Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  minplyval Structured version   Visualization version   GIF version

Theorem minplyval 33790
Description: Expand the value of the minimal polynomial (𝑀𝐴) for a given element 𝐴. It is defined as the unique monic polynomial of minimal degree which annihilates 𝐴. By ply1annig1p 33789, that polynomial generates the ideal of the annihilators of 𝐴. (Contributed by Thierry Arnoux, 9-Feb-2025.)
Hypotheses
Ref Expression
ply1annig1p.o 𝑂 = (𝐸 evalSub1 𝐹)
ply1annig1p.p 𝑃 = (Poly1‘(𝐸s 𝐹))
ply1annig1p.b 𝐵 = (Base‘𝐸)
ply1annig1p.e (𝜑𝐸 ∈ Field)
ply1annig1p.f (𝜑𝐹 ∈ (SubDRing‘𝐸))
ply1annig1p.a (𝜑𝐴𝐵)
ply1annig1p.0 0 = (0g𝐸)
ply1annig1p.q 𝑄 = {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = 0 }
ply1annig1p.k 𝐾 = (RSpan‘𝑃)
ply1annig1p.g 𝐺 = (idlGen1p‘(𝐸s 𝐹))
minplyval.1 𝑀 = (𝐸 minPoly 𝐹)
Assertion
Ref Expression
minplyval (𝜑 → (𝑀𝐴) = (𝐺𝑄))
Distinct variable groups:   0 ,𝑞   𝐴,𝑞   𝑂,𝑞   𝑃,𝑞   𝜑,𝑞   𝐸,𝑞   𝐹,𝑞
Allowed substitution hints:   𝐵(𝑞)   𝑄(𝑞)   𝐺(𝑞)   𝐾(𝑞)   𝑀(𝑞)

Proof of Theorem minplyval
Dummy variables 𝑒 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 minplyval.1 . . 3 𝑀 = (𝐸 minPoly 𝐹)
2 ply1annig1p.e . . . . 5 (𝜑𝐸 ∈ Field)
32elexd 3461 . . . 4 (𝜑𝐸 ∈ V)
4 ply1annig1p.f . . . . 5 (𝜑𝐹 ∈ (SubDRing‘𝐸))
54elexd 3461 . . . 4 (𝜑𝐹 ∈ V)
6 ply1annig1p.b . . . . . . 7 𝐵 = (Base‘𝐸)
76fvexi 6845 . . . . . 6 𝐵 ∈ V
87a1i 11 . . . . 5 (𝜑𝐵 ∈ V)
98mptexd 7167 . . . 4 (𝜑 → (𝑥𝐵 ↦ (𝐺‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝑥) = 0 })) ∈ V)
10 fveq2 6831 . . . . . . . 8 (𝑒 = 𝐸 → (Base‘𝑒) = (Base‘𝐸))
1110, 6eqtr4di 2786 . . . . . . 7 (𝑒 = 𝐸 → (Base‘𝑒) = 𝐵)
1211adantr 480 . . . . . 6 ((𝑒 = 𝐸𝑓 = 𝐹) → (Base‘𝑒) = 𝐵)
13 oveq12 7364 . . . . . . . . 9 ((𝑒 = 𝐸𝑓 = 𝐹) → (𝑒s 𝑓) = (𝐸s 𝐹))
1413fveq2d 6835 . . . . . . . 8 ((𝑒 = 𝐸𝑓 = 𝐹) → (idlGen1p‘(𝑒s 𝑓)) = (idlGen1p‘(𝐸s 𝐹)))
15 ply1annig1p.g . . . . . . . 8 𝐺 = (idlGen1p‘(𝐸s 𝐹))
1614, 15eqtr4di 2786 . . . . . . 7 ((𝑒 = 𝐸𝑓 = 𝐹) → (idlGen1p‘(𝑒s 𝑓)) = 𝐺)
17 oveq12 7364 . . . . . . . . . 10 ((𝑒 = 𝐸𝑓 = 𝐹) → (𝑒 evalSub1 𝑓) = (𝐸 evalSub1 𝐹))
18 ply1annig1p.o . . . . . . . . . 10 𝑂 = (𝐸 evalSub1 𝐹)
1917, 18eqtr4di 2786 . . . . . . . . 9 ((𝑒 = 𝐸𝑓 = 𝐹) → (𝑒 evalSub1 𝑓) = 𝑂)
2019dmeqd 5851 . . . . . . . 8 ((𝑒 = 𝐸𝑓 = 𝐹) → dom (𝑒 evalSub1 𝑓) = dom 𝑂)
2119fveq1d 6833 . . . . . . . . . 10 ((𝑒 = 𝐸𝑓 = 𝐹) → ((𝑒 evalSub1 𝑓)‘𝑞) = (𝑂𝑞))
2221fveq1d 6833 . . . . . . . . 9 ((𝑒 = 𝐸𝑓 = 𝐹) → (((𝑒 evalSub1 𝑓)‘𝑞)‘𝑥) = ((𝑂𝑞)‘𝑥))
23 fveq2 6831 . . . . . . . . . . 11 (𝑒 = 𝐸 → (0g𝑒) = (0g𝐸))
2423adantr 480 . . . . . . . . . 10 ((𝑒 = 𝐸𝑓 = 𝐹) → (0g𝑒) = (0g𝐸))
25 ply1annig1p.0 . . . . . . . . . 10 0 = (0g𝐸)
2624, 25eqtr4di 2786 . . . . . . . . 9 ((𝑒 = 𝐸𝑓 = 𝐹) → (0g𝑒) = 0 )
2722, 26eqeq12d 2749 . . . . . . . 8 ((𝑒 = 𝐸𝑓 = 𝐹) → ((((𝑒 evalSub1 𝑓)‘𝑞)‘𝑥) = (0g𝑒) ↔ ((𝑂𝑞)‘𝑥) = 0 ))
2820, 27rabeqbidv 3414 . . . . . . 7 ((𝑒 = 𝐸𝑓 = 𝐹) → {𝑞 ∈ dom (𝑒 evalSub1 𝑓) ∣ (((𝑒 evalSub1 𝑓)‘𝑞)‘𝑥) = (0g𝑒)} = {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝑥) = 0 })
2916, 28fveq12d 6838 . . . . . 6 ((𝑒 = 𝐸𝑓 = 𝐹) → ((idlGen1p‘(𝑒s 𝑓))‘{𝑞 ∈ dom (𝑒 evalSub1 𝑓) ∣ (((𝑒 evalSub1 𝑓)‘𝑞)‘𝑥) = (0g𝑒)}) = (𝐺‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝑥) = 0 }))
3012, 29mpteq12dv 5182 . . . . 5 ((𝑒 = 𝐸𝑓 = 𝐹) → (𝑥 ∈ (Base‘𝑒) ↦ ((idlGen1p‘(𝑒s 𝑓))‘{𝑞 ∈ dom (𝑒 evalSub1 𝑓) ∣ (((𝑒 evalSub1 𝑓)‘𝑞)‘𝑥) = (0g𝑒)})) = (𝑥𝐵 ↦ (𝐺‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝑥) = 0 })))
31 df-minply 33785 . . . . 5 minPoly = (𝑒 ∈ V, 𝑓 ∈ V ↦ (𝑥 ∈ (Base‘𝑒) ↦ ((idlGen1p‘(𝑒s 𝑓))‘{𝑞 ∈ dom (𝑒 evalSub1 𝑓) ∣ (((𝑒 evalSub1 𝑓)‘𝑞)‘𝑥) = (0g𝑒)})))
3230, 31ovmpoga 7509 . . . 4 ((𝐸 ∈ V ∧ 𝐹 ∈ V ∧ (𝑥𝐵 ↦ (𝐺‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝑥) = 0 })) ∈ V) → (𝐸 minPoly 𝐹) = (𝑥𝐵 ↦ (𝐺‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝑥) = 0 })))
333, 5, 9, 32syl3anc 1373 . . 3 (𝜑 → (𝐸 minPoly 𝐹) = (𝑥𝐵 ↦ (𝐺‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝑥) = 0 })))
341, 33eqtrid 2780 . 2 (𝜑𝑀 = (𝑥𝐵 ↦ (𝐺‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝑥) = 0 })))
35 fveqeq2 6840 . . . . . 6 (𝑥 = 𝐴 → (((𝑂𝑞)‘𝑥) = 0 ↔ ((𝑂𝑞)‘𝐴) = 0 ))
3635rabbidv 3403 . . . . 5 (𝑥 = 𝐴 → {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝑥) = 0 } = {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = 0 })
37 ply1annig1p.q . . . . 5 𝑄 = {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = 0 }
3836, 37eqtr4di 2786 . . . 4 (𝑥 = 𝐴 → {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝑥) = 0 } = 𝑄)
3938fveq2d 6835 . . 3 (𝑥 = 𝐴 → (𝐺‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝑥) = 0 }) = (𝐺𝑄))
4039adantl 481 . 2 ((𝜑𝑥 = 𝐴) → (𝐺‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝑥) = 0 }) = (𝐺𝑄))
41 ply1annig1p.a . 2 (𝜑𝐴𝐵)
42 fvexd 6846 . 2 (𝜑 → (𝐺𝑄) ∈ V)
4334, 40, 41, 42fvmptd 6945 1 (𝜑 → (𝑀𝐴) = (𝐺𝑄))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  {crab 3396  Vcvv 3437  cmpt 5176  dom cdm 5621  cfv 6489  (class class class)co 7355  Basecbs 17127  s cress 17148  0gc0g 17350  Fieldcfield 20654  SubDRingcsdrg 20710  RSpancrsp 21153  Poly1cpl1 22108   evalSub1 ces1 22248  idlGen1pcig1p 26082   minPoly cminply 33784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-minply 33785
This theorem is referenced by:  minplycl  33791  minplymindeg  33793  minplyann  33794  minplyirredlem  33795  minplyirred  33796  irngnminplynz  33797  minplym1p  33798  minplynzm1p  33799  irredminply  33801  algextdeglem4  33805  algextdeglem5  33806
  Copyright terms: Public domain W3C validator