| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > miduniq | Structured version Visualization version GIF version | ||
| Description: Uniqueness of the middle point, expressed with point inversion. Theorem 7.17 of [Schwabhauser] p. 51. (Contributed by Thierry Arnoux, 30-Jul-2019.) |
| Ref | Expression |
|---|---|
| mirval.p | ⊢ 𝑃 = (Base‘𝐺) |
| mirval.d | ⊢ − = (dist‘𝐺) |
| mirval.i | ⊢ 𝐼 = (Itv‘𝐺) |
| mirval.l | ⊢ 𝐿 = (LineG‘𝐺) |
| mirval.s | ⊢ 𝑆 = (pInvG‘𝐺) |
| mirval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| miduniq.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| miduniq.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| miduniq.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
| miduniq.y | ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
| miduniq.e | ⊢ (𝜑 → ((𝑆‘𝐴)‘𝑋) = 𝑌) |
| miduniq.f | ⊢ (𝜑 → ((𝑆‘𝐵)‘𝑋) = 𝑌) |
| Ref | Expression |
|---|---|
| miduniq | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mirval.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | mirval.l | . . . 4 ⊢ 𝐿 = (LineG‘𝐺) | |
| 3 | mirval.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
| 4 | mirval.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 5 | miduniq.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
| 6 | miduniq.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑃) | |
| 7 | miduniq.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 8 | eqid 2733 | . . . 4 ⊢ (cgrG‘𝐺) = (cgrG‘𝐺) | |
| 9 | mirval.d | . . . . 5 ⊢ − = (dist‘𝐺) | |
| 10 | mirval.s | . . . . 5 ⊢ 𝑆 = (pInvG‘𝐺) | |
| 11 | miduniq.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 12 | eqid 2733 | . . . . 5 ⊢ (𝑆‘𝐴) = (𝑆‘𝐴) | |
| 13 | 1, 9, 3, 2, 10, 4, 11, 12, 7 | mircl 28642 | . . . 4 ⊢ (𝜑 → ((𝑆‘𝐴)‘𝐵) ∈ 𝑃) |
| 14 | eqid 2733 | . . . . . . 7 ⊢ (𝑆‘𝐵) = (𝑆‘𝐵) | |
| 15 | 1, 9, 3, 2, 10, 4, 7, 14, 5 | mirbtwn 28639 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ (((𝑆‘𝐵)‘𝑋)𝐼𝑋)) |
| 16 | miduniq.f | . . . . . . 7 ⊢ (𝜑 → ((𝑆‘𝐵)‘𝑋) = 𝑌) | |
| 17 | 16 | oveq1d 7369 | . . . . . 6 ⊢ (𝜑 → (((𝑆‘𝐵)‘𝑋)𝐼𝑋) = (𝑌𝐼𝑋)) |
| 18 | 15, 17 | eleqtrd 2835 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ (𝑌𝐼𝑋)) |
| 19 | 1, 9, 3, 4, 6, 7, 5, 18 | tgbtwncom 28469 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ (𝑋𝐼𝑌)) |
| 20 | 1, 9, 3, 2, 10, 4, 11, 12, 6, 7 | miriso 28651 | . . . . 5 ⊢ (𝜑 → (((𝑆‘𝐴)‘𝑌) − ((𝑆‘𝐴)‘𝐵)) = (𝑌 − 𝐵)) |
| 21 | miduniq.e | . . . . . . 7 ⊢ (𝜑 → ((𝑆‘𝐴)‘𝑋) = 𝑌) | |
| 22 | 1, 9, 3, 2, 10, 4, 11, 12, 5, 21 | mircom 28644 | . . . . . 6 ⊢ (𝜑 → ((𝑆‘𝐴)‘𝑌) = 𝑋) |
| 23 | 22 | oveq1d 7369 | . . . . 5 ⊢ (𝜑 → (((𝑆‘𝐴)‘𝑌) − ((𝑆‘𝐴)‘𝐵)) = (𝑋 − ((𝑆‘𝐴)‘𝐵))) |
| 24 | 1, 9, 3, 2, 10, 4, 7, 14, 5 | mircgr 28638 | . . . . . . . 8 ⊢ (𝜑 → (𝐵 − ((𝑆‘𝐵)‘𝑋)) = (𝐵 − 𝑋)) |
| 25 | 16 | oveq2d 7370 | . . . . . . . 8 ⊢ (𝜑 → (𝐵 − ((𝑆‘𝐵)‘𝑋)) = (𝐵 − 𝑌)) |
| 26 | 24, 25 | eqtr3d 2770 | . . . . . . 7 ⊢ (𝜑 → (𝐵 − 𝑋) = (𝐵 − 𝑌)) |
| 27 | 26 | eqcomd 2739 | . . . . . 6 ⊢ (𝜑 → (𝐵 − 𝑌) = (𝐵 − 𝑋)) |
| 28 | 1, 9, 3, 4, 7, 6, 7, 5, 27 | tgcgrcomlr 28461 | . . . . 5 ⊢ (𝜑 → (𝑌 − 𝐵) = (𝑋 − 𝐵)) |
| 29 | 20, 23, 28 | 3eqtr3rd 2777 | . . . 4 ⊢ (𝜑 → (𝑋 − 𝐵) = (𝑋 − ((𝑆‘𝐴)‘𝐵))) |
| 30 | 1, 9, 3, 2, 10, 4, 11, 12, 5, 7 | miriso 28651 | . . . . 5 ⊢ (𝜑 → (((𝑆‘𝐴)‘𝑋) − ((𝑆‘𝐴)‘𝐵)) = (𝑋 − 𝐵)) |
| 31 | 21 | oveq1d 7369 | . . . . 5 ⊢ (𝜑 → (((𝑆‘𝐴)‘𝑋) − ((𝑆‘𝐴)‘𝐵)) = (𝑌 − ((𝑆‘𝐴)‘𝐵))) |
| 32 | 1, 9, 3, 4, 7, 5, 7, 6, 26 | tgcgrcomlr 28461 | . . . . 5 ⊢ (𝜑 → (𝑋 − 𝐵) = (𝑌 − 𝐵)) |
| 33 | 30, 31, 32 | 3eqtr3rd 2777 | . . . 4 ⊢ (𝜑 → (𝑌 − 𝐵) = (𝑌 − ((𝑆‘𝐴)‘𝐵))) |
| 34 | 1, 2, 3, 4, 5, 6, 7, 8, 13, 11, 9, 19, 29, 33 | tgidinside 28552 | . . 3 ⊢ (𝜑 → 𝐵 = ((𝑆‘𝐴)‘𝐵)) |
| 35 | 34 | eqcomd 2739 | . 2 ⊢ (𝜑 → ((𝑆‘𝐴)‘𝐵) = 𝐵) |
| 36 | 1, 9, 3, 2, 10, 4, 11, 12, 7 | mirinv 28647 | . 2 ⊢ (𝜑 → (((𝑆‘𝐴)‘𝐵) = 𝐵 ↔ 𝐴 = 𝐵)) |
| 37 | 35, 36 | mpbid 232 | 1 ⊢ (𝜑 → 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ‘cfv 6488 (class class class)co 7354 Basecbs 17124 distcds 17174 TarskiGcstrkg 28408 Itvcitv 28414 LineGclng 28415 cgrGccgrg 28491 pInvGcmir 28633 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-1st 7929 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-1o 8393 df-oadd 8397 df-er 8630 df-pm 8761 df-en 8878 df-dom 8879 df-sdom 8880 df-fin 8881 df-dju 9803 df-card 9841 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-nn 12135 df-2 12197 df-3 12198 df-n0 12391 df-xnn0 12464 df-z 12478 df-uz 12741 df-fz 13412 df-fzo 13559 df-hash 14242 df-word 14425 df-concat 14482 df-s1 14508 df-s2 14759 df-s3 14760 df-trkgc 28429 df-trkgb 28430 df-trkgcb 28431 df-trkg 28434 df-cgrg 28492 df-mir 28634 |
| This theorem is referenced by: miduniq1 28667 krippenlem 28671 mideu 28719 opphllem3 28730 |
| Copyright terms: Public domain | W3C validator |