| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > metdsf | Structured version Visualization version GIF version | ||
| Description: The distance from a point to a set is a nonnegative extended real number. (Contributed by Mario Carneiro, 14-Feb-2015.) (Revised by Mario Carneiro, 4-Sep-2015.) (Proof shortened by AV, 30-Sep-2020.) |
| Ref | Expression |
|---|---|
| metdscn.f | ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )) |
| Ref | Expression |
|---|---|
| metdsf | ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → 𝐹:𝑋⟶(0[,]+∞)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplll 774 | . . . . . . 7 ⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑆) → 𝐷 ∈ (∞Met‘𝑋)) | |
| 2 | simplr 768 | . . . . . . 7 ⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑆) → 𝑥 ∈ 𝑋) | |
| 3 | simplr 768 | . . . . . . . 8 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ 𝑋) → 𝑆 ⊆ 𝑋) | |
| 4 | 3 | sselda 3946 | . . . . . . 7 ⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑆) → 𝑦 ∈ 𝑋) |
| 5 | xmetcl 24219 | . . . . . . 7 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑥𝐷𝑦) ∈ ℝ*) | |
| 6 | 1, 2, 4, 5 | syl3anc 1373 | . . . . . 6 ⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑆) → (𝑥𝐷𝑦) ∈ ℝ*) |
| 7 | eqid 2729 | . . . . . 6 ⊢ (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)) = (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)) | |
| 8 | 6, 7 | fmptd 7086 | . . . . 5 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ 𝑋) → (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)):𝑆⟶ℝ*) |
| 9 | 8 | frnd 6696 | . . . 4 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ 𝑋) → ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)) ⊆ ℝ*) |
| 10 | infxrcl 13294 | . . . 4 ⊢ (ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)) ⊆ ℝ* → inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ) ∈ ℝ*) | |
| 11 | 9, 10 | syl 17 | . . 3 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ 𝑋) → inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ) ∈ ℝ*) |
| 12 | xmetge0 24232 | . . . . . . 7 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → 0 ≤ (𝑥𝐷𝑦)) | |
| 13 | 1, 2, 4, 12 | syl3anc 1373 | . . . . . 6 ⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑆) → 0 ≤ (𝑥𝐷𝑦)) |
| 14 | 13 | ralrimiva 3125 | . . . . 5 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ 𝑋) → ∀𝑦 ∈ 𝑆 0 ≤ (𝑥𝐷𝑦)) |
| 15 | ovex 7420 | . . . . . . 7 ⊢ (𝑥𝐷𝑦) ∈ V | |
| 16 | 15 | rgenw 3048 | . . . . . 6 ⊢ ∀𝑦 ∈ 𝑆 (𝑥𝐷𝑦) ∈ V |
| 17 | breq2 5111 | . . . . . . 7 ⊢ (𝑧 = (𝑥𝐷𝑦) → (0 ≤ 𝑧 ↔ 0 ≤ (𝑥𝐷𝑦))) | |
| 18 | 7, 17 | ralrnmptw 7066 | . . . . . 6 ⊢ (∀𝑦 ∈ 𝑆 (𝑥𝐷𝑦) ∈ V → (∀𝑧 ∈ ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦))0 ≤ 𝑧 ↔ ∀𝑦 ∈ 𝑆 0 ≤ (𝑥𝐷𝑦))) |
| 19 | 16, 18 | ax-mp 5 | . . . . 5 ⊢ (∀𝑧 ∈ ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦))0 ≤ 𝑧 ↔ ∀𝑦 ∈ 𝑆 0 ≤ (𝑥𝐷𝑦)) |
| 20 | 14, 19 | sylibr 234 | . . . 4 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ 𝑋) → ∀𝑧 ∈ ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦))0 ≤ 𝑧) |
| 21 | 0xr 11221 | . . . . 5 ⊢ 0 ∈ ℝ* | |
| 22 | infxrgelb 13296 | . . . . 5 ⊢ ((ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)) ⊆ ℝ* ∧ 0 ∈ ℝ*) → (0 ≤ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ) ↔ ∀𝑧 ∈ ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦))0 ≤ 𝑧)) | |
| 23 | 9, 21, 22 | sylancl 586 | . . . 4 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ 𝑋) → (0 ≤ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ) ↔ ∀𝑧 ∈ ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦))0 ≤ 𝑧)) |
| 24 | 20, 23 | mpbird 257 | . . 3 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ 𝑋) → 0 ≤ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )) |
| 25 | elxrge0 13418 | . . 3 ⊢ (inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ) ∈ (0[,]+∞) ↔ (inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ) ∈ ℝ* ∧ 0 ≤ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))) | |
| 26 | 11, 24, 25 | sylanbrc 583 | . 2 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ 𝑋) → inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ) ∈ (0[,]+∞)) |
| 27 | metdscn.f | . 2 ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )) | |
| 28 | 26, 27 | fmptd 7086 | 1 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → 𝐹:𝑋⟶(0[,]+∞)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 Vcvv 3447 ⊆ wss 3914 class class class wbr 5107 ↦ cmpt 5188 ran crn 5639 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 infcinf 9392 0cc0 11068 +∞cpnf 11205 ℝ*cxr 11207 < clt 11208 ≤ cle 11209 [,]cicc 13309 ∞Metcxmet 21249 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-sup 9393 df-inf 9394 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-2 12249 df-rp 12952 df-xneg 13072 df-xadd 13073 df-xmul 13074 df-icc 13313 df-xmet 21257 |
| This theorem is referenced by: metds0 24739 metdstri 24740 metdsre 24742 metdseq0 24743 metdscnlem 24744 metdscn 24745 metnrmlem1a 24747 metnrmlem1 24748 lebnumlem1 24860 |
| Copyright terms: Public domain | W3C validator |