MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metdsf Structured version   Visualization version   GIF version

Theorem metdsf 24767
Description: The distance from a point to a set is a nonnegative extended real number. (Contributed by Mario Carneiro, 14-Feb-2015.) (Revised by Mario Carneiro, 4-Sep-2015.) (Proof shortened by AV, 30-Sep-2020.)
Hypothesis
Ref Expression
metdscn.f 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
Assertion
Ref Expression
metdsf ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → 𝐹:𝑋⟶(0[,]+∞))
Distinct variable groups:   𝑥,𝑦,𝐷   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem metdsf
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 simplll 774 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝑥𝑋) ∧ 𝑦𝑆) → 𝐷 ∈ (∞Met‘𝑋))
2 simplr 768 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝑥𝑋) ∧ 𝑦𝑆) → 𝑥𝑋)
3 simplr 768 . . . . . . . 8 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝑥𝑋) → 𝑆𝑋)
43sselda 3930 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝑥𝑋) ∧ 𝑦𝑆) → 𝑦𝑋)
5 xmetcl 24249 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → (𝑥𝐷𝑦) ∈ ℝ*)
61, 2, 4, 5syl3anc 1373 . . . . . 6 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝑥𝑋) ∧ 𝑦𝑆) → (𝑥𝐷𝑦) ∈ ℝ*)
7 eqid 2733 . . . . . 6 (𝑦𝑆 ↦ (𝑥𝐷𝑦)) = (𝑦𝑆 ↦ (𝑥𝐷𝑦))
86, 7fmptd 7055 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝑥𝑋) → (𝑦𝑆 ↦ (𝑥𝐷𝑦)):𝑆⟶ℝ*)
98frnd 6666 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝑥𝑋) → ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)) ⊆ ℝ*)
10 infxrcl 13237 . . . 4 (ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)) ⊆ ℝ* → inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ) ∈ ℝ*)
119, 10syl 17 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝑥𝑋) → inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ) ∈ ℝ*)
12 xmetge0 24262 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋𝑦𝑋) → 0 ≤ (𝑥𝐷𝑦))
131, 2, 4, 12syl3anc 1373 . . . . . 6 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝑥𝑋) ∧ 𝑦𝑆) → 0 ≤ (𝑥𝐷𝑦))
1413ralrimiva 3125 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝑥𝑋) → ∀𝑦𝑆 0 ≤ (𝑥𝐷𝑦))
15 ovex 7387 . . . . . . 7 (𝑥𝐷𝑦) ∈ V
1615rgenw 3052 . . . . . 6 𝑦𝑆 (𝑥𝐷𝑦) ∈ V
17 breq2 5099 . . . . . . 7 (𝑧 = (𝑥𝐷𝑦) → (0 ≤ 𝑧 ↔ 0 ≤ (𝑥𝐷𝑦)))
187, 17ralrnmptw 7035 . . . . . 6 (∀𝑦𝑆 (𝑥𝐷𝑦) ∈ V → (∀𝑧 ∈ ran (𝑦𝑆 ↦ (𝑥𝐷𝑦))0 ≤ 𝑧 ↔ ∀𝑦𝑆 0 ≤ (𝑥𝐷𝑦)))
1916, 18ax-mp 5 . . . . 5 (∀𝑧 ∈ ran (𝑦𝑆 ↦ (𝑥𝐷𝑦))0 ≤ 𝑧 ↔ ∀𝑦𝑆 0 ≤ (𝑥𝐷𝑦))
2014, 19sylibr 234 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝑥𝑋) → ∀𝑧 ∈ ran (𝑦𝑆 ↦ (𝑥𝐷𝑦))0 ≤ 𝑧)
21 0xr 11168 . . . . 5 0 ∈ ℝ*
22 infxrgelb 13239 . . . . 5 ((ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)) ⊆ ℝ* ∧ 0 ∈ ℝ*) → (0 ≤ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ) ↔ ∀𝑧 ∈ ran (𝑦𝑆 ↦ (𝑥𝐷𝑦))0 ≤ 𝑧))
239, 21, 22sylancl 586 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝑥𝑋) → (0 ≤ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ) ↔ ∀𝑧 ∈ ran (𝑦𝑆 ↦ (𝑥𝐷𝑦))0 ≤ 𝑧))
2420, 23mpbird 257 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝑥𝑋) → 0 ≤ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
25 elxrge0 13361 . . 3 (inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ) ∈ (0[,]+∞) ↔ (inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ) ∈ ℝ* ∧ 0 ≤ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )))
2611, 24, 25sylanbrc 583 . 2 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) ∧ 𝑥𝑋) → inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ) ∈ (0[,]+∞))
27 metdscn.f . 2 𝐹 = (𝑥𝑋 ↦ inf(ran (𝑦𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))
2826, 27fmptd 7055 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆𝑋) → 𝐹:𝑋⟶(0[,]+∞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wral 3048  Vcvv 3437  wss 3898   class class class wbr 5095  cmpt 5176  ran crn 5622  wf 6484  cfv 6488  (class class class)co 7354  infcinf 9334  0cc0 11015  +∞cpnf 11152  *cxr 11154   < clt 11155  cle 11156  [,]cicc 13252  ∞Metcxmet 21280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092  ax-pre-sup 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-po 5529  df-so 5530  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-1st 7929  df-2nd 7930  df-er 8630  df-map 8760  df-en 8878  df-dom 8879  df-sdom 8880  df-sup 9335  df-inf 9336  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-div 11784  df-2 12197  df-rp 12895  df-xneg 13015  df-xadd 13016  df-xmul 13017  df-icc 13256  df-xmet 21288
This theorem is referenced by:  metds0  24769  metdstri  24770  metdsre  24772  metdseq0  24773  metdscnlem  24774  metdscn  24775  metnrmlem1a  24777  metnrmlem1  24778  lebnumlem1  24890
  Copyright terms: Public domain W3C validator