Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  minplyval Structured version   Visualization version   GIF version

Theorem minplyval 33579
Description: Expand the value of the minimal polynomial (𝑀𝐴) for a given element 𝐴. It is defined as the unique monic polynomial of minimal degree which annihilates 𝐴. By ply1annig1p 33578, that polynomial generates the ideal of the annihilators of 𝐴. (Contributed by Thierry Arnoux, 9-Feb-2025.)
Hypotheses
Ref Expression
ply1annig1p.o 𝑂 = (𝐸 evalSub1 𝐹)
ply1annig1p.p 𝑃 = (Poly1‘(𝐸s 𝐹))
ply1annig1p.b 𝐵 = (Base‘𝐸)
ply1annig1p.e (𝜑𝐸 ∈ Field)
ply1annig1p.f (𝜑𝐹 ∈ (SubDRing‘𝐸))
ply1annig1p.a (𝜑𝐴𝐵)
ply1annig1p.0 0 = (0g𝐸)
ply1annig1p.q 𝑄 = {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = 0 }
ply1annig1p.k 𝐾 = (RSpan‘𝑃)
ply1annig1p.g 𝐺 = (idlGen1p‘(𝐸s 𝐹))
minplyval.1 𝑀 = (𝐸 minPoly 𝐹)
Assertion
Ref Expression
minplyval (𝜑 → (𝑀𝐴) = (𝐺𝑄))
Distinct variable groups:   0 ,𝑞   𝐴,𝑞   𝑂,𝑞   𝑃,𝑞   𝜑,𝑞   𝐸,𝑞   𝐹,𝑞
Allowed substitution hints:   𝐵(𝑞)   𝑄(𝑞)   𝐺(𝑞)   𝐾(𝑞)   𝑀(𝑞)

Proof of Theorem minplyval
Dummy variables 𝑒 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 minplyval.1 . . 3 𝑀 = (𝐸 minPoly 𝐹)
2 ply1annig1p.e . . . . 5 (𝜑𝐸 ∈ Field)
32elexd 3487 . . . 4 (𝜑𝐸 ∈ V)
4 ply1annig1p.f . . . . 5 (𝜑𝐹 ∈ (SubDRing‘𝐸))
54elexd 3487 . . . 4 (𝜑𝐹 ∈ V)
6 ply1annig1p.b . . . . . . 7 𝐵 = (Base‘𝐸)
76fvexi 6906 . . . . . 6 𝐵 ∈ V
87a1i 11 . . . . 5 (𝜑𝐵 ∈ V)
98mptexd 7232 . . . 4 (𝜑 → (𝑥𝐵 ↦ (𝐺‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝑥) = 0 })) ∈ V)
10 fveq2 6892 . . . . . . . 8 (𝑒 = 𝐸 → (Base‘𝑒) = (Base‘𝐸))
1110, 6eqtr4di 2784 . . . . . . 7 (𝑒 = 𝐸 → (Base‘𝑒) = 𝐵)
1211adantr 479 . . . . . 6 ((𝑒 = 𝐸𝑓 = 𝐹) → (Base‘𝑒) = 𝐵)
13 oveq12 7424 . . . . . . . . 9 ((𝑒 = 𝐸𝑓 = 𝐹) → (𝑒s 𝑓) = (𝐸s 𝐹))
1413fveq2d 6896 . . . . . . . 8 ((𝑒 = 𝐸𝑓 = 𝐹) → (idlGen1p‘(𝑒s 𝑓)) = (idlGen1p‘(𝐸s 𝐹)))
15 ply1annig1p.g . . . . . . . 8 𝐺 = (idlGen1p‘(𝐸s 𝐹))
1614, 15eqtr4di 2784 . . . . . . 7 ((𝑒 = 𝐸𝑓 = 𝐹) → (idlGen1p‘(𝑒s 𝑓)) = 𝐺)
17 oveq12 7424 . . . . . . . . . 10 ((𝑒 = 𝐸𝑓 = 𝐹) → (𝑒 evalSub1 𝑓) = (𝐸 evalSub1 𝐹))
18 ply1annig1p.o . . . . . . . . . 10 𝑂 = (𝐸 evalSub1 𝐹)
1917, 18eqtr4di 2784 . . . . . . . . 9 ((𝑒 = 𝐸𝑓 = 𝐹) → (𝑒 evalSub1 𝑓) = 𝑂)
2019dmeqd 5904 . . . . . . . 8 ((𝑒 = 𝐸𝑓 = 𝐹) → dom (𝑒 evalSub1 𝑓) = dom 𝑂)
2119fveq1d 6894 . . . . . . . . . 10 ((𝑒 = 𝐸𝑓 = 𝐹) → ((𝑒 evalSub1 𝑓)‘𝑞) = (𝑂𝑞))
2221fveq1d 6894 . . . . . . . . 9 ((𝑒 = 𝐸𝑓 = 𝐹) → (((𝑒 evalSub1 𝑓)‘𝑞)‘𝑥) = ((𝑂𝑞)‘𝑥))
23 fveq2 6892 . . . . . . . . . . 11 (𝑒 = 𝐸 → (0g𝑒) = (0g𝐸))
2423adantr 479 . . . . . . . . . 10 ((𝑒 = 𝐸𝑓 = 𝐹) → (0g𝑒) = (0g𝐸))
25 ply1annig1p.0 . . . . . . . . . 10 0 = (0g𝐸)
2624, 25eqtr4di 2784 . . . . . . . . 9 ((𝑒 = 𝐸𝑓 = 𝐹) → (0g𝑒) = 0 )
2722, 26eqeq12d 2742 . . . . . . . 8 ((𝑒 = 𝐸𝑓 = 𝐹) → ((((𝑒 evalSub1 𝑓)‘𝑞)‘𝑥) = (0g𝑒) ↔ ((𝑂𝑞)‘𝑥) = 0 ))
2820, 27rabeqbidv 3438 . . . . . . 7 ((𝑒 = 𝐸𝑓 = 𝐹) → {𝑞 ∈ dom (𝑒 evalSub1 𝑓) ∣ (((𝑒 evalSub1 𝑓)‘𝑞)‘𝑥) = (0g𝑒)} = {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝑥) = 0 })
2916, 28fveq12d 6899 . . . . . 6 ((𝑒 = 𝐸𝑓 = 𝐹) → ((idlGen1p‘(𝑒s 𝑓))‘{𝑞 ∈ dom (𝑒 evalSub1 𝑓) ∣ (((𝑒 evalSub1 𝑓)‘𝑞)‘𝑥) = (0g𝑒)}) = (𝐺‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝑥) = 0 }))
3012, 29mpteq12dv 5236 . . . . 5 ((𝑒 = 𝐸𝑓 = 𝐹) → (𝑥 ∈ (Base‘𝑒) ↦ ((idlGen1p‘(𝑒s 𝑓))‘{𝑞 ∈ dom (𝑒 evalSub1 𝑓) ∣ (((𝑒 evalSub1 𝑓)‘𝑞)‘𝑥) = (0g𝑒)})) = (𝑥𝐵 ↦ (𝐺‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝑥) = 0 })))
31 df-minply 33574 . . . . 5 minPoly = (𝑒 ∈ V, 𝑓 ∈ V ↦ (𝑥 ∈ (Base‘𝑒) ↦ ((idlGen1p‘(𝑒s 𝑓))‘{𝑞 ∈ dom (𝑒 evalSub1 𝑓) ∣ (((𝑒 evalSub1 𝑓)‘𝑞)‘𝑥) = (0g𝑒)})))
3230, 31ovmpoga 7571 . . . 4 ((𝐸 ∈ V ∧ 𝐹 ∈ V ∧ (𝑥𝐵 ↦ (𝐺‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝑥) = 0 })) ∈ V) → (𝐸 minPoly 𝐹) = (𝑥𝐵 ↦ (𝐺‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝑥) = 0 })))
333, 5, 9, 32syl3anc 1368 . . 3 (𝜑 → (𝐸 minPoly 𝐹) = (𝑥𝐵 ↦ (𝐺‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝑥) = 0 })))
341, 33eqtrid 2778 . 2 (𝜑𝑀 = (𝑥𝐵 ↦ (𝐺‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝑥) = 0 })))
35 fveqeq2 6901 . . . . . 6 (𝑥 = 𝐴 → (((𝑂𝑞)‘𝑥) = 0 ↔ ((𝑂𝑞)‘𝐴) = 0 ))
3635rabbidv 3428 . . . . 5 (𝑥 = 𝐴 → {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝑥) = 0 } = {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = 0 })
37 ply1annig1p.q . . . . 5 𝑄 = {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = 0 }
3836, 37eqtr4di 2784 . . . 4 (𝑥 = 𝐴 → {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝑥) = 0 } = 𝑄)
3938fveq2d 6896 . . 3 (𝑥 = 𝐴 → (𝐺‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝑥) = 0 }) = (𝐺𝑄))
4039adantl 480 . 2 ((𝜑𝑥 = 𝐴) → (𝐺‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝑥) = 0 }) = (𝐺𝑄))
41 ply1annig1p.a . 2 (𝜑𝐴𝐵)
42 fvexd 6907 . 2 (𝜑 → (𝐺𝑄) ∈ V)
4334, 40, 41, 42fvmptd 7007 1 (𝜑 → (𝑀𝐴) = (𝐺𝑄))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wcel 2099  {crab 3420  Vcvv 3464  cmpt 5228  dom cdm 5674  cfv 6545  (class class class)co 7415  Basecbs 17207  s cress 17236  0gc0g 17448  Fieldcfield 20703  SubDRingcsdrg 20760  RSpancrsp 21191  Poly1cpl1 22161   evalSub1 ces1 22300  idlGen1pcig1p 26153   minPoly cminply 33573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5282  ax-sep 5296  ax-nul 5303  ax-pr 5425
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3366  df-rab 3421  df-v 3466  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4325  df-if 4526  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4908  df-iun 4997  df-br 5146  df-opab 5208  df-mpt 5229  df-id 5572  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-iota 6497  df-fun 6547  df-fn 6548  df-f 6549  df-f1 6550  df-fo 6551  df-f1o 6552  df-fv 6553  df-ov 7418  df-oprab 7419  df-mpo 7420  df-minply 33574
This theorem is referenced by:  minplycl  33580  minplymindeg  33582  minplyann  33583  minplyirredlem  33584  minplyirred  33585  irngnminplynz  33586  minplym1p  33587  irredminply  33588  algextdeglem4  33592  algextdeglem5  33593
  Copyright terms: Public domain W3C validator