Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > metdsf | Structured version Visualization version GIF version |
Description: The distance from a point to a set is a nonnegative extended real number. (Contributed by Mario Carneiro, 14-Feb-2015.) (Revised by Mario Carneiro, 4-Sep-2015.) (Proof shortened by AV, 30-Sep-2020.) |
Ref | Expression |
---|---|
metdscn.f | ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )) |
Ref | Expression |
---|---|
metdsf | ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → 𝐹:𝑋⟶(0[,]+∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplll 771 | . . . . . . 7 ⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑆) → 𝐷 ∈ (∞Met‘𝑋)) | |
2 | simplr 765 | . . . . . . 7 ⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑆) → 𝑥 ∈ 𝑋) | |
3 | simplr 765 | . . . . . . . 8 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ 𝑋) → 𝑆 ⊆ 𝑋) | |
4 | 3 | sselda 3917 | . . . . . . 7 ⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑆) → 𝑦 ∈ 𝑋) |
5 | xmetcl 23392 | . . . . . . 7 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑥𝐷𝑦) ∈ ℝ*) | |
6 | 1, 2, 4, 5 | syl3anc 1369 | . . . . . 6 ⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑆) → (𝑥𝐷𝑦) ∈ ℝ*) |
7 | eqid 2738 | . . . . . 6 ⊢ (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)) = (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)) | |
8 | 6, 7 | fmptd 6970 | . . . . 5 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ 𝑋) → (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)):𝑆⟶ℝ*) |
9 | 8 | frnd 6592 | . . . 4 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ 𝑋) → ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)) ⊆ ℝ*) |
10 | infxrcl 12996 | . . . 4 ⊢ (ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)) ⊆ ℝ* → inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ) ∈ ℝ*) | |
11 | 9, 10 | syl 17 | . . 3 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ 𝑋) → inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ) ∈ ℝ*) |
12 | xmetge0 23405 | . . . . . . 7 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → 0 ≤ (𝑥𝐷𝑦)) | |
13 | 1, 2, 4, 12 | syl3anc 1369 | . . . . . 6 ⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ 𝑋) ∧ 𝑦 ∈ 𝑆) → 0 ≤ (𝑥𝐷𝑦)) |
14 | 13 | ralrimiva 3107 | . . . . 5 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ 𝑋) → ∀𝑦 ∈ 𝑆 0 ≤ (𝑥𝐷𝑦)) |
15 | ovex 7288 | . . . . . . 7 ⊢ (𝑥𝐷𝑦) ∈ V | |
16 | 15 | rgenw 3075 | . . . . . 6 ⊢ ∀𝑦 ∈ 𝑆 (𝑥𝐷𝑦) ∈ V |
17 | breq2 5074 | . . . . . . 7 ⊢ (𝑧 = (𝑥𝐷𝑦) → (0 ≤ 𝑧 ↔ 0 ≤ (𝑥𝐷𝑦))) | |
18 | 7, 17 | ralrnmptw 6952 | . . . . . 6 ⊢ (∀𝑦 ∈ 𝑆 (𝑥𝐷𝑦) ∈ V → (∀𝑧 ∈ ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦))0 ≤ 𝑧 ↔ ∀𝑦 ∈ 𝑆 0 ≤ (𝑥𝐷𝑦))) |
19 | 16, 18 | ax-mp 5 | . . . . 5 ⊢ (∀𝑧 ∈ ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦))0 ≤ 𝑧 ↔ ∀𝑦 ∈ 𝑆 0 ≤ (𝑥𝐷𝑦)) |
20 | 14, 19 | sylibr 233 | . . . 4 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ 𝑋) → ∀𝑧 ∈ ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦))0 ≤ 𝑧) |
21 | 0xr 10953 | . . . . 5 ⊢ 0 ∈ ℝ* | |
22 | infxrgelb 12998 | . . . . 5 ⊢ ((ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)) ⊆ ℝ* ∧ 0 ∈ ℝ*) → (0 ≤ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ) ↔ ∀𝑧 ∈ ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦))0 ≤ 𝑧)) | |
23 | 9, 21, 22 | sylancl 585 | . . . 4 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ 𝑋) → (0 ≤ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ) ↔ ∀𝑧 ∈ ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦))0 ≤ 𝑧)) |
24 | 20, 23 | mpbird 256 | . . 3 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ 𝑋) → 0 ≤ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )) |
25 | elxrge0 13118 | . . 3 ⊢ (inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ) ∈ (0[,]+∞) ↔ (inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ) ∈ ℝ* ∧ 0 ≤ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ))) | |
26 | 11, 24, 25 | sylanbrc 582 | . 2 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) ∧ 𝑥 ∈ 𝑋) → inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < ) ∈ (0[,]+∞)) |
27 | metdscn.f | . 2 ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ inf(ran (𝑦 ∈ 𝑆 ↦ (𝑥𝐷𝑦)), ℝ*, < )) | |
28 | 26, 27 | fmptd 6970 | 1 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑆 ⊆ 𝑋) → 𝐹:𝑋⟶(0[,]+∞)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 Vcvv 3422 ⊆ wss 3883 class class class wbr 5070 ↦ cmpt 5153 ran crn 5581 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 infcinf 9130 0cc0 10802 +∞cpnf 10937 ℝ*cxr 10939 < clt 10940 ≤ cle 10941 [,]cicc 13011 ∞Metcxmet 20495 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-2 11966 df-rp 12660 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-icc 13015 df-xmet 20503 |
This theorem is referenced by: metds0 23919 metdstri 23920 metdsre 23922 metdseq0 23923 metdscnlem 23924 metdscn 23925 metnrmlem1a 23927 metnrmlem1 23928 lebnumlem1 24030 |
Copyright terms: Public domain | W3C validator |