![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > metdsf | Structured version Visualization version GIF version |
Description: The distance from a point to a set is a nonnegative extended real number. (Contributed by Mario Carneiro, 14-Feb-2015.) (Revised by Mario Carneiro, 4-Sep-2015.) (Proof shortened by AV, 30-Sep-2020.) |
Ref | Expression |
---|---|
metdscn.f | ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )) |
Ref | Expression |
---|---|
metdsf | ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → 𝐹:𝑋⟶(0[,]+∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplll 775 | . . . . . . 7 ⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑆) → 𝐷 ∈ (∞Met‘𝑋)) | |
2 | simplr 769 | . . . . . . 7 ⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑆) → 𝑥 ∈ 𝑋) | |
3 | simplr 769 | . . . . . . . 8 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ 𝑋) → 𝑆 ⊆ 𝑋) | |
4 | 3 | sselda 3995 | . . . . . . 7 ⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑆) → 𝑦 ∈ 𝑋) |
5 | xmetcl 24357 | . . . . . . 7 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑥𝐷𝑦) ∈ ℝ*) | |
6 | 1, 2, 4, 5 | syl3anc 1370 | . . . . . 6 ⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑆) → (𝑥𝐷𝑦) ∈ ℝ*) |
7 | eqid 2735 | . . . . . 6 ⊢ (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)) = (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)) | |
8 | 6, 7 | fmptd 7134 | . . . . 5 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ 𝑋) → (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)):𝑆⟶ℝ*) |
9 | 8 | frnd 6745 | . . . 4 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ 𝑋) → ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)) ⊆ ℝ*) |
10 | infxrcl 13372 | . . . 4 ⊢ (ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)) ⊆ ℝ* → inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ) ∈ ℝ*) | |
11 | 9, 10 | syl 17 | . . 3 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ 𝑋) → inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ) ∈ ℝ*) |
12 | xmetge0 24370 | . . . . . . 7 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → 0 ≤ (𝑥𝐷𝑦)) | |
13 | 1, 2, 4, 12 | syl3anc 1370 | . . . . . 6 ⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑆) → 0 ≤ (𝑥𝐷𝑦)) |
14 | 13 | ralrimiva 3144 | . . . . 5 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ 𝑋) → ∀𝑦 ∈ 𝑆 0 ≤ (𝑥𝐷𝑦)) |
15 | ovex 7464 | . . . . . . 7 ⊢ (𝑥𝐷𝑦) ∈ V | |
16 | 15 | rgenw 3063 | . . . . . 6 ⊢ ∀𝑦 ∈ 𝑆 (𝑥𝐷𝑦) ∈ V |
17 | breq2 5152 | . . . . . . 7 ⊢ (𝑧 = (𝑥𝐷𝑦) → (0 ≤ 𝑧 ↔ 0 ≤ (𝑥𝐷𝑦))) | |
18 | 7, 17 | ralrnmptw 7114 | . . . . . 6 ⊢ (∀𝑦 ∈ 𝑆 (𝑥𝐷𝑦) ∈ V → (∀𝑧 ∈ ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦))0 ≤ 𝑧 ↔ ∀𝑦 ∈ 𝑆 0 ≤ (𝑥𝐷𝑦))) |
19 | 16, 18 | ax-mp 5 | . . . . 5 ⊢ (∀𝑧 ∈ ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦))0 ≤ 𝑧 ↔ ∀𝑦 ∈ 𝑆 0 ≤ (𝑥𝐷𝑦)) |
20 | 14, 19 | sylibr 234 | . . . 4 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ 𝑋) → ∀𝑧 ∈ ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦))0 ≤ 𝑧) |
21 | 0xr 11306 | . . . . 5 ⊢ 0 ∈ ℝ* | |
22 | infxrgelb 13374 | . . . . 5 ⊢ ((ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)) ⊆ ℝ* ∧ 0 ∈ ℝ*) → (0 ≤ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ) ↔ ∀𝑧 ∈ ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦))0 ≤ 𝑧)) | |
23 | 9, 21, 22 | sylancl 586 | . . . 4 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ 𝑋) → (0 ≤ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ) ↔ ∀𝑧 ∈ ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦))0 ≤ 𝑧)) |
24 | 20, 23 | mpbird 257 | . . 3 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ 𝑋) → 0 ≤ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )) |
25 | elxrge0 13494 | . . 3 ⊢ (inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ) ∈ (0[,]+∞) ↔ (inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ) ∈ ℝ* ∧ 0 ≤ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))) | |
26 | 11, 24, 25 | sylanbrc 583 | . 2 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ 𝑋) → inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ) ∈ (0[,]+∞)) |
27 | metdscn.f | . 2 ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )) | |
28 | 26, 27 | fmptd 7134 | 1 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → 𝐹:𝑋⟶(0[,]+∞)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∀wral 3059 Vcvv 3478 ⊆ wss 3963 class class class wbr 5148 ↦ cmpt 5231 ran crn 5690 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 infcinf 9479 0cc0 11153 +∞cpnf 11290 ℝ*cxr 11292 < clt 11293 ≤ cle 11294 [,]cicc 13387 ∞Metcxmet 21367 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-po 5597 df-so 5598 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8013 df-2nd 8014 df-er 8744 df-map 8867 df-en 8985 df-dom 8986 df-sdom 8987 df-sup 9480 df-inf 9481 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-2 12327 df-rp 13033 df-xneg 13152 df-xadd 13153 df-xmul 13154 df-icc 13391 df-xmet 21375 |
This theorem is referenced by: metds0 24886 metdstri 24887 metdsre 24889 metdseq0 24890 metdscnlem 24891 metdscn 24892 metnrmlem1a 24894 metnrmlem1 24895 lebnumlem1 25007 |
Copyright terms: Public domain | W3C validator |