![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > metdsf | Structured version Visualization version GIF version |
Description: The distance from a point to a set is a nonnegative extended real number. (Contributed by Mario Carneiro, 14-Feb-2015.) (Revised by Mario Carneiro, 4-Sep-2015.) (Proof shortened by AV, 30-Sep-2020.) |
Ref | Expression |
---|---|
metdscn.f | ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )) |
Ref | Expression |
---|---|
metdsf | ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → 𝐹:𝑋⟶(0[,]+∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplll 774 | . . . . . . 7 ⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑆) → 𝐷 ∈ (∞Met‘𝑋)) | |
2 | simplr 768 | . . . . . . 7 ⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑆) → 𝑥 ∈ 𝑋) | |
3 | simplr 768 | . . . . . . . 8 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ 𝑋) → 𝑆 ⊆ 𝑋) | |
4 | 3 | sselda 3978 | . . . . . . 7 ⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑆) → 𝑦 ∈ 𝑋) |
5 | xmetcl 24211 | . . . . . . 7 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑥𝐷𝑦) ∈ ℝ*) | |
6 | 1, 2, 4, 5 | syl3anc 1369 | . . . . . 6 ⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑆) → (𝑥𝐷𝑦) ∈ ℝ*) |
7 | eqid 2727 | . . . . . 6 ⊢ (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)) = (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)) | |
8 | 6, 7 | fmptd 7118 | . . . . 5 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ 𝑋) → (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)):𝑆⟶ℝ*) |
9 | 8 | frnd 6724 | . . . 4 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ 𝑋) → ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)) ⊆ ℝ*) |
10 | infxrcl 13330 | . . . 4 ⊢ (ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)) ⊆ ℝ* → inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ) ∈ ℝ*) | |
11 | 9, 10 | syl 17 | . . 3 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ 𝑋) → inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ) ∈ ℝ*) |
12 | xmetge0 24224 | . . . . . . 7 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → 0 ≤ (𝑥𝐷𝑦)) | |
13 | 1, 2, 4, 12 | syl3anc 1369 | . . . . . 6 ⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑆) → 0 ≤ (𝑥𝐷𝑦)) |
14 | 13 | ralrimiva 3141 | . . . . 5 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ 𝑋) → ∀𝑦 ∈ 𝑆 0 ≤ (𝑥𝐷𝑦)) |
15 | ovex 7447 | . . . . . . 7 ⊢ (𝑥𝐷𝑦) ∈ V | |
16 | 15 | rgenw 3060 | . . . . . 6 ⊢ ∀𝑦 ∈ 𝑆 (𝑥𝐷𝑦) ∈ V |
17 | breq2 5146 | . . . . . . 7 ⊢ (𝑧 = (𝑥𝐷𝑦) → (0 ≤ 𝑧 ↔ 0 ≤ (𝑥𝐷𝑦))) | |
18 | 7, 17 | ralrnmptw 7098 | . . . . . 6 ⊢ (∀𝑦 ∈ 𝑆 (𝑥𝐷𝑦) ∈ V → (∀𝑧 ∈ ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦))0 ≤ 𝑧 ↔ ∀𝑦 ∈ 𝑆 0 ≤ (𝑥𝐷𝑦))) |
19 | 16, 18 | ax-mp 5 | . . . . 5 ⊢ (∀𝑧 ∈ ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦))0 ≤ 𝑧 ↔ ∀𝑦 ∈ 𝑆 0 ≤ (𝑥𝐷𝑦)) |
20 | 14, 19 | sylibr 233 | . . . 4 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ 𝑋) → ∀𝑧 ∈ ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦))0 ≤ 𝑧) |
21 | 0xr 11277 | . . . . 5 ⊢ 0 ∈ ℝ* | |
22 | infxrgelb 13332 | . . . . 5 ⊢ ((ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)) ⊆ ℝ* ∧ 0 ∈ ℝ*) → (0 ≤ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ) ↔ ∀𝑧 ∈ ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦))0 ≤ 𝑧)) | |
23 | 9, 21, 22 | sylancl 585 | . . . 4 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ 𝑋) → (0 ≤ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ) ↔ ∀𝑧 ∈ ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦))0 ≤ 𝑧)) |
24 | 20, 23 | mpbird 257 | . . 3 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ 𝑋) → 0 ≤ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )) |
25 | elxrge0 13452 | . . 3 ⊢ (inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ) ∈ (0[,]+∞) ↔ (inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ) ∈ ℝ* ∧ 0 ≤ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))) | |
26 | 11, 24, 25 | sylanbrc 582 | . 2 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ 𝑋) → inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ) ∈ (0[,]+∞)) |
27 | metdscn.f | . 2 ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )) | |
28 | 26, 27 | fmptd 7118 | 1 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → 𝐹:𝑋⟶(0[,]+∞)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∀wral 3056 Vcvv 3469 ⊆ wss 3944 class class class wbr 5142 ↦ cmpt 5225 ran crn 5673 ⟶wf 6538 ‘cfv 6542 (class class class)co 7414 infcinf 9450 0cc0 11124 +∞cpnf 11261 ℝ*cxr 11263 < clt 11264 ≤ cle 11265 [,]cicc 13345 ∞Metcxmet 21244 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7732 ax-cnex 11180 ax-resscn 11181 ax-1cn 11182 ax-icn 11183 ax-addcl 11184 ax-addrcl 11185 ax-mulcl 11186 ax-mulrcl 11187 ax-mulcom 11188 ax-addass 11189 ax-mulass 11190 ax-distr 11191 ax-i2m1 11192 ax-1ne0 11193 ax-1rid 11194 ax-rnegex 11195 ax-rrecex 11196 ax-cnre 11197 ax-pre-lttri 11198 ax-pre-lttrn 11199 ax-pre-ltadd 11200 ax-pre-mulgt0 11201 ax-pre-sup 11202 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-po 5584 df-so 5585 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-1st 7985 df-2nd 7986 df-er 8716 df-map 8836 df-en 8954 df-dom 8955 df-sdom 8956 df-sup 9451 df-inf 9452 df-pnf 11266 df-mnf 11267 df-xr 11268 df-ltxr 11269 df-le 11270 df-sub 11462 df-neg 11463 df-div 11888 df-2 12291 df-rp 12993 df-xneg 13110 df-xadd 13111 df-xmul 13112 df-icc 13349 df-xmet 21252 |
This theorem is referenced by: metds0 24740 metdstri 24741 metdsre 24743 metdseq0 24744 metdscnlem 24745 metdscn 24746 metnrmlem1a 24748 metnrmlem1 24749 lebnumlem1 24861 |
Copyright terms: Public domain | W3C validator |