 5, 6 | syl 17 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) → 𝐾 ∈ OL) |
| 8 | | simpr1 1195 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) → 𝑅 ∈ 𝐴) |
| 9 | | simpr2 1196 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) → 𝑆 ∈ 𝐴) |
| 10 | | eqid 2737 |
. . . . . . . . 9
⊢
(Base‘𝐾) =
(Base‘𝐾) |
| 11 | | 2atmatz.j |
. . . . . . . . 9
⊢ ∨ =
(join‘𝐾) |
| 12 | | 2atmatz.a |
. . . . . . . . 9
⊢ 𝐴 = (Atoms‘𝐾) |
| 13 | 10, 11, 12 | hlatjcl 39368 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) → (𝑅 ∨ 𝑆) ∈ (Base‘𝐾)) |
| 14 | 5, 8, 9, 13 | syl3anc 1373 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) → (𝑅 ∨ 𝑆) ∈ (Base‘𝐾)) |
| 15 | | simpl3 1194 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) → 𝑄 ∈ 𝐴) |
| 16 | | 2atmatz.m |
. . . . . . . 8
⊢ ∧ =
(meet‘𝐾) |
| 17 | | 2atmatz.z |
. . . . . . . 8
⊢ 0 =
(0.‘𝐾) |
| 18 | 10, 16, 17, 12 | meetat2 39298 |
. . . . . . 7
⊢ ((𝐾 ∈ OL ∧ (𝑅 ∨ 𝑆) ∈ (Base‘𝐾) ∧ 𝑄 ∈ 𝐴) → (((𝑅 ∨ 𝑆) ∧ 𝑄) ∈ 𝐴 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑄) = 0 )) |
| 19 | 7, 14, 15, 18 | syl3anc 1373 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) → (((𝑅 ∨ 𝑆) ∧ 𝑄) ∈ 𝐴 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑄) = 0 )) |
| 20 | 19 | adantr 480 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) ∧ 𝑃 = 𝑄) → (((𝑅 ∨ 𝑆) ∧ 𝑄) ∈ 𝐴 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑄) = 0 )) |
| 21 | | oveq1 7438 |
. . . . . . . . . 10
⊢ (𝑃 = 𝑄 → (𝑃 ∨ 𝑄) = (𝑄 ∨ 𝑄)) |
| 22 | 11, 12 | hlatjidm 39370 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴) → (𝑄 ∨ 𝑄) = 𝑄) |
| 23 | 5, 15, 22 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) → (𝑄 ∨ 𝑄) = 𝑄) |
| 24 | 21, 23 | sylan9eqr 2799 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) ∧ 𝑃 = 𝑄) → (𝑃 ∨ 𝑄) = 𝑄) |
| 25 | 24 | oveq1d 7446 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) ∧ 𝑃 = 𝑄) → ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) = (𝑄 ∧ (𝑅 ∨ 𝑆))) |
| 26 | 5 | hllatd 39365 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) → 𝐾 ∈ Lat) |
| 27 | 10, 12 | atbase 39290 |
. . . . . . . . . . 11
⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ (Base‘𝐾)) |
| 28 | 15, 27 | syl 17 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) → 𝑄 ∈ (Base‘𝐾)) |
| 29 | 10, 16 | latmcom 18508 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾) ∧ (𝑅 ∨ 𝑆) ∈ (Base‘𝐾)) → (𝑄 ∧ (𝑅 ∨ 𝑆)) = ((𝑅 ∨ 𝑆) ∧ 𝑄)) |
| 30 | 26, 28, 14, 29 | syl3anc 1373 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) → (𝑄 ∧ (𝑅 ∨ 𝑆)) = ((𝑅 ∨ 𝑆) ∧ 𝑄)) |
| 31 | 30 | adantr 480 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) ∧ 𝑃 = 𝑄) → (𝑄 ∧ (𝑅 ∨ 𝑆)) = ((𝑅 ∨ 𝑆) ∧ 𝑄)) |
| 32 | 25, 31 | eqtrd 2777 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) ∧ 𝑃 = 𝑄) → ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) = ((𝑅 ∨ 𝑆) ∧ 𝑄)) |
| 33 | 32 | eleq1d 2826 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) ∧ 𝑃 = 𝑄) → (((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) ∈ 𝐴 ↔ ((𝑅 ∨ 𝑆) ∧ 𝑄) ∈ 𝐴)) |
| 34 | 32 | eqeq1d 2739 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) ∧ 𝑃 = 𝑄) → (((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) = 0 ↔ ((𝑅 ∨ 𝑆) ∧ 𝑄) = 0 )) |
| 35 | 33, 34 | orbi12d 919 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) ∧ 𝑃 = 𝑄) → ((((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) ∈ 𝐴 ∨ ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) = 0 ) ↔ (((𝑅 ∨ 𝑆) ∧ 𝑄) ∈ 𝐴 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑄) = 0 ))) |
| 36 | 20, 35 | mpbird 257 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) ∧ 𝑃 = 𝑄) → (((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) ∈ 𝐴 ∨ ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) = 0 )) |
| 37 | 10, 11, 12 | hlatjcl 39368 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
| 38 | 37 | adantr 480 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
| 39 | 10, 16, 17, 12 | meetat2 39298 |
. . . . . . . . 9
⊢ ((𝐾 ∈ OL ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ 𝑆 ∈ 𝐴) → (((𝑃 ∨ 𝑄) ∧ 𝑆) ∈ 𝐴 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑆) = 0 )) |
| 40 | 7, 38, 9, 39 | syl3anc 1373 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) → (((𝑃 ∨ 𝑄) ∧ 𝑆) ∈ 𝐴 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑆) = 0 )) |
| 41 | 40 | adantr 480 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) ∧ 𝑅 = 𝑆) → (((𝑃 ∨ 𝑄) ∧ 𝑆) ∈ 𝐴 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑆) = 0 )) |
| 42 | | oveq1 7438 |
. . . . . . . . . . 11
⊢ (𝑅 = 𝑆 → (𝑅 ∨ 𝑆) = (𝑆 ∨ 𝑆)) |
| 43 | 11, 12 | hlatjidm 39370 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ HL ∧ 𝑆 ∈ 𝐴) → (𝑆 ∨ 𝑆) = 𝑆) |
| 44 | 5, 9, 43 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) → (𝑆 ∨ 𝑆) = 𝑆) |
| 45 | 42, 44 | sylan9eqr 2799 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) ∧ 𝑅 = 𝑆) → (𝑅 ∨ 𝑆) = 𝑆) |
| 46 | 45 | oveq2d 7447 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) ∧ 𝑅 = 𝑆) → ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) = ((𝑃 ∨ 𝑄) ∧ 𝑆)) |
| 47 | 46 | eleq1d 2826 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) ∧ 𝑅 = 𝑆) → (((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) ∈ 𝐴 ↔ ((𝑃 ∨ 𝑄) ∧ 𝑆) ∈ 𝐴)) |
| 48 | 46 | eqeq1d 2739 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) ∧ 𝑅 = 𝑆) → (((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) = 0 ↔ ((𝑃 ∨ 𝑄) ∧ 𝑆) = 0 )) |
| 49 | 47, 48 | orbi12d 919 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) ∧ 𝑅 = 𝑆) → ((((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) ∈ 𝐴 ∨ ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) = 0 ) ↔ (((𝑃 ∨ 𝑄) ∧ 𝑆) ∈ 𝐴 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑆) = 0 ))) |
| 50 | 41, 49 | mpbird 257 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) ∧ 𝑅 = 𝑆) → (((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) ∈ 𝐴 ∨ ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) = 0 )) |
| 51 | 50 | adantlr 715 |
. . . . 5
⊢
(((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) ∧ 𝑃 ≠ 𝑄) ∧ 𝑅 = 𝑆) → (((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) ∈ 𝐴 ∨ ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) = 0 )) |
| 52 | | df-ne 2941 |
. . . . . . . 8
⊢ (((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) ≠ 0 ↔ ¬ ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) = 0 ) |
| 53 | | simpll1 1213 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) ∧ (𝑃 ≠ 𝑄 ∧ 𝑅 ≠ 𝑆 ∧ ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) ≠ 0 )) → 𝐾 ∈ HL) |
| 54 | | simpll2 1214 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) ∧ (𝑃 ≠ 𝑄 ∧ 𝑅 ≠ 𝑆 ∧ ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) ≠ 0 )) → 𝑃 ∈ 𝐴) |
| 55 | | simpll3 1215 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) ∧ (𝑃 ≠ 𝑄 ∧ 𝑅 ≠ 𝑆 ∧ ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) ≠ 0 )) → 𝑄 ∈ 𝐴) |
| 56 | | simpr1 1195 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) ∧ (𝑃 ≠ 𝑄 ∧ 𝑅 ≠ 𝑆 ∧ ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) ≠ 0 )) → 𝑃 ≠ 𝑄) |
| 57 | | eqid 2737 |
. . . . . . . . . . . . 13
⊢
(LLines‘𝐾) =
(LLines‘𝐾) |
| 58 | 11, 12, 57 | llni2 39514 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → (𝑃 ∨ 𝑄) ∈ (LLines‘𝐾)) |
| 59 | 53, 54, 55, 56, 58 | syl31anc 1375 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) ∧ (𝑃 ≠ 𝑄 ∧ 𝑅 ≠ 𝑆 ∧ ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) ≠ 0 )) → (𝑃 ∨ 𝑄) ∈ (LLines‘𝐾)) |
| 60 | | simplr1 1216 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) ∧ (𝑃 ≠ 𝑄 ∧ 𝑅 ≠ 𝑆 ∧ ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) ≠ 0 )) → 𝑅 ∈ 𝐴) |
| 61 | | simplr2 1217 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) ∧ (𝑃 ≠ 𝑄 ∧ 𝑅 ≠ 𝑆 ∧ ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) ≠ 0 )) → 𝑆 ∈ 𝐴) |
| 62 | | simpr2 1196 |
. . . . . . . . . . . 12
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) ∧ (𝑃 ≠ 𝑄 ∧ 𝑅 ≠ 𝑆 ∧ ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) ≠ 0 )) → 𝑅 ≠ 𝑆) |
| 63 | 11, 12, 57 | llni2 39514 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ 𝑅 ≠ 𝑆) → (𝑅 ∨ 𝑆) ∈ (LLines‘𝐾)) |
| 64 | 53, 60, 61, 62, 63 | syl31anc 1375 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) ∧ (𝑃 ≠ 𝑄 ∧ 𝑅 ≠ 𝑆 ∧ ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) ≠ 0 )) → (𝑅 ∨ 𝑆) ∈ (LLines‘𝐾)) |
| 65 | | simplr3 1218 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) ∧ (𝑃 ≠ 𝑄 ∧ 𝑅 ≠ 𝑆 ∧ ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) ≠ 0 )) → (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆)) |
| 66 | | simpr3 1197 |
. . . . . . . . . . 11
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) ∧ (𝑃 ≠ 𝑄 ∧ 𝑅 ≠ 𝑆 ∧ ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) ≠ 0 )) → ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) ≠ 0 ) |
| 67 | 16, 17, 12, 57 | 2llnmat 39526 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∨ 𝑄) ∈ (LLines‘𝐾) ∧ (𝑅 ∨ 𝑆) ∈ (LLines‘𝐾)) ∧ ((𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆) ∧ ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) ≠ 0 )) → ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) ∈ 𝐴) |
| 68 | 53, 59, 64, 65, 66, 67 | syl32anc 1380 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) ∧ (𝑃 ≠ 𝑄 ∧ 𝑅 ≠ 𝑆 ∧ ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) ≠ 0 )) → ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) ∈ 𝐴) |
| 69 | 68 | 3exp2 1355 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) → (𝑃 ≠ 𝑄 → (𝑅 ≠ 𝑆 → (((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) ≠ 0 → ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) ∈ 𝐴)))) |
| 70 | 69 | imp31 417 |
. . . . . . . 8
⊢
(((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) ∧ 𝑃 ≠ 𝑄) ∧ 𝑅 ≠ 𝑆) → (((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) ≠ 0 → ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) ∈ 𝐴)) |
| 71 | 52, 70 | biimtrrid 243 |
. . . . . . 7
⊢
(((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) ∧ 𝑃 ≠ 𝑄) ∧ 𝑅 ≠ 𝑆) → (¬ ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) = 0 → ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) ∈ 𝐴)) |
| 72 | 71 | orrd 864 |
. . . . . 6
⊢
(((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) ∧ 𝑃 ≠ 𝑄) ∧ 𝑅 ≠ 𝑆) → (((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) = 0 ∨ ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) ∈ 𝐴)) |
| 73 | 72 | orcomd 872 |
. . . . 5
⊢
(((((𝐾 ∈ HL
∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) ∧ 𝑃 ≠ 𝑄) ∧ 𝑅 ≠ 𝑆) → (((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) ∈ 𝐴 ∨ ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) = 0 )) |
| 74 | 51, 73 | pm2.61dane 3029 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) ∧ 𝑃 ≠ 𝑄) → (((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) ∈ 𝐴 ∨ ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) = 0 )) |
| 75 | 36, 74 | pm2.61dane 3029 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) → (((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) ∈ 𝐴 ∨ ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) = 0 )) |
| 76 | 1, 2, 3, 4, 75 | syl13anc 1374 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∨ 𝑆 = 0 ) ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) ∧ 𝑆 ∈ 𝐴) → (((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) ∈ 𝐴 ∨ ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) = 0 )) |
| 77 | | simpl1 1192 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∨ 𝑆 = 0 ) ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) → 𝐾 ∈ HL) |
| 78 | 77, 6 | syl 17 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∨ 𝑆 = 0 ) ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) → 𝐾 ∈ OL) |
| 79 | 37 | adantr 480 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∨ 𝑆 = 0 ) ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
| 80 | | simpr1 1195 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∨ 𝑆 = 0 ) ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) → 𝑅 ∈ 𝐴) |
| 81 | 10, 16, 17, 12 | meetat2 39298 |
. . . . 5
⊢ ((𝐾 ∈ OL ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ 𝑅 ∈ 𝐴) → (((𝑃 ∨ 𝑄) ∧ 𝑅) ∈ 𝐴 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑅) = 0 )) |
| 82 | 78, 79, 80, 81 | syl3anc 1373 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∨ 𝑆 = 0 ) ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) → (((𝑃 ∨ 𝑄) ∧ 𝑅) ∈ 𝐴 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑅) = 0 )) |
| 83 | 82 | adantr 480 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∨ 𝑆 = 0 ) ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) ∧ 𝑆 = 0 ) → (((𝑃 ∨ 𝑄) ∧ 𝑅) ∈ 𝐴 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑅) = 0 )) |
| 84 | | oveq2 7439 |
. . . . . . 7
⊢ (𝑆 = 0 → (𝑅 ∨ 𝑆) = (𝑅 ∨ 0 )) |
| 85 | 10, 12 | atbase 39290 |
. . . . . . . . 9
⊢ (𝑅 ∈ 𝐴 → 𝑅 ∈ (Base‘𝐾)) |
| 86 | 80, 85 | syl 17 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∨ 𝑆 = 0 ) ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) → 𝑅 ∈ (Base‘𝐾)) |
| 87 | 10, 11, 17 | olj01 39226 |
. . . . . . . 8
⊢ ((𝐾 ∈ OL ∧ 𝑅 ∈ (Base‘𝐾)) → (𝑅 ∨ 0 ) = 𝑅) |
| 88 | 78, 86, 87 | syl2anc 584 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∨ 𝑆 = 0 ) ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) → (𝑅 ∨ 0 ) = 𝑅) |
| 89 | 84, 88 | sylan9eqr 2799 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∨ 𝑆 = 0 ) ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) ∧ 𝑆 = 0 ) → (𝑅 ∨ 𝑆) = 𝑅) |
| 90 | 89 | oveq2d 7447 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∨ 𝑆 = 0 ) ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) ∧ 𝑆 = 0 ) → ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) = ((𝑃 ∨ 𝑄) ∧ 𝑅)) |
| 91 | 90 | eleq1d 2826 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∨ 𝑆 = 0 ) ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) ∧ 𝑆 = 0 ) → (((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) ∈ 𝐴 ↔ ((𝑃 ∨ 𝑄) ∧ 𝑅) ∈ 𝐴)) |
| 92 | 90 | eqeq1d 2739 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∨ 𝑆 = 0 ) ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) ∧ 𝑆 = 0 ) → (((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) = 0 ↔ ((𝑃 ∨ 𝑄) ∧ 𝑅) = 0 )) |
| 93 | 91, 92 | orbi12d 919 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∨ 𝑆 = 0 ) ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) ∧ 𝑆 = 0 ) → ((((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) ∈ 𝐴 ∨ ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) = 0 ) ↔ (((𝑃 ∨ 𝑄) ∧ 𝑅) ∈ 𝐴 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑅) = 0 ))) |
| 94 | 83, 93 | mpbird 257 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∨ 𝑆 = 0 ) ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) ∧ 𝑆 = 0 ) → (((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) ∈ 𝐴 ∨ ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) = 0 )) |
| 95 | | simpr2 1196 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∨ 𝑆 = 0 ) ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) → (𝑆 ∈ 𝐴 ∨ 𝑆 = 0 )) |
| 96 | 76, 94, 95 | mpjaodan 961 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∨ 𝑆 = 0 ) ∧ (𝑃 ∨ 𝑄) ≠ (𝑅 ∨ 𝑆))) → (((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) ∈ 𝐴 ∨ ((𝑃 ∨ 𝑄) ∧ (𝑅 ∨ 𝑆)) = 0 )) |