MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metdsf Structured version   Visualization version   GIF version

Theorem metdsf 22979
Description: The distance from a point to a set is a nonnegative extended real number. (Contributed by Mario Carneiro, 14-Feb-2015.) (Revised by Mario Carneiro, 4-Sep-2015.) (Proof shortened by AV, 30-Sep-2020.)
Hypothesis
Ref Expression
metdscn.f 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
Assertion
Ref Expression
metdsf ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → 𝐹:𝑋⟶(0[,]+∞))
Distinct variable groups:   𝑥,𝑦,𝐷   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem metdsf
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simplll 792 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝑥𝑋) ∧ 𝑦𝑆) → 𝐷 ∈ (∞Met‘𝑋))
2 simplr 786 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝑥𝑋) ∧ 𝑦𝑆) → 𝑥𝑋)
3 simplr 786 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝑥𝑋) → 𝑆𝑋)
43sselda 3798 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝑥𝑋) ∧ 𝑦𝑆) → 𝑦𝑋)
5 xmetcl 22464 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → (𝑥𝐷𝑦) ∈ ℝ*)
61, 2, 4, 5syl3anc 1491 . . . . . 6 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝑥𝑋) ∧ 𝑦𝑆) → (𝑥𝐷𝑦) ∈ ℝ*)
7 eqid 2799 . . . . . 6 (𝑦𝑆 ↦ (𝑥𝐷𝑦)) = (𝑦𝑆 ↦ (𝑥𝐷𝑦))
86, 7fmptd 6610 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝑥𝑋) → (𝑦𝑆 ↦ (𝑥𝐷𝑦)):𝑆⟶ℝ*)
98frnd 6263 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝑥𝑋) → ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)) ⊆ ℝ*)
10 infxrcl 12412 . . . 4 (ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)) ⊆ ℝ* → inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ) ∈ ℝ*)
119, 10syl 17 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝑥𝑋) → inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ) ∈ ℝ*)
12 xmetge0 22477 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → 0 ≤ (𝑥𝐷𝑦))
131, 2, 4, 12syl3anc 1491 . . . . . 6 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝑥𝑋) ∧ 𝑦𝑆) → 0 ≤ (𝑥𝐷𝑦))
1413ralrimiva 3147 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝑥𝑋) → ∀𝑦𝑆 0 ≤ (𝑥𝐷𝑦))
15 ovex 6910 . . . . . . 7 (𝑥𝐷𝑦) ∈ V
1615rgenw 3105 . . . . . 6 𝑦𝑆 (𝑥𝐷𝑦) ∈ V
17 breq2 4847 . . . . . . 7 (𝑧 = (𝑥𝐷𝑦) → (0 ≤ 𝑧 ↔ 0 ≤ (𝑥𝐷𝑦)))
187, 17ralrnmpt 6594 . . . . . 6 (∀𝑦𝑆 (𝑥𝐷𝑦) ∈ V → (∀𝑧 ∈ ran (𝑦𝑆 ↦ (𝑥𝐷𝑦))0 ≤ 𝑧 ↔ ∀𝑦𝑆 0 ≤ (𝑥𝐷𝑦)))
1916, 18ax-mp 5 . . . . 5 (∀𝑧 ∈ ran (𝑦𝑆 ↦ (𝑥𝐷𝑦))0 ≤ 𝑧 ↔ ∀𝑦𝑆 0 ≤ (𝑥𝐷𝑦))
2014, 19sylibr 226 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝑥𝑋) → ∀𝑧 ∈ ran (𝑦𝑆 ↦ (𝑥𝐷𝑦))0 ≤ 𝑧)
21 0xr 10375 . . . . 5 0 ∈ ℝ*
22 infxrgelb 12414 . . . . 5 ((ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)) ⊆ ℝ* ∧ 0 ∈ ℝ*) → (0 ≤ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ) ↔ ∀𝑧 ∈ ran (𝑦𝑆 ↦ (𝑥𝐷𝑦))0 ≤ 𝑧))
239, 21, 22sylancl 581 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝑥𝑋) → (0 ≤ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ) ↔ ∀𝑧 ∈ ran (𝑦𝑆 ↦ (𝑥𝐷𝑦))0 ≤ 𝑧))
2420, 23mpbird 249 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝑥𝑋) → 0 ≤ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
25 elxrge0 12532 . . 3 (inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ) ∈ (0[,]+∞) ↔ (inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ) ∈ ℝ* ∧ 0 ≤ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )))
2611, 24, 25sylanbrc 579 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝑥𝑋) → inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ) ∈ (0[,]+∞))
27 metdscn.f . 2 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
2826, 27fmptd 6610 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → 𝐹:𝑋⟶(0[,]+∞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385   = wceq 1653  wcel 2157  wral 3089  Vcvv 3385  wss 3769   class class class wbr 4843  cmpt 4922  ran crn 5313  wf 6097  cfv 6101  (class class class)co 6878  infcinf 8589  0cc0 10224  +∞cpnf 10360  *cxr 10362   < clt 10363  cle 10364  [,]cicc 12427  ∞Metcxmet 20053
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301  ax-pre-sup 10302
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-op 4375  df-uni 4629  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-id 5220  df-po 5233  df-so 5234  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-1st 7401  df-2nd 7402  df-er 7982  df-map 8097  df-en 8196  df-dom 8197  df-sdom 8198  df-sup 8590  df-inf 8591  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-div 10977  df-2 11376  df-rp 12075  df-xneg 12193  df-xadd 12194  df-xmul 12195  df-icc 12431  df-xmet 20061
This theorem is referenced by:  metds0  22981  metdstri  22982  metdsre  22984  metdseq0  22985  metdscnlem  22986  metdscn  22987  metnrmlem1a  22989  metnrmlem1  22990  lebnumlem1  23088
  Copyright terms: Public domain W3C validator