![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > miduniq | Structured version Visualization version GIF version |
Description: Uniqueness of the middle point, expressed with point inversion. Theorem 7.17 of [Schwabhauser] p. 51. (Contributed by Thierry Arnoux, 30-Jul-2019.) |
Ref | Expression |
---|---|
mirval.p | β’ π = (BaseβπΊ) |
mirval.d | β’ β = (distβπΊ) |
mirval.i | β’ πΌ = (ItvβπΊ) |
mirval.l | β’ πΏ = (LineGβπΊ) |
mirval.s | β’ π = (pInvGβπΊ) |
mirval.g | β’ (π β πΊ β TarskiG) |
miduniq.a | β’ (π β π΄ β π) |
miduniq.b | β’ (π β π΅ β π) |
miduniq.x | β’ (π β π β π) |
miduniq.y | β’ (π β π β π) |
miduniq.e | β’ (π β ((πβπ΄)βπ) = π) |
miduniq.f | β’ (π β ((πβπ΅)βπ) = π) |
Ref | Expression |
---|---|
miduniq | β’ (π β π΄ = π΅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mirval.p | . . . 4 β’ π = (BaseβπΊ) | |
2 | mirval.l | . . . 4 β’ πΏ = (LineGβπΊ) | |
3 | mirval.i | . . . 4 β’ πΌ = (ItvβπΊ) | |
4 | mirval.g | . . . 4 β’ (π β πΊ β TarskiG) | |
5 | miduniq.x | . . . 4 β’ (π β π β π) | |
6 | miduniq.y | . . . 4 β’ (π β π β π) | |
7 | miduniq.b | . . . 4 β’ (π β π΅ β π) | |
8 | eqid 2730 | . . . 4 β’ (cgrGβπΊ) = (cgrGβπΊ) | |
9 | mirval.d | . . . . 5 β’ β = (distβπΊ) | |
10 | mirval.s | . . . . 5 β’ π = (pInvGβπΊ) | |
11 | miduniq.a | . . . . 5 β’ (π β π΄ β π) | |
12 | eqid 2730 | . . . . 5 β’ (πβπ΄) = (πβπ΄) | |
13 | 1, 9, 3, 2, 10, 4, 11, 12, 7 | mircl 28179 | . . . 4 β’ (π β ((πβπ΄)βπ΅) β π) |
14 | eqid 2730 | . . . . . . 7 β’ (πβπ΅) = (πβπ΅) | |
15 | 1, 9, 3, 2, 10, 4, 7, 14, 5 | mirbtwn 28176 | . . . . . 6 β’ (π β π΅ β (((πβπ΅)βπ)πΌπ)) |
16 | miduniq.f | . . . . . . 7 β’ (π β ((πβπ΅)βπ) = π) | |
17 | 16 | oveq1d 7426 | . . . . . 6 β’ (π β (((πβπ΅)βπ)πΌπ) = (ππΌπ)) |
18 | 15, 17 | eleqtrd 2833 | . . . . 5 β’ (π β π΅ β (ππΌπ)) |
19 | 1, 9, 3, 4, 6, 7, 5, 18 | tgbtwncom 28006 | . . . 4 β’ (π β π΅ β (ππΌπ)) |
20 | 1, 9, 3, 2, 10, 4, 11, 12, 6, 7 | miriso 28188 | . . . . 5 β’ (π β (((πβπ΄)βπ) β ((πβπ΄)βπ΅)) = (π β π΅)) |
21 | miduniq.e | . . . . . . 7 β’ (π β ((πβπ΄)βπ) = π) | |
22 | 1, 9, 3, 2, 10, 4, 11, 12, 5, 21 | mircom 28181 | . . . . . 6 β’ (π β ((πβπ΄)βπ) = π) |
23 | 22 | oveq1d 7426 | . . . . 5 β’ (π β (((πβπ΄)βπ) β ((πβπ΄)βπ΅)) = (π β ((πβπ΄)βπ΅))) |
24 | 1, 9, 3, 2, 10, 4, 7, 14, 5 | mircgr 28175 | . . . . . . . 8 β’ (π β (π΅ β ((πβπ΅)βπ)) = (π΅ β π)) |
25 | 16 | oveq2d 7427 | . . . . . . . 8 β’ (π β (π΅ β ((πβπ΅)βπ)) = (π΅ β π)) |
26 | 24, 25 | eqtr3d 2772 | . . . . . . 7 β’ (π β (π΅ β π) = (π΅ β π)) |
27 | 26 | eqcomd 2736 | . . . . . 6 β’ (π β (π΅ β π) = (π΅ β π)) |
28 | 1, 9, 3, 4, 7, 6, 7, 5, 27 | tgcgrcomlr 27998 | . . . . 5 β’ (π β (π β π΅) = (π β π΅)) |
29 | 20, 23, 28 | 3eqtr3rd 2779 | . . . 4 β’ (π β (π β π΅) = (π β ((πβπ΄)βπ΅))) |
30 | 1, 9, 3, 2, 10, 4, 11, 12, 5, 7 | miriso 28188 | . . . . 5 β’ (π β (((πβπ΄)βπ) β ((πβπ΄)βπ΅)) = (π β π΅)) |
31 | 21 | oveq1d 7426 | . . . . 5 β’ (π β (((πβπ΄)βπ) β ((πβπ΄)βπ΅)) = (π β ((πβπ΄)βπ΅))) |
32 | 1, 9, 3, 4, 7, 5, 7, 6, 26 | tgcgrcomlr 27998 | . . . . 5 β’ (π β (π β π΅) = (π β π΅)) |
33 | 30, 31, 32 | 3eqtr3rd 2779 | . . . 4 β’ (π β (π β π΅) = (π β ((πβπ΄)βπ΅))) |
34 | 1, 2, 3, 4, 5, 6, 7, 8, 13, 11, 9, 19, 29, 33 | tgidinside 28089 | . . 3 β’ (π β π΅ = ((πβπ΄)βπ΅)) |
35 | 34 | eqcomd 2736 | . 2 β’ (π β ((πβπ΄)βπ΅) = π΅) |
36 | 1, 9, 3, 2, 10, 4, 11, 12, 7 | mirinv 28184 | . 2 β’ (π β (((πβπ΄)βπ΅) = π΅ β π΄ = π΅)) |
37 | 35, 36 | mpbid 231 | 1 β’ (π β π΄ = π΅) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1539 β wcel 2104 βcfv 6542 (class class class)co 7411 Basecbs 17148 distcds 17210 TarskiGcstrkg 27945 Itvcitv 27951 LineGclng 27952 cgrGccgrg 28028 pInvGcmir 28170 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-oadd 8472 df-er 8705 df-pm 8825 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-dju 9898 df-card 9936 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-3 12280 df-n0 12477 df-xnn0 12549 df-z 12563 df-uz 12827 df-fz 13489 df-fzo 13632 df-hash 14295 df-word 14469 df-concat 14525 df-s1 14550 df-s2 14803 df-s3 14804 df-trkgc 27966 df-trkgb 27967 df-trkgcb 27968 df-trkg 27971 df-cgrg 28029 df-mir 28171 |
This theorem is referenced by: miduniq1 28204 krippenlem 28208 mideu 28256 opphllem3 28267 |
Copyright terms: Public domain | W3C validator |