MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metdsf Structured version   Visualization version   GIF version

Theorem metdsf 23917
Description: The distance from a point to a set is a nonnegative extended real number. (Contributed by Mario Carneiro, 14-Feb-2015.) (Revised by Mario Carneiro, 4-Sep-2015.) (Proof shortened by AV, 30-Sep-2020.)
Hypothesis
Ref Expression
metdscn.f 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
Assertion
Ref Expression
metdsf ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → 𝐹:𝑋⟶(0[,]+∞))
Distinct variable groups:   𝑥,𝑦,𝐷   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem metdsf
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simplll 771 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝑥𝑋) ∧ 𝑦𝑆) → 𝐷 ∈ (∞Met‘𝑋))
2 simplr 765 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝑥𝑋) ∧ 𝑦𝑆) → 𝑥𝑋)
3 simplr 765 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝑥𝑋) → 𝑆𝑋)
43sselda 3917 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝑥𝑋) ∧ 𝑦𝑆) → 𝑦𝑋)
5 xmetcl 23392 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → (𝑥𝐷𝑦) ∈ ℝ*)
61, 2, 4, 5syl3anc 1369 . . . . . 6 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝑥𝑋) ∧ 𝑦𝑆) → (𝑥𝐷𝑦) ∈ ℝ*)
7 eqid 2738 . . . . . 6 (𝑦𝑆 ↦ (𝑥𝐷𝑦)) = (𝑦𝑆 ↦ (𝑥𝐷𝑦))
86, 7fmptd 6970 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝑥𝑋) → (𝑦𝑆 ↦ (𝑥𝐷𝑦)):𝑆⟶ℝ*)
98frnd 6592 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝑥𝑋) → ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)) ⊆ ℝ*)
10 infxrcl 12996 . . . 4 (ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)) ⊆ ℝ* → inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ) ∈ ℝ*)
119, 10syl 17 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝑥𝑋) → inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ) ∈ ℝ*)
12 xmetge0 23405 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → 0 ≤ (𝑥𝐷𝑦))
131, 2, 4, 12syl3anc 1369 . . . . . 6 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝑥𝑋) ∧ 𝑦𝑆) → 0 ≤ (𝑥𝐷𝑦))
1413ralrimiva 3107 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝑥𝑋) → ∀𝑦𝑆 0 ≤ (𝑥𝐷𝑦))
15 ovex 7288 . . . . . . 7 (𝑥𝐷𝑦) ∈ V
1615rgenw 3075 . . . . . 6 𝑦𝑆 (𝑥𝐷𝑦) ∈ V
17 breq2 5074 . . . . . . 7 (𝑧 = (𝑥𝐷𝑦) → (0 ≤ 𝑧 ↔ 0 ≤ (𝑥𝐷𝑦)))
187, 17ralrnmptw 6952 . . . . . 6 (∀𝑦𝑆 (𝑥𝐷𝑦) ∈ V → (∀𝑧 ∈ ran (𝑦𝑆 ↦ (𝑥𝐷𝑦))0 ≤ 𝑧 ↔ ∀𝑦𝑆 0 ≤ (𝑥𝐷𝑦)))
1916, 18ax-mp 5 . . . . 5 (∀𝑧 ∈ ran (𝑦𝑆 ↦ (𝑥𝐷𝑦))0 ≤ 𝑧 ↔ ∀𝑦𝑆 0 ≤ (𝑥𝐷𝑦))
2014, 19sylibr 233 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝑥𝑋) → ∀𝑧 ∈ ran (𝑦𝑆 ↦ (𝑥𝐷𝑦))0 ≤ 𝑧)
21 0xr 10953 . . . . 5 0 ∈ ℝ*
22 infxrgelb 12998 . . . . 5 ((ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)) ⊆ ℝ* ∧ 0 ∈ ℝ*) → (0 ≤ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ) ↔ ∀𝑧 ∈ ran (𝑦𝑆 ↦ (𝑥𝐷𝑦))0 ≤ 𝑧))
239, 21, 22sylancl 585 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝑥𝑋) → (0 ≤ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ) ↔ ∀𝑧 ∈ ran (𝑦𝑆 ↦ (𝑥𝐷𝑦))0 ≤ 𝑧))
2420, 23mpbird 256 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝑥𝑋) → 0 ≤ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
25 elxrge0 13118 . . 3 (inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ) ∈ (0[,]+∞) ↔ (inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ) ∈ ℝ* ∧ 0 ≤ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )))
2611, 24, 25sylanbrc 582 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝑥𝑋) → inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ) ∈ (0[,]+∞))
27 metdscn.f . 2 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
2826, 27fmptd 6970 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → 𝐹:𝑋⟶(0[,]+∞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  Vcvv 3422  wss 3883   class class class wbr 5070  cmpt 5153  ran crn 5581  wf 6414  cfv 6418  (class class class)co 7255  infcinf 9130  0cc0 10802  +∞cpnf 10937  *cxr 10939   < clt 10940  cle 10941  [,]cicc 13011  ∞Metcxmet 20495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-2 11966  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-icc 13015  df-xmet 20503
This theorem is referenced by:  metds0  23919  metdstri  23920  metdsre  23922  metdseq0  23923  metdscnlem  23924  metdscn  23925  metnrmlem1a  23927  metnrmlem1  23928  lebnumlem1  24030
  Copyright terms: Public domain W3C validator