MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  miduniq Structured version   Visualization version   GIF version

Theorem miduniq 28708
Description: Uniqueness of the middle point, expressed with point inversion. Theorem 7.17 of [Schwabhauser] p. 51. (Contributed by Thierry Arnoux, 30-Jul-2019.)
Hypotheses
Ref Expression
mirval.p 𝑃 = (Base‘𝐺)
mirval.d = (dist‘𝐺)
mirval.i 𝐼 = (Itv‘𝐺)
mirval.l 𝐿 = (LineG‘𝐺)
mirval.s 𝑆 = (pInvG‘𝐺)
mirval.g (𝜑𝐺 ∈ TarskiG)
miduniq.a (𝜑𝐴𝑃)
miduniq.b (𝜑𝐵𝑃)
miduniq.x (𝜑𝑋𝑃)
miduniq.y (𝜑𝑌𝑃)
miduniq.e (𝜑 → ((𝑆𝐴)‘𝑋) = 𝑌)
miduniq.f (𝜑 → ((𝑆𝐵)‘𝑋) = 𝑌)
Assertion
Ref Expression
miduniq (𝜑𝐴 = 𝐵)

Proof of Theorem miduniq
StepHypRef Expression
1 mirval.p . . . 4 𝑃 = (Base‘𝐺)
2 mirval.l . . . 4 𝐿 = (LineG‘𝐺)
3 mirval.i . . . 4 𝐼 = (Itv‘𝐺)
4 mirval.g . . . 4 (𝜑𝐺 ∈ TarskiG)
5 miduniq.x . . . 4 (𝜑𝑋𝑃)
6 miduniq.y . . . 4 (𝜑𝑌𝑃)
7 miduniq.b . . . 4 (𝜑𝐵𝑃)
8 eqid 2735 . . . 4 (cgrG‘𝐺) = (cgrG‘𝐺)
9 mirval.d . . . . 5 = (dist‘𝐺)
10 mirval.s . . . . 5 𝑆 = (pInvG‘𝐺)
11 miduniq.a . . . . 5 (𝜑𝐴𝑃)
12 eqid 2735 . . . . 5 (𝑆𝐴) = (𝑆𝐴)
131, 9, 3, 2, 10, 4, 11, 12, 7mircl 28684 . . . 4 (𝜑 → ((𝑆𝐴)‘𝐵) ∈ 𝑃)
14 eqid 2735 . . . . . . 7 (𝑆𝐵) = (𝑆𝐵)
151, 9, 3, 2, 10, 4, 7, 14, 5mirbtwn 28681 . . . . . 6 (𝜑𝐵 ∈ (((𝑆𝐵)‘𝑋)𝐼𝑋))
16 miduniq.f . . . . . . 7 (𝜑 → ((𝑆𝐵)‘𝑋) = 𝑌)
1716oveq1d 7446 . . . . . 6 (𝜑 → (((𝑆𝐵)‘𝑋)𝐼𝑋) = (𝑌𝐼𝑋))
1815, 17eleqtrd 2841 . . . . 5 (𝜑𝐵 ∈ (𝑌𝐼𝑋))
191, 9, 3, 4, 6, 7, 5, 18tgbtwncom 28511 . . . 4 (𝜑𝐵 ∈ (𝑋𝐼𝑌))
201, 9, 3, 2, 10, 4, 11, 12, 6, 7miriso 28693 . . . . 5 (𝜑 → (((𝑆𝐴)‘𝑌) ((𝑆𝐴)‘𝐵)) = (𝑌 𝐵))
21 miduniq.e . . . . . . 7 (𝜑 → ((𝑆𝐴)‘𝑋) = 𝑌)
221, 9, 3, 2, 10, 4, 11, 12, 5, 21mircom 28686 . . . . . 6 (𝜑 → ((𝑆𝐴)‘𝑌) = 𝑋)
2322oveq1d 7446 . . . . 5 (𝜑 → (((𝑆𝐴)‘𝑌) ((𝑆𝐴)‘𝐵)) = (𝑋 ((𝑆𝐴)‘𝐵)))
241, 9, 3, 2, 10, 4, 7, 14, 5mircgr 28680 . . . . . . . 8 (𝜑 → (𝐵 ((𝑆𝐵)‘𝑋)) = (𝐵 𝑋))
2516oveq2d 7447 . . . . . . . 8 (𝜑 → (𝐵 ((𝑆𝐵)‘𝑋)) = (𝐵 𝑌))
2624, 25eqtr3d 2777 . . . . . . 7 (𝜑 → (𝐵 𝑋) = (𝐵 𝑌))
2726eqcomd 2741 . . . . . 6 (𝜑 → (𝐵 𝑌) = (𝐵 𝑋))
281, 9, 3, 4, 7, 6, 7, 5, 27tgcgrcomlr 28503 . . . . 5 (𝜑 → (𝑌 𝐵) = (𝑋 𝐵))
2920, 23, 283eqtr3rd 2784 . . . 4 (𝜑 → (𝑋 𝐵) = (𝑋 ((𝑆𝐴)‘𝐵)))
301, 9, 3, 2, 10, 4, 11, 12, 5, 7miriso 28693 . . . . 5 (𝜑 → (((𝑆𝐴)‘𝑋) ((𝑆𝐴)‘𝐵)) = (𝑋 𝐵))
3121oveq1d 7446 . . . . 5 (𝜑 → (((𝑆𝐴)‘𝑋) ((𝑆𝐴)‘𝐵)) = (𝑌 ((𝑆𝐴)‘𝐵)))
321, 9, 3, 4, 7, 5, 7, 6, 26tgcgrcomlr 28503 . . . . 5 (𝜑 → (𝑋 𝐵) = (𝑌 𝐵))
3330, 31, 323eqtr3rd 2784 . . . 4 (𝜑 → (𝑌 𝐵) = (𝑌 ((𝑆𝐴)‘𝐵)))
341, 2, 3, 4, 5, 6, 7, 8, 13, 11, 9, 19, 29, 33tgidinside 28594 . . 3 (𝜑𝐵 = ((𝑆𝐴)‘𝐵))
3534eqcomd 2741 . 2 (𝜑 → ((𝑆𝐴)‘𝐵) = 𝐵)
361, 9, 3, 2, 10, 4, 11, 12, 7mirinv 28689 . 2 (𝜑 → (((𝑆𝐴)‘𝐵) = 𝐵𝐴 = 𝐵))
3735, 36mpbid 232 1 (𝜑𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  cfv 6563  (class class class)co 7431  Basecbs 17245  distcds 17307  TarskiGcstrkg 28450  Itvcitv 28456  LineGclng 28457  cgrGccgrg 28533  pInvGcmir 28675
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-oadd 8509  df-er 8744  df-pm 8868  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-dju 9939  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-xnn0 12598  df-z 12612  df-uz 12877  df-fz 13545  df-fzo 13692  df-hash 14367  df-word 14550  df-concat 14606  df-s1 14631  df-s2 14884  df-s3 14885  df-trkgc 28471  df-trkgb 28472  df-trkgcb 28473  df-trkg 28476  df-cgrg 28534  df-mir 28676
This theorem is referenced by:  miduniq1  28709  krippenlem  28713  mideu  28761  opphllem3  28772
  Copyright terms: Public domain W3C validator