Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  minplyval Structured version   Visualization version   GIF version

Theorem minplyval 33674
Description: Expand the value of the minimal polynomial (𝑀𝐴) for a given element 𝐴. It is defined as the unique monic polynomial of minimal degree which annihilates 𝐴. By ply1annig1p 33673, that polynomial generates the ideal of the annihilators of 𝐴. (Contributed by Thierry Arnoux, 9-Feb-2025.)
Hypotheses
Ref Expression
ply1annig1p.o 𝑂 = (𝐸 evalSub1 𝐹)
ply1annig1p.p 𝑃 = (Poly1‘(𝐸s 𝐹))
ply1annig1p.b 𝐵 = (Base‘𝐸)
ply1annig1p.e (𝜑𝐸 ∈ Field)
ply1annig1p.f (𝜑𝐹 ∈ (SubDRing‘𝐸))
ply1annig1p.a (𝜑𝐴𝐵)
ply1annig1p.0 0 = (0g𝐸)
ply1annig1p.q 𝑄 = {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = 0 }
ply1annig1p.k 𝐾 = (RSpan‘𝑃)
ply1annig1p.g 𝐺 = (idlGen1p‘(𝐸s 𝐹))
minplyval.1 𝑀 = (𝐸 minPoly 𝐹)
Assertion
Ref Expression
minplyval (𝜑 → (𝑀𝐴) = (𝐺𝑄))
Distinct variable groups:   0 ,𝑞   𝐴,𝑞   𝑂,𝑞   𝑃,𝑞   𝜑,𝑞   𝐸,𝑞   𝐹,𝑞
Allowed substitution hints:   𝐵(𝑞)   𝑄(𝑞)   𝐺(𝑞)   𝐾(𝑞)   𝑀(𝑞)

Proof of Theorem minplyval
Dummy variables 𝑒 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 minplyval.1 . . 3 𝑀 = (𝐸 minPoly 𝐹)
2 ply1annig1p.e . . . . 5 (𝜑𝐸 ∈ Field)
32elexd 3462 . . . 4 (𝜑𝐸 ∈ V)
4 ply1annig1p.f . . . . 5 (𝜑𝐹 ∈ (SubDRing‘𝐸))
54elexd 3462 . . . 4 (𝜑𝐹 ∈ V)
6 ply1annig1p.b . . . . . . 7 𝐵 = (Base‘𝐸)
76fvexi 6840 . . . . . 6 𝐵 ∈ V
87a1i 11 . . . . 5 (𝜑𝐵 ∈ V)
98mptexd 7164 . . . 4 (𝜑 → (𝑥𝐵 ↦ (𝐺‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝑥) = 0 })) ∈ V)
10 fveq2 6826 . . . . . . . 8 (𝑒 = 𝐸 → (Base‘𝑒) = (Base‘𝐸))
1110, 6eqtr4di 2782 . . . . . . 7 (𝑒 = 𝐸 → (Base‘𝑒) = 𝐵)
1211adantr 480 . . . . . 6 ((𝑒 = 𝐸𝑓 = 𝐹) → (Base‘𝑒) = 𝐵)
13 oveq12 7362 . . . . . . . . 9 ((𝑒 = 𝐸𝑓 = 𝐹) → (𝑒s 𝑓) = (𝐸s 𝐹))
1413fveq2d 6830 . . . . . . . 8 ((𝑒 = 𝐸𝑓 = 𝐹) → (idlGen1p‘(𝑒s 𝑓)) = (idlGen1p‘(𝐸s 𝐹)))
15 ply1annig1p.g . . . . . . . 8 𝐺 = (idlGen1p‘(𝐸s 𝐹))
1614, 15eqtr4di 2782 . . . . . . 7 ((𝑒 = 𝐸𝑓 = 𝐹) → (idlGen1p‘(𝑒s 𝑓)) = 𝐺)
17 oveq12 7362 . . . . . . . . . 10 ((𝑒 = 𝐸𝑓 = 𝐹) → (𝑒 evalSub1 𝑓) = (𝐸 evalSub1 𝐹))
18 ply1annig1p.o . . . . . . . . . 10 𝑂 = (𝐸 evalSub1 𝐹)
1917, 18eqtr4di 2782 . . . . . . . . 9 ((𝑒 = 𝐸𝑓 = 𝐹) → (𝑒 evalSub1 𝑓) = 𝑂)
2019dmeqd 5852 . . . . . . . 8 ((𝑒 = 𝐸𝑓 = 𝐹) → dom (𝑒 evalSub1 𝑓) = dom 𝑂)
2119fveq1d 6828 . . . . . . . . . 10 ((𝑒 = 𝐸𝑓 = 𝐹) → ((𝑒 evalSub1 𝑓)‘𝑞) = (𝑂𝑞))
2221fveq1d 6828 . . . . . . . . 9 ((𝑒 = 𝐸𝑓 = 𝐹) → (((𝑒 evalSub1 𝑓)‘𝑞)‘𝑥) = ((𝑂𝑞)‘𝑥))
23 fveq2 6826 . . . . . . . . . . 11 (𝑒 = 𝐸 → (0g𝑒) = (0g𝐸))
2423adantr 480 . . . . . . . . . 10 ((𝑒 = 𝐸𝑓 = 𝐹) → (0g𝑒) = (0g𝐸))
25 ply1annig1p.0 . . . . . . . . . 10 0 = (0g𝐸)
2624, 25eqtr4di 2782 . . . . . . . . 9 ((𝑒 = 𝐸𝑓 = 𝐹) → (0g𝑒) = 0 )
2722, 26eqeq12d 2745 . . . . . . . 8 ((𝑒 = 𝐸𝑓 = 𝐹) → ((((𝑒 evalSub1 𝑓)‘𝑞)‘𝑥) = (0g𝑒) ↔ ((𝑂𝑞)‘𝑥) = 0 ))
2820, 27rabeqbidv 3415 . . . . . . 7 ((𝑒 = 𝐸𝑓 = 𝐹) → {𝑞 ∈ dom (𝑒 evalSub1 𝑓) ∣ (((𝑒 evalSub1 𝑓)‘𝑞)‘𝑥) = (0g𝑒)} = {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝑥) = 0 })
2916, 28fveq12d 6833 . . . . . 6 ((𝑒 = 𝐸𝑓 = 𝐹) → ((idlGen1p‘(𝑒s 𝑓))‘{𝑞 ∈ dom (𝑒 evalSub1 𝑓) ∣ (((𝑒 evalSub1 𝑓)‘𝑞)‘𝑥) = (0g𝑒)}) = (𝐺‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝑥) = 0 }))
3012, 29mpteq12dv 5182 . . . . 5 ((𝑒 = 𝐸𝑓 = 𝐹) → (𝑥 ∈ (Base‘𝑒) ↦ ((idlGen1p‘(𝑒s 𝑓))‘{𝑞 ∈ dom (𝑒 evalSub1 𝑓) ∣ (((𝑒 evalSub1 𝑓)‘𝑞)‘𝑥) = (0g𝑒)})) = (𝑥𝐵 ↦ (𝐺‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝑥) = 0 })))
31 df-minply 33669 . . . . 5 minPoly = (𝑒 ∈ V, 𝑓 ∈ V ↦ (𝑥 ∈ (Base‘𝑒) ↦ ((idlGen1p‘(𝑒s 𝑓))‘{𝑞 ∈ dom (𝑒 evalSub1 𝑓) ∣ (((𝑒 evalSub1 𝑓)‘𝑞)‘𝑥) = (0g𝑒)})))
3230, 31ovmpoga 7507 . . . 4 ((𝐸 ∈ V ∧ 𝐹 ∈ V ∧ (𝑥𝐵 ↦ (𝐺‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝑥) = 0 })) ∈ V) → (𝐸 minPoly 𝐹) = (𝑥𝐵 ↦ (𝐺‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝑥) = 0 })))
333, 5, 9, 32syl3anc 1373 . . 3 (𝜑 → (𝐸 minPoly 𝐹) = (𝑥𝐵 ↦ (𝐺‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝑥) = 0 })))
341, 33eqtrid 2776 . 2 (𝜑𝑀 = (𝑥𝐵 ↦ (𝐺‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝑥) = 0 })))
35 fveqeq2 6835 . . . . . 6 (𝑥 = 𝐴 → (((𝑂𝑞)‘𝑥) = 0 ↔ ((𝑂𝑞)‘𝐴) = 0 ))
3635rabbidv 3404 . . . . 5 (𝑥 = 𝐴 → {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝑥) = 0 } = {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = 0 })
37 ply1annig1p.q . . . . 5 𝑄 = {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = 0 }
3836, 37eqtr4di 2782 . . . 4 (𝑥 = 𝐴 → {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝑥) = 0 } = 𝑄)
3938fveq2d 6830 . . 3 (𝑥 = 𝐴 → (𝐺‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝑥) = 0 }) = (𝐺𝑄))
4039adantl 481 . 2 ((𝜑𝑥 = 𝐴) → (𝐺‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝑥) = 0 }) = (𝐺𝑄))
41 ply1annig1p.a . 2 (𝜑𝐴𝐵)
42 fvexd 6841 . 2 (𝜑 → (𝐺𝑄) ∈ V)
4334, 40, 41, 42fvmptd 6941 1 (𝜑 → (𝑀𝐴) = (𝐺𝑄))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3396  Vcvv 3438  cmpt 5176  dom cdm 5623  cfv 6486  (class class class)co 7353  Basecbs 17138  s cress 17159  0gc0g 17361  Fieldcfield 20633  SubDRingcsdrg 20689  RSpancrsp 21132  Poly1cpl1 22077   evalSub1 ces1 22216  idlGen1pcig1p 26051   minPoly cminply 33668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-minply 33669
This theorem is referenced by:  minplycl  33675  minplymindeg  33677  minplyann  33678  minplyirredlem  33679  minplyirred  33680  irngnminplynz  33681  minplym1p  33682  minplynzm1p  33683  irredminply  33685  algextdeglem4  33689  algextdeglem5  33690
  Copyright terms: Public domain W3C validator