Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  minplyval Structured version   Visualization version   GIF version

Theorem minplyval 33744
Description: Expand the value of the minimal polynomial (𝑀𝐴) for a given element 𝐴. It is defined as the unique monic polynomial of minimal degree which annihilates 𝐴. By ply1annig1p 33743, that polynomial generates the ideal of the annihilators of 𝐴. (Contributed by Thierry Arnoux, 9-Feb-2025.)
Hypotheses
Ref Expression
ply1annig1p.o 𝑂 = (𝐸 evalSub1 𝐹)
ply1annig1p.p 𝑃 = (Poly1‘(𝐸s 𝐹))
ply1annig1p.b 𝐵 = (Base‘𝐸)
ply1annig1p.e (𝜑𝐸 ∈ Field)
ply1annig1p.f (𝜑𝐹 ∈ (SubDRing‘𝐸))
ply1annig1p.a (𝜑𝐴𝐵)
ply1annig1p.0 0 = (0g𝐸)
ply1annig1p.q 𝑄 = {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = 0 }
ply1annig1p.k 𝐾 = (RSpan‘𝑃)
ply1annig1p.g 𝐺 = (idlGen1p‘(𝐸s 𝐹))
minplyval.1 𝑀 = (𝐸 minPoly 𝐹)
Assertion
Ref Expression
minplyval (𝜑 → (𝑀𝐴) = (𝐺𝑄))
Distinct variable groups:   0 ,𝑞   𝐴,𝑞   𝑂,𝑞   𝑃,𝑞   𝜑,𝑞   𝐸,𝑞   𝐹,𝑞
Allowed substitution hints:   𝐵(𝑞)   𝑄(𝑞)   𝐺(𝑞)   𝐾(𝑞)   𝑀(𝑞)

Proof of Theorem minplyval
Dummy variables 𝑒 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 minplyval.1 . . 3 𝑀 = (𝐸 minPoly 𝐹)
2 ply1annig1p.e . . . . 5 (𝜑𝐸 ∈ Field)
32elexd 3488 . . . 4 (𝜑𝐸 ∈ V)
4 ply1annig1p.f . . . . 5 (𝜑𝐹 ∈ (SubDRing‘𝐸))
54elexd 3488 . . . 4 (𝜑𝐹 ∈ V)
6 ply1annig1p.b . . . . . . 7 𝐵 = (Base‘𝐸)
76fvexi 6895 . . . . . 6 𝐵 ∈ V
87a1i 11 . . . . 5 (𝜑𝐵 ∈ V)
98mptexd 7221 . . . 4 (𝜑 → (𝑥𝐵 ↦ (𝐺‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝑥) = 0 })) ∈ V)
10 fveq2 6881 . . . . . . . 8 (𝑒 = 𝐸 → (Base‘𝑒) = (Base‘𝐸))
1110, 6eqtr4di 2789 . . . . . . 7 (𝑒 = 𝐸 → (Base‘𝑒) = 𝐵)
1211adantr 480 . . . . . 6 ((𝑒 = 𝐸𝑓 = 𝐹) → (Base‘𝑒) = 𝐵)
13 oveq12 7419 . . . . . . . . 9 ((𝑒 = 𝐸𝑓 = 𝐹) → (𝑒s 𝑓) = (𝐸s 𝐹))
1413fveq2d 6885 . . . . . . . 8 ((𝑒 = 𝐸𝑓 = 𝐹) → (idlGen1p‘(𝑒s 𝑓)) = (idlGen1p‘(𝐸s 𝐹)))
15 ply1annig1p.g . . . . . . . 8 𝐺 = (idlGen1p‘(𝐸s 𝐹))
1614, 15eqtr4di 2789 . . . . . . 7 ((𝑒 = 𝐸𝑓 = 𝐹) → (idlGen1p‘(𝑒s 𝑓)) = 𝐺)
17 oveq12 7419 . . . . . . . . . 10 ((𝑒 = 𝐸𝑓 = 𝐹) → (𝑒 evalSub1 𝑓) = (𝐸 evalSub1 𝐹))
18 ply1annig1p.o . . . . . . . . . 10 𝑂 = (𝐸 evalSub1 𝐹)
1917, 18eqtr4di 2789 . . . . . . . . 9 ((𝑒 = 𝐸𝑓 = 𝐹) → (𝑒 evalSub1 𝑓) = 𝑂)
2019dmeqd 5890 . . . . . . . 8 ((𝑒 = 𝐸𝑓 = 𝐹) → dom (𝑒 evalSub1 𝑓) = dom 𝑂)
2119fveq1d 6883 . . . . . . . . . 10 ((𝑒 = 𝐸𝑓 = 𝐹) → ((𝑒 evalSub1 𝑓)‘𝑞) = (𝑂𝑞))
2221fveq1d 6883 . . . . . . . . 9 ((𝑒 = 𝐸𝑓 = 𝐹) → (((𝑒 evalSub1 𝑓)‘𝑞)‘𝑥) = ((𝑂𝑞)‘𝑥))
23 fveq2 6881 . . . . . . . . . . 11 (𝑒 = 𝐸 → (0g𝑒) = (0g𝐸))
2423adantr 480 . . . . . . . . . 10 ((𝑒 = 𝐸𝑓 = 𝐹) → (0g𝑒) = (0g𝐸))
25 ply1annig1p.0 . . . . . . . . . 10 0 = (0g𝐸)
2624, 25eqtr4di 2789 . . . . . . . . 9 ((𝑒 = 𝐸𝑓 = 𝐹) → (0g𝑒) = 0 )
2722, 26eqeq12d 2752 . . . . . . . 8 ((𝑒 = 𝐸𝑓 = 𝐹) → ((((𝑒 evalSub1 𝑓)‘𝑞)‘𝑥) = (0g𝑒) ↔ ((𝑂𝑞)‘𝑥) = 0 ))
2820, 27rabeqbidv 3439 . . . . . . 7 ((𝑒 = 𝐸𝑓 = 𝐹) → {𝑞 ∈ dom (𝑒 evalSub1 𝑓) ∣ (((𝑒 evalSub1 𝑓)‘𝑞)‘𝑥) = (0g𝑒)} = {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝑥) = 0 })
2916, 28fveq12d 6888 . . . . . 6 ((𝑒 = 𝐸𝑓 = 𝐹) → ((idlGen1p‘(𝑒s 𝑓))‘{𝑞 ∈ dom (𝑒 evalSub1 𝑓) ∣ (((𝑒 evalSub1 𝑓)‘𝑞)‘𝑥) = (0g𝑒)}) = (𝐺‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝑥) = 0 }))
3012, 29mpteq12dv 5212 . . . . 5 ((𝑒 = 𝐸𝑓 = 𝐹) → (𝑥 ∈ (Base‘𝑒) ↦ ((idlGen1p‘(𝑒s 𝑓))‘{𝑞 ∈ dom (𝑒 evalSub1 𝑓) ∣ (((𝑒 evalSub1 𝑓)‘𝑞)‘𝑥) = (0g𝑒)})) = (𝑥𝐵 ↦ (𝐺‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝑥) = 0 })))
31 df-minply 33739 . . . . 5 minPoly = (𝑒 ∈ V, 𝑓 ∈ V ↦ (𝑥 ∈ (Base‘𝑒) ↦ ((idlGen1p‘(𝑒s 𝑓))‘{𝑞 ∈ dom (𝑒 evalSub1 𝑓) ∣ (((𝑒 evalSub1 𝑓)‘𝑞)‘𝑥) = (0g𝑒)})))
3230, 31ovmpoga 7566 . . . 4 ((𝐸 ∈ V ∧ 𝐹 ∈ V ∧ (𝑥𝐵 ↦ (𝐺‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝑥) = 0 })) ∈ V) → (𝐸 minPoly 𝐹) = (𝑥𝐵 ↦ (𝐺‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝑥) = 0 })))
333, 5, 9, 32syl3anc 1373 . . 3 (𝜑 → (𝐸 minPoly 𝐹) = (𝑥𝐵 ↦ (𝐺‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝑥) = 0 })))
341, 33eqtrid 2783 . 2 (𝜑𝑀 = (𝑥𝐵 ↦ (𝐺‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝑥) = 0 })))
35 fveqeq2 6890 . . . . . 6 (𝑥 = 𝐴 → (((𝑂𝑞)‘𝑥) = 0 ↔ ((𝑂𝑞)‘𝐴) = 0 ))
3635rabbidv 3428 . . . . 5 (𝑥 = 𝐴 → {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝑥) = 0 } = {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = 0 })
37 ply1annig1p.q . . . . 5 𝑄 = {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = 0 }
3836, 37eqtr4di 2789 . . . 4 (𝑥 = 𝐴 → {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝑥) = 0 } = 𝑄)
3938fveq2d 6885 . . 3 (𝑥 = 𝐴 → (𝐺‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝑥) = 0 }) = (𝐺𝑄))
4039adantl 481 . 2 ((𝜑𝑥 = 𝐴) → (𝐺‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝑥) = 0 }) = (𝐺𝑄))
41 ply1annig1p.a . 2 (𝜑𝐴𝐵)
42 fvexd 6896 . 2 (𝜑 → (𝐺𝑄) ∈ V)
4334, 40, 41, 42fvmptd 6998 1 (𝜑 → (𝑀𝐴) = (𝐺𝑄))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3420  Vcvv 3464  cmpt 5206  dom cdm 5659  cfv 6536  (class class class)co 7410  Basecbs 17233  s cress 17256  0gc0g 17458  Fieldcfield 20695  SubDRingcsdrg 20751  RSpancrsp 21173  Poly1cpl1 22117   evalSub1 ces1 22256  idlGen1pcig1p 26092   minPoly cminply 33738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-minply 33739
This theorem is referenced by:  minplycl  33745  minplymindeg  33747  minplyann  33748  minplyirredlem  33749  minplyirred  33750  irngnminplynz  33751  minplym1p  33752  minplynzm1p  33753  irredminply  33755  algextdeglem4  33759  algextdeglem5  33760
  Copyright terms: Public domain W3C validator