Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  minplyval Structured version   Visualization version   GIF version

Theorem minplyval 33695
Description: Expand the value of the minimal polynomial (𝑀𝐴) for a given element 𝐴. It is defined as the unique monic polynomial of minimal degree which annihilates 𝐴. By ply1annig1p 33694, that polynomial generates the ideal of the annihilators of 𝐴. (Contributed by Thierry Arnoux, 9-Feb-2025.)
Hypotheses
Ref Expression
ply1annig1p.o 𝑂 = (𝐸 evalSub1 𝐹)
ply1annig1p.p 𝑃 = (Poly1‘(𝐸s 𝐹))
ply1annig1p.b 𝐵 = (Base‘𝐸)
ply1annig1p.e (𝜑𝐸 ∈ Field)
ply1annig1p.f (𝜑𝐹 ∈ (SubDRing‘𝐸))
ply1annig1p.a (𝜑𝐴𝐵)
ply1annig1p.0 0 = (0g𝐸)
ply1annig1p.q 𝑄 = {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = 0 }
ply1annig1p.k 𝐾 = (RSpan‘𝑃)
ply1annig1p.g 𝐺 = (idlGen1p‘(𝐸s 𝐹))
minplyval.1 𝑀 = (𝐸 minPoly 𝐹)
Assertion
Ref Expression
minplyval (𝜑 → (𝑀𝐴) = (𝐺𝑄))
Distinct variable groups:   0 ,𝑞   𝐴,𝑞   𝑂,𝑞   𝑃,𝑞   𝜑,𝑞   𝐸,𝑞   𝐹,𝑞
Allowed substitution hints:   𝐵(𝑞)   𝑄(𝑞)   𝐺(𝑞)   𝐾(𝑞)   𝑀(𝑞)

Proof of Theorem minplyval
Dummy variables 𝑒 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 minplyval.1 . . 3 𝑀 = (𝐸 minPoly 𝐹)
2 ply1annig1p.e . . . . 5 (𝜑𝐸 ∈ Field)
32elexd 3471 . . . 4 (𝜑𝐸 ∈ V)
4 ply1annig1p.f . . . . 5 (𝜑𝐹 ∈ (SubDRing‘𝐸))
54elexd 3471 . . . 4 (𝜑𝐹 ∈ V)
6 ply1annig1p.b . . . . . . 7 𝐵 = (Base‘𝐸)
76fvexi 6872 . . . . . 6 𝐵 ∈ V
87a1i 11 . . . . 5 (𝜑𝐵 ∈ V)
98mptexd 7198 . . . 4 (𝜑 → (𝑥𝐵 ↦ (𝐺‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝑥) = 0 })) ∈ V)
10 fveq2 6858 . . . . . . . 8 (𝑒 = 𝐸 → (Base‘𝑒) = (Base‘𝐸))
1110, 6eqtr4di 2782 . . . . . . 7 (𝑒 = 𝐸 → (Base‘𝑒) = 𝐵)
1211adantr 480 . . . . . 6 ((𝑒 = 𝐸𝑓 = 𝐹) → (Base‘𝑒) = 𝐵)
13 oveq12 7396 . . . . . . . . 9 ((𝑒 = 𝐸𝑓 = 𝐹) → (𝑒s 𝑓) = (𝐸s 𝐹))
1413fveq2d 6862 . . . . . . . 8 ((𝑒 = 𝐸𝑓 = 𝐹) → (idlGen1p‘(𝑒s 𝑓)) = (idlGen1p‘(𝐸s 𝐹)))
15 ply1annig1p.g . . . . . . . 8 𝐺 = (idlGen1p‘(𝐸s 𝐹))
1614, 15eqtr4di 2782 . . . . . . 7 ((𝑒 = 𝐸𝑓 = 𝐹) → (idlGen1p‘(𝑒s 𝑓)) = 𝐺)
17 oveq12 7396 . . . . . . . . . 10 ((𝑒 = 𝐸𝑓 = 𝐹) → (𝑒 evalSub1 𝑓) = (𝐸 evalSub1 𝐹))
18 ply1annig1p.o . . . . . . . . . 10 𝑂 = (𝐸 evalSub1 𝐹)
1917, 18eqtr4di 2782 . . . . . . . . 9 ((𝑒 = 𝐸𝑓 = 𝐹) → (𝑒 evalSub1 𝑓) = 𝑂)
2019dmeqd 5869 . . . . . . . 8 ((𝑒 = 𝐸𝑓 = 𝐹) → dom (𝑒 evalSub1 𝑓) = dom 𝑂)
2119fveq1d 6860 . . . . . . . . . 10 ((𝑒 = 𝐸𝑓 = 𝐹) → ((𝑒 evalSub1 𝑓)‘𝑞) = (𝑂𝑞))
2221fveq1d 6860 . . . . . . . . 9 ((𝑒 = 𝐸𝑓 = 𝐹) → (((𝑒 evalSub1 𝑓)‘𝑞)‘𝑥) = ((𝑂𝑞)‘𝑥))
23 fveq2 6858 . . . . . . . . . . 11 (𝑒 = 𝐸 → (0g𝑒) = (0g𝐸))
2423adantr 480 . . . . . . . . . 10 ((𝑒 = 𝐸𝑓 = 𝐹) → (0g𝑒) = (0g𝐸))
25 ply1annig1p.0 . . . . . . . . . 10 0 = (0g𝐸)
2624, 25eqtr4di 2782 . . . . . . . . 9 ((𝑒 = 𝐸𝑓 = 𝐹) → (0g𝑒) = 0 )
2722, 26eqeq12d 2745 . . . . . . . 8 ((𝑒 = 𝐸𝑓 = 𝐹) → ((((𝑒 evalSub1 𝑓)‘𝑞)‘𝑥) = (0g𝑒) ↔ ((𝑂𝑞)‘𝑥) = 0 ))
2820, 27rabeqbidv 3424 . . . . . . 7 ((𝑒 = 𝐸𝑓 = 𝐹) → {𝑞 ∈ dom (𝑒 evalSub1 𝑓) ∣ (((𝑒 evalSub1 𝑓)‘𝑞)‘𝑥) = (0g𝑒)} = {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝑥) = 0 })
2916, 28fveq12d 6865 . . . . . 6 ((𝑒 = 𝐸𝑓 = 𝐹) → ((idlGen1p‘(𝑒s 𝑓))‘{𝑞 ∈ dom (𝑒 evalSub1 𝑓) ∣ (((𝑒 evalSub1 𝑓)‘𝑞)‘𝑥) = (0g𝑒)}) = (𝐺‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝑥) = 0 }))
3012, 29mpteq12dv 5194 . . . . 5 ((𝑒 = 𝐸𝑓 = 𝐹) → (𝑥 ∈ (Base‘𝑒) ↦ ((idlGen1p‘(𝑒s 𝑓))‘{𝑞 ∈ dom (𝑒 evalSub1 𝑓) ∣ (((𝑒 evalSub1 𝑓)‘𝑞)‘𝑥) = (0g𝑒)})) = (𝑥𝐵 ↦ (𝐺‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝑥) = 0 })))
31 df-minply 33690 . . . . 5 minPoly = (𝑒 ∈ V, 𝑓 ∈ V ↦ (𝑥 ∈ (Base‘𝑒) ↦ ((idlGen1p‘(𝑒s 𝑓))‘{𝑞 ∈ dom (𝑒 evalSub1 𝑓) ∣ (((𝑒 evalSub1 𝑓)‘𝑞)‘𝑥) = (0g𝑒)})))
3230, 31ovmpoga 7543 . . . 4 ((𝐸 ∈ V ∧ 𝐹 ∈ V ∧ (𝑥𝐵 ↦ (𝐺‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝑥) = 0 })) ∈ V) → (𝐸 minPoly 𝐹) = (𝑥𝐵 ↦ (𝐺‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝑥) = 0 })))
333, 5, 9, 32syl3anc 1373 . . 3 (𝜑 → (𝐸 minPoly 𝐹) = (𝑥𝐵 ↦ (𝐺‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝑥) = 0 })))
341, 33eqtrid 2776 . 2 (𝜑𝑀 = (𝑥𝐵 ↦ (𝐺‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝑥) = 0 })))
35 fveqeq2 6867 . . . . . 6 (𝑥 = 𝐴 → (((𝑂𝑞)‘𝑥) = 0 ↔ ((𝑂𝑞)‘𝐴) = 0 ))
3635rabbidv 3413 . . . . 5 (𝑥 = 𝐴 → {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝑥) = 0 } = {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = 0 })
37 ply1annig1p.q . . . . 5 𝑄 = {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = 0 }
3836, 37eqtr4di 2782 . . . 4 (𝑥 = 𝐴 → {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝑥) = 0 } = 𝑄)
3938fveq2d 6862 . . 3 (𝑥 = 𝐴 → (𝐺‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝑥) = 0 }) = (𝐺𝑄))
4039adantl 481 . 2 ((𝜑𝑥 = 𝐴) → (𝐺‘{𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝑥) = 0 }) = (𝐺𝑄))
41 ply1annig1p.a . 2 (𝜑𝐴𝐵)
42 fvexd 6873 . 2 (𝜑 → (𝐺𝑄) ∈ V)
4334, 40, 41, 42fvmptd 6975 1 (𝜑 → (𝑀𝐴) = (𝐺𝑄))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3405  Vcvv 3447  cmpt 5188  dom cdm 5638  cfv 6511  (class class class)co 7387  Basecbs 17179  s cress 17200  0gc0g 17402  Fieldcfield 20639  SubDRingcsdrg 20695  RSpancrsp 21117  Poly1cpl1 22061   evalSub1 ces1 22200  idlGen1pcig1p 26035   minPoly cminply 33689
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-minply 33690
This theorem is referenced by:  minplycl  33696  minplymindeg  33698  minplyann  33699  minplyirredlem  33700  minplyirred  33701  irngnminplynz  33702  minplym1p  33703  minplynzm1p  33704  irredminply  33706  algextdeglem4  33710  algextdeglem5  33711
  Copyright terms: Public domain W3C validator