| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > miduniq | Structured version Visualization version GIF version | ||
| Description: Uniqueness of the middle point, expressed with point inversion. Theorem 7.17 of [Schwabhauser] p. 51. (Contributed by Thierry Arnoux, 30-Jul-2019.) |
| Ref | Expression |
|---|---|
| mirval.p | ⊢ 𝑃 = (Base‘𝐺) |
| mirval.d | ⊢ − = (dist‘𝐺) |
| mirval.i | ⊢ 𝐼 = (Itv‘𝐺) |
| mirval.l | ⊢ 𝐿 = (LineG‘𝐺) |
| mirval.s | ⊢ 𝑆 = (pInvG‘𝐺) |
| mirval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| miduniq.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| miduniq.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| miduniq.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
| miduniq.y | ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
| miduniq.e | ⊢ (𝜑 → ((𝑆‘𝐴)‘𝑋) = 𝑌) |
| miduniq.f | ⊢ (𝜑 → ((𝑆‘𝐵)‘𝑋) = 𝑌) |
| Ref | Expression |
|---|---|
| miduniq | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mirval.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | mirval.l | . . . 4 ⊢ 𝐿 = (LineG‘𝐺) | |
| 3 | mirval.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
| 4 | mirval.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 5 | miduniq.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
| 6 | miduniq.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑃) | |
| 7 | miduniq.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 8 | eqid 2730 | . . . 4 ⊢ (cgrG‘𝐺) = (cgrG‘𝐺) | |
| 9 | mirval.d | . . . . 5 ⊢ − = (dist‘𝐺) | |
| 10 | mirval.s | . . . . 5 ⊢ 𝑆 = (pInvG‘𝐺) | |
| 11 | miduniq.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 12 | eqid 2730 | . . . . 5 ⊢ (𝑆‘𝐴) = (𝑆‘𝐴) | |
| 13 | 1, 9, 3, 2, 10, 4, 11, 12, 7 | mircl 28595 | . . . 4 ⊢ (𝜑 → ((𝑆‘𝐴)‘𝐵) ∈ 𝑃) |
| 14 | eqid 2730 | . . . . . . 7 ⊢ (𝑆‘𝐵) = (𝑆‘𝐵) | |
| 15 | 1, 9, 3, 2, 10, 4, 7, 14, 5 | mirbtwn 28592 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ (((𝑆‘𝐵)‘𝑋)𝐼𝑋)) |
| 16 | miduniq.f | . . . . . . 7 ⊢ (𝜑 → ((𝑆‘𝐵)‘𝑋) = 𝑌) | |
| 17 | 16 | oveq1d 7405 | . . . . . 6 ⊢ (𝜑 → (((𝑆‘𝐵)‘𝑋)𝐼𝑋) = (𝑌𝐼𝑋)) |
| 18 | 15, 17 | eleqtrd 2831 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ (𝑌𝐼𝑋)) |
| 19 | 1, 9, 3, 4, 6, 7, 5, 18 | tgbtwncom 28422 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ (𝑋𝐼𝑌)) |
| 20 | 1, 9, 3, 2, 10, 4, 11, 12, 6, 7 | miriso 28604 | . . . . 5 ⊢ (𝜑 → (((𝑆‘𝐴)‘𝑌) − ((𝑆‘𝐴)‘𝐵)) = (𝑌 − 𝐵)) |
| 21 | miduniq.e | . . . . . . 7 ⊢ (𝜑 → ((𝑆‘𝐴)‘𝑋) = 𝑌) | |
| 22 | 1, 9, 3, 2, 10, 4, 11, 12, 5, 21 | mircom 28597 | . . . . . 6 ⊢ (𝜑 → ((𝑆‘𝐴)‘𝑌) = 𝑋) |
| 23 | 22 | oveq1d 7405 | . . . . 5 ⊢ (𝜑 → (((𝑆‘𝐴)‘𝑌) − ((𝑆‘𝐴)‘𝐵)) = (𝑋 − ((𝑆‘𝐴)‘𝐵))) |
| 24 | 1, 9, 3, 2, 10, 4, 7, 14, 5 | mircgr 28591 | . . . . . . . 8 ⊢ (𝜑 → (𝐵 − ((𝑆‘𝐵)‘𝑋)) = (𝐵 − 𝑋)) |
| 25 | 16 | oveq2d 7406 | . . . . . . . 8 ⊢ (𝜑 → (𝐵 − ((𝑆‘𝐵)‘𝑋)) = (𝐵 − 𝑌)) |
| 26 | 24, 25 | eqtr3d 2767 | . . . . . . 7 ⊢ (𝜑 → (𝐵 − 𝑋) = (𝐵 − 𝑌)) |
| 27 | 26 | eqcomd 2736 | . . . . . 6 ⊢ (𝜑 → (𝐵 − 𝑌) = (𝐵 − 𝑋)) |
| 28 | 1, 9, 3, 4, 7, 6, 7, 5, 27 | tgcgrcomlr 28414 | . . . . 5 ⊢ (𝜑 → (𝑌 − 𝐵) = (𝑋 − 𝐵)) |
| 29 | 20, 23, 28 | 3eqtr3rd 2774 | . . . 4 ⊢ (𝜑 → (𝑋 − 𝐵) = (𝑋 − ((𝑆‘𝐴)‘𝐵))) |
| 30 | 1, 9, 3, 2, 10, 4, 11, 12, 5, 7 | miriso 28604 | . . . . 5 ⊢ (𝜑 → (((𝑆‘𝐴)‘𝑋) − ((𝑆‘𝐴)‘𝐵)) = (𝑋 − 𝐵)) |
| 31 | 21 | oveq1d 7405 | . . . . 5 ⊢ (𝜑 → (((𝑆‘𝐴)‘𝑋) − ((𝑆‘𝐴)‘𝐵)) = (𝑌 − ((𝑆‘𝐴)‘𝐵))) |
| 32 | 1, 9, 3, 4, 7, 5, 7, 6, 26 | tgcgrcomlr 28414 | . . . . 5 ⊢ (𝜑 → (𝑋 − 𝐵) = (𝑌 − 𝐵)) |
| 33 | 30, 31, 32 | 3eqtr3rd 2774 | . . . 4 ⊢ (𝜑 → (𝑌 − 𝐵) = (𝑌 − ((𝑆‘𝐴)‘𝐵))) |
| 34 | 1, 2, 3, 4, 5, 6, 7, 8, 13, 11, 9, 19, 29, 33 | tgidinside 28505 | . . 3 ⊢ (𝜑 → 𝐵 = ((𝑆‘𝐴)‘𝐵)) |
| 35 | 34 | eqcomd 2736 | . 2 ⊢ (𝜑 → ((𝑆‘𝐴)‘𝐵) = 𝐵) |
| 36 | 1, 9, 3, 2, 10, 4, 11, 12, 7 | mirinv 28600 | . 2 ⊢ (𝜑 → (((𝑆‘𝐴)‘𝐵) = 𝐵 ↔ 𝐴 = 𝐵)) |
| 37 | 35, 36 | mpbid 232 | 1 ⊢ (𝜑 → 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 distcds 17236 TarskiGcstrkg 28361 Itvcitv 28367 LineGclng 28368 cgrGccgrg 28444 pInvGcmir 28586 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-oadd 8441 df-er 8674 df-pm 8805 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-dju 9861 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-n0 12450 df-xnn0 12523 df-z 12537 df-uz 12801 df-fz 13476 df-fzo 13623 df-hash 14303 df-word 14486 df-concat 14543 df-s1 14568 df-s2 14821 df-s3 14822 df-trkgc 28382 df-trkgb 28383 df-trkgcb 28384 df-trkg 28387 df-cgrg 28445 df-mir 28587 |
| This theorem is referenced by: miduniq1 28620 krippenlem 28624 mideu 28672 opphllem3 28683 |
| Copyright terms: Public domain | W3C validator |