| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > metdsf | Structured version Visualization version GIF version | ||
| Description: The distance from a point to a set is a nonnegative extended real number. (Contributed by Mario Carneiro, 14-Feb-2015.) (Revised by Mario Carneiro, 4-Sep-2015.) (Proof shortened by AV, 30-Sep-2020.) |
| Ref | Expression |
|---|---|
| metdscn.f | ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )) |
| Ref | Expression |
|---|---|
| metdsf | ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → 𝐹:𝑋⟶(0[,]+∞)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplll 774 | . . . . . . 7 ⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑆) → 𝐷 ∈ (∞Met‘𝑋)) | |
| 2 | simplr 768 | . . . . . . 7 ⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑆) → 𝑥 ∈ 𝑋) | |
| 3 | simplr 768 | . . . . . . . 8 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ 𝑋) → 𝑆 ⊆ 𝑋) | |
| 4 | 3 | sselda 3930 | . . . . . . 7 ⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑆) → 𝑦 ∈ 𝑋) |
| 5 | xmetcl 24249 | . . . . . . 7 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑥𝐷𝑦) ∈ ℝ*) | |
| 6 | 1, 2, 4, 5 | syl3anc 1373 | . . . . . 6 ⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑆) → (𝑥𝐷𝑦) ∈ ℝ*) |
| 7 | eqid 2733 | . . . . . 6 ⊢ (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)) = (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)) | |
| 8 | 6, 7 | fmptd 7055 | . . . . 5 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ 𝑋) → (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)):𝑆⟶ℝ*) |
| 9 | 8 | frnd 6666 | . . . 4 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ 𝑋) → ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)) ⊆ ℝ*) |
| 10 | infxrcl 13237 | . . . 4 ⊢ (ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)) ⊆ ℝ* → inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ) ∈ ℝ*) | |
| 11 | 9, 10 | syl 17 | . . 3 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ 𝑋) → inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ) ∈ ℝ*) |
| 12 | xmetge0 24262 | . . . . . . 7 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → 0 ≤ (𝑥𝐷𝑦)) | |
| 13 | 1, 2, 4, 12 | syl3anc 1373 | . . . . . 6 ⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑆) → 0 ≤ (𝑥𝐷𝑦)) |
| 14 | 13 | ralrimiva 3125 | . . . . 5 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ 𝑋) → ∀𝑦 ∈ 𝑆 0 ≤ (𝑥𝐷𝑦)) |
| 15 | ovex 7387 | . . . . . . 7 ⊢ (𝑥𝐷𝑦) ∈ V | |
| 16 | 15 | rgenw 3052 | . . . . . 6 ⊢ ∀𝑦 ∈ 𝑆 (𝑥𝐷𝑦) ∈ V |
| 17 | breq2 5099 | . . . . . . 7 ⊢ (𝑧 = (𝑥𝐷𝑦) → (0 ≤ 𝑧 ↔ 0 ≤ (𝑥𝐷𝑦))) | |
| 18 | 7, 17 | ralrnmptw 7035 | . . . . . 6 ⊢ (∀𝑦 ∈ 𝑆 (𝑥𝐷𝑦) ∈ V → (∀𝑧 ∈ ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦))0 ≤ 𝑧 ↔ ∀𝑦 ∈ 𝑆 0 ≤ (𝑥𝐷𝑦))) |
| 19 | 16, 18 | ax-mp 5 | . . . . 5 ⊢ (∀𝑧 ∈ ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦))0 ≤ 𝑧 ↔ ∀𝑦 ∈ 𝑆 0 ≤ (𝑥𝐷𝑦)) |
| 20 | 14, 19 | sylibr 234 | . . . 4 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ 𝑋) → ∀𝑧 ∈ ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦))0 ≤ 𝑧) |
| 21 | 0xr 11168 | . . . . 5 ⊢ 0 ∈ ℝ* | |
| 22 | infxrgelb 13239 | . . . . 5 ⊢ ((ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)) ⊆ ℝ* ∧ 0 ∈ ℝ*) → (0 ≤ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ) ↔ ∀𝑧 ∈ ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦))0 ≤ 𝑧)) | |
| 23 | 9, 21, 22 | sylancl 586 | . . . 4 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ 𝑋) → (0 ≤ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ) ↔ ∀𝑧 ∈ ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦))0 ≤ 𝑧)) |
| 24 | 20, 23 | mpbird 257 | . . 3 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ 𝑋) → 0 ≤ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )) |
| 25 | elxrge0 13361 | . . 3 ⊢ (inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ) ∈ (0[,]+∞) ↔ (inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ) ∈ ℝ* ∧ 0 ≤ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))) | |
| 26 | 11, 24, 25 | sylanbrc 583 | . 2 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ 𝑋) → inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ) ∈ (0[,]+∞)) |
| 27 | metdscn.f | . 2 ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )) | |
| 28 | 26, 27 | fmptd 7055 | 1 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → 𝐹:𝑋⟶(0[,]+∞)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3048 Vcvv 3437 ⊆ wss 3898 class class class wbr 5095 ↦ cmpt 5176 ran crn 5622 ⟶wf 6484 ‘cfv 6488 (class class class)co 7354 infcinf 9334 0cc0 11015 +∞cpnf 11152 ℝ*cxr 11154 < clt 11155 ≤ cle 11156 [,]cicc 13252 ∞Metcxmet 21280 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 ax-pre-sup 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-po 5529 df-so 5530 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-1st 7929 df-2nd 7930 df-er 8630 df-map 8760 df-en 8878 df-dom 8879 df-sdom 8880 df-sup 9335 df-inf 9336 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-div 11784 df-2 12197 df-rp 12895 df-xneg 13015 df-xadd 13016 df-xmul 13017 df-icc 13256 df-xmet 21288 |
| This theorem is referenced by: metds0 24769 metdstri 24770 metdsre 24772 metdseq0 24773 metdscnlem 24774 metdscn 24775 metnrmlem1a 24777 metnrmlem1 24778 lebnumlem1 24890 |
| Copyright terms: Public domain | W3C validator |