MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metdsf Structured version   Visualization version   GIF version

Theorem metdsf 24889
Description: The distance from a point to a set is a nonnegative extended real number. (Contributed by Mario Carneiro, 14-Feb-2015.) (Revised by Mario Carneiro, 4-Sep-2015.) (Proof shortened by AV, 30-Sep-2020.)
Hypothesis
Ref Expression
metdscn.f 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
Assertion
Ref Expression
metdsf ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → 𝐹:𝑋⟶(0[,]+∞))
Distinct variable groups:   𝑥,𝑦,𝐷   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem metdsf
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simplll 774 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝑥𝑋) ∧ 𝑦𝑆) → 𝐷 ∈ (∞Met‘𝑋))
2 simplr 768 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝑥𝑋) ∧ 𝑦𝑆) → 𝑥𝑋)
3 simplr 768 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝑥𝑋) → 𝑆𝑋)
43sselda 4008 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝑥𝑋) ∧ 𝑦𝑆) → 𝑦𝑋)
5 xmetcl 24362 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → (𝑥𝐷𝑦) ∈ ℝ*)
61, 2, 4, 5syl3anc 1371 . . . . . 6 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝑥𝑋) ∧ 𝑦𝑆) → (𝑥𝐷𝑦) ∈ ℝ*)
7 eqid 2740 . . . . . 6 (𝑦𝑆 ↦ (𝑥𝐷𝑦)) = (𝑦𝑆 ↦ (𝑥𝐷𝑦))
86, 7fmptd 7148 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝑥𝑋) → (𝑦𝑆 ↦ (𝑥𝐷𝑦)):𝑆⟶ℝ*)
98frnd 6755 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝑥𝑋) → ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)) ⊆ ℝ*)
10 infxrcl 13395 . . . 4 (ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)) ⊆ ℝ* → inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ) ∈ ℝ*)
119, 10syl 17 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝑥𝑋) → inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ) ∈ ℝ*)
12 xmetge0 24375 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → 0 ≤ (𝑥𝐷𝑦))
131, 2, 4, 12syl3anc 1371 . . . . . 6 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝑥𝑋) ∧ 𝑦𝑆) → 0 ≤ (𝑥𝐷𝑦))
1413ralrimiva 3152 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝑥𝑋) → ∀𝑦𝑆 0 ≤ (𝑥𝐷𝑦))
15 ovex 7481 . . . . . . 7 (𝑥𝐷𝑦) ∈ V
1615rgenw 3071 . . . . . 6 𝑦𝑆 (𝑥𝐷𝑦) ∈ V
17 breq2 5170 . . . . . . 7 (𝑧 = (𝑥𝐷𝑦) → (0 ≤ 𝑧 ↔ 0 ≤ (𝑥𝐷𝑦)))
187, 17ralrnmptw 7128 . . . . . 6 (∀𝑦𝑆 (𝑥𝐷𝑦) ∈ V → (∀𝑧 ∈ ran (𝑦𝑆 ↦ (𝑥𝐷𝑦))0 ≤ 𝑧 ↔ ∀𝑦𝑆 0 ≤ (𝑥𝐷𝑦)))
1916, 18ax-mp 5 . . . . 5 (∀𝑧 ∈ ran (𝑦𝑆 ↦ (𝑥𝐷𝑦))0 ≤ 𝑧 ↔ ∀𝑦𝑆 0 ≤ (𝑥𝐷𝑦))
2014, 19sylibr 234 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝑥𝑋) → ∀𝑧 ∈ ran (𝑦𝑆 ↦ (𝑥𝐷𝑦))0 ≤ 𝑧)
21 0xr 11337 . . . . 5 0 ∈ ℝ*
22 infxrgelb 13397 . . . . 5 ((ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)) ⊆ ℝ* ∧ 0 ∈ ℝ*) → (0 ≤ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ) ↔ ∀𝑧 ∈ ran (𝑦𝑆 ↦ (𝑥𝐷𝑦))0 ≤ 𝑧))
239, 21, 22sylancl 585 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝑥𝑋) → (0 ≤ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ) ↔ ∀𝑧 ∈ ran (𝑦𝑆 ↦ (𝑥𝐷𝑦))0 ≤ 𝑧))
2420, 23mpbird 257 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝑥𝑋) → 0 ≤ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
25 elxrge0 13517 . . 3 (inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ) ∈ (0[,]+∞) ↔ (inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ) ∈ ℝ* ∧ 0 ≤ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )))
2611, 24, 25sylanbrc 582 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝑥𝑋) → inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ) ∈ (0[,]+∞))
27 metdscn.f . 2 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
2826, 27fmptd 7148 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → 𝐹:𝑋⟶(0[,]+∞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  Vcvv 3488  wss 3976   class class class wbr 5166  cmpt 5249  ran crn 5701  wf 6569  cfv 6573  (class class class)co 7448  infcinf 9510  0cc0 11184  +∞cpnf 11321  *cxr 11323   < clt 11324  cle 11325  [,]cicc 13410  ∞Metcxmet 21372
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-2 12356  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-icc 13414  df-xmet 21380
This theorem is referenced by:  metds0  24891  metdstri  24892  metdsre  24894  metdseq0  24895  metdscnlem  24896  metdscn  24897  metnrmlem1a  24899  metnrmlem1  24900  lebnumlem1  25012
  Copyright terms: Public domain W3C validator