Step | Hyp | Ref
| Expression |
1 | | minplyval.1 |
. . 3
β’ π = (πΈ minPoly πΉ) |
2 | | ply1annig1p.e |
. . . . 5
β’ (π β πΈ β Field) |
3 | 2 | elexd 3494 |
. . . 4
β’ (π β πΈ β V) |
4 | | ply1annig1p.f |
. . . . 5
β’ (π β πΉ β (SubDRingβπΈ)) |
5 | 4 | elexd 3494 |
. . . 4
β’ (π β πΉ β V) |
6 | | ply1annig1p.b |
. . . . . . 7
β’ π΅ = (BaseβπΈ) |
7 | 6 | fvexi 6905 |
. . . . . 6
β’ π΅ β V |
8 | 7 | a1i 11 |
. . . . 5
β’ (π β π΅ β V) |
9 | 8 | mptexd 7225 |
. . . 4
β’ (π β (π₯ β π΅ β¦ (πΊβ{π β dom π β£ ((πβπ)βπ₯) = 0 })) β
V) |
10 | | fveq2 6891 |
. . . . . . . 8
β’ (π = πΈ β (Baseβπ) = (BaseβπΈ)) |
11 | 10, 6 | eqtr4di 2790 |
. . . . . . 7
β’ (π = πΈ β (Baseβπ) = π΅) |
12 | 11 | adantr 481 |
. . . . . 6
β’ ((π = πΈ β§ π = πΉ) β (Baseβπ) = π΅) |
13 | | oveq12 7417 |
. . . . . . . . 9
β’ ((π = πΈ β§ π = πΉ) β (π βΎs π) = (πΈ βΎs πΉ)) |
14 | 13 | fveq2d 6895 |
. . . . . . . 8
β’ ((π = πΈ β§ π = πΉ) β (idlGen1pβ(π βΎs π)) =
(idlGen1pβ(πΈ βΎs πΉ))) |
15 | | ply1annig1p.g |
. . . . . . . 8
β’ πΊ =
(idlGen1pβ(πΈ βΎs πΉ)) |
16 | 14, 15 | eqtr4di 2790 |
. . . . . . 7
β’ ((π = πΈ β§ π = πΉ) β (idlGen1pβ(π βΎs π)) = πΊ) |
17 | | oveq12 7417 |
. . . . . . . . . 10
β’ ((π = πΈ β§ π = πΉ) β (π evalSub1 π) = (πΈ evalSub1 πΉ)) |
18 | | ply1annig1p.o |
. . . . . . . . . 10
β’ π = (πΈ evalSub1 πΉ) |
19 | 17, 18 | eqtr4di 2790 |
. . . . . . . . 9
β’ ((π = πΈ β§ π = πΉ) β (π evalSub1 π) = π) |
20 | 19 | dmeqd 5905 |
. . . . . . . 8
β’ ((π = πΈ β§ π = πΉ) β dom (π evalSub1 π) = dom π) |
21 | 19 | fveq1d 6893 |
. . . . . . . . . 10
β’ ((π = πΈ β§ π = πΉ) β ((π evalSub1 π)βπ) = (πβπ)) |
22 | 21 | fveq1d 6893 |
. . . . . . . . 9
β’ ((π = πΈ β§ π = πΉ) β (((π evalSub1 π)βπ)βπ₯) = ((πβπ)βπ₯)) |
23 | | fveq2 6891 |
. . . . . . . . . . 11
β’ (π = πΈ β (0gβπ) = (0gβπΈ)) |
24 | 23 | adantr 481 |
. . . . . . . . . 10
β’ ((π = πΈ β§ π = πΉ) β (0gβπ) = (0gβπΈ)) |
25 | | ply1annig1p.0 |
. . . . . . . . . 10
β’ 0 =
(0gβπΈ) |
26 | 24, 25 | eqtr4di 2790 |
. . . . . . . . 9
β’ ((π = πΈ β§ π = πΉ) β (0gβπ) = 0 ) |
27 | 22, 26 | eqeq12d 2748 |
. . . . . . . 8
β’ ((π = πΈ β§ π = πΉ) β ((((π evalSub1 π)βπ)βπ₯) = (0gβπ) β ((πβπ)βπ₯) = 0 )) |
28 | 20, 27 | rabeqbidv 3449 |
. . . . . . 7
β’ ((π = πΈ β§ π = πΉ) β {π β dom (π evalSub1 π) β£ (((π evalSub1 π)βπ)βπ₯) = (0gβπ)} = {π β dom π β£ ((πβπ)βπ₯) = 0 }) |
29 | 16, 28 | fveq12d 6898 |
. . . . . 6
β’ ((π = πΈ β§ π = πΉ) β ((idlGen1pβ(π βΎs π))β{π β dom (π evalSub1 π) β£ (((π evalSub1 π)βπ)βπ₯) = (0gβπ)}) = (πΊβ{π β dom π β£ ((πβπ)βπ₯) = 0 })) |
30 | 12, 29 | mpteq12dv 5239 |
. . . . 5
β’ ((π = πΈ β§ π = πΉ) β (π₯ β (Baseβπ) β¦ ((idlGen1pβ(π βΎs π))β{π β dom (π evalSub1 π) β£ (((π evalSub1 π)βπ)βπ₯) = (0gβπ)})) = (π₯ β π΅ β¦ (πΊβ{π β dom π β£ ((πβπ)βπ₯) = 0 }))) |
31 | | df-minply 32752 |
. . . . 5
β’ minPoly
= (π β V, π β V β¦ (π₯ β (Baseβπ) β¦
((idlGen1pβ(π βΎs π))β{π β dom (π evalSub1 π) β£ (((π evalSub1 π)βπ)βπ₯) = (0gβπ)}))) |
32 | 30, 31 | ovmpoga 7561 |
. . . 4
β’ ((πΈ β V β§ πΉ β V β§ (π₯ β π΅ β¦ (πΊβ{π β dom π β£ ((πβπ)βπ₯) = 0 })) β V) β
(πΈ minPoly πΉ) = (π₯ β π΅ β¦ (πΊβ{π β dom π β£ ((πβπ)βπ₯) = 0 }))) |
33 | 3, 5, 9, 32 | syl3anc 1371 |
. . 3
β’ (π β (πΈ minPoly πΉ) = (π₯ β π΅ β¦ (πΊβ{π β dom π β£ ((πβπ)βπ₯) = 0 }))) |
34 | 1, 33 | eqtrid 2784 |
. 2
β’ (π β π = (π₯ β π΅ β¦ (πΊβ{π β dom π β£ ((πβπ)βπ₯) = 0 }))) |
35 | | fveqeq2 6900 |
. . . . . 6
β’ (π₯ = π΄ β (((πβπ)βπ₯) = 0 β ((πβπ)βπ΄) = 0 )) |
36 | 35 | rabbidv 3440 |
. . . . 5
β’ (π₯ = π΄ β {π β dom π β£ ((πβπ)βπ₯) = 0 } = {π β dom π β£ ((πβπ)βπ΄) = 0 }) |
37 | | ply1annig1p.q |
. . . . 5
β’ π = {π β dom π β£ ((πβπ)βπ΄) = 0 } |
38 | 36, 37 | eqtr4di 2790 |
. . . 4
β’ (π₯ = π΄ β {π β dom π β£ ((πβπ)βπ₯) = 0 } = π) |
39 | 38 | fveq2d 6895 |
. . 3
β’ (π₯ = π΄ β (πΊβ{π β dom π β£ ((πβπ)βπ₯) = 0 }) = (πΊβπ)) |
40 | 39 | adantl 482 |
. 2
β’ ((π β§ π₯ = π΄) β (πΊβ{π β dom π β£ ((πβπ)βπ₯) = 0 }) = (πΊβπ)) |
41 | | ply1annig1p.a |
. 2
β’ (π β π΄ β π΅) |
42 | | fvexd 6906 |
. 2
β’ (π β (πΊβπ) β V) |
43 | 34, 40, 41, 42 | fvmptd 7005 |
1
β’ (π β (πβπ΄) = (πΊβπ)) |