| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > miduniq | Structured version Visualization version GIF version | ||
| Description: Uniqueness of the middle point, expressed with point inversion. Theorem 7.17 of [Schwabhauser] p. 51. (Contributed by Thierry Arnoux, 30-Jul-2019.) |
| Ref | Expression |
|---|---|
| mirval.p | ⊢ 𝑃 = (Base‘𝐺) |
| mirval.d | ⊢ − = (dist‘𝐺) |
| mirval.i | ⊢ 𝐼 = (Itv‘𝐺) |
| mirval.l | ⊢ 𝐿 = (LineG‘𝐺) |
| mirval.s | ⊢ 𝑆 = (pInvG‘𝐺) |
| mirval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| miduniq.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| miduniq.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| miduniq.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
| miduniq.y | ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
| miduniq.e | ⊢ (𝜑 → ((𝑆‘𝐴)‘𝑋) = 𝑌) |
| miduniq.f | ⊢ (𝜑 → ((𝑆‘𝐵)‘𝑋) = 𝑌) |
| Ref | Expression |
|---|---|
| miduniq | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mirval.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
| 2 | mirval.l | . . . 4 ⊢ 𝐿 = (LineG‘𝐺) | |
| 3 | mirval.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
| 4 | mirval.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 5 | miduniq.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
| 6 | miduniq.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑃) | |
| 7 | miduniq.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 8 | eqid 2731 | . . . 4 ⊢ (cgrG‘𝐺) = (cgrG‘𝐺) | |
| 9 | mirval.d | . . . . 5 ⊢ − = (dist‘𝐺) | |
| 10 | mirval.s | . . . . 5 ⊢ 𝑆 = (pInvG‘𝐺) | |
| 11 | miduniq.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 12 | eqid 2731 | . . . . 5 ⊢ (𝑆‘𝐴) = (𝑆‘𝐴) | |
| 13 | 1, 9, 3, 2, 10, 4, 11, 12, 7 | mircl 28640 | . . . 4 ⊢ (𝜑 → ((𝑆‘𝐴)‘𝐵) ∈ 𝑃) |
| 14 | eqid 2731 | . . . . . . 7 ⊢ (𝑆‘𝐵) = (𝑆‘𝐵) | |
| 15 | 1, 9, 3, 2, 10, 4, 7, 14, 5 | mirbtwn 28637 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ (((𝑆‘𝐵)‘𝑋)𝐼𝑋)) |
| 16 | miduniq.f | . . . . . . 7 ⊢ (𝜑 → ((𝑆‘𝐵)‘𝑋) = 𝑌) | |
| 17 | 16 | oveq1d 7361 | . . . . . 6 ⊢ (𝜑 → (((𝑆‘𝐵)‘𝑋)𝐼𝑋) = (𝑌𝐼𝑋)) |
| 18 | 15, 17 | eleqtrd 2833 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ (𝑌𝐼𝑋)) |
| 19 | 1, 9, 3, 4, 6, 7, 5, 18 | tgbtwncom 28467 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ (𝑋𝐼𝑌)) |
| 20 | 1, 9, 3, 2, 10, 4, 11, 12, 6, 7 | miriso 28649 | . . . . 5 ⊢ (𝜑 → (((𝑆‘𝐴)‘𝑌) − ((𝑆‘𝐴)‘𝐵)) = (𝑌 − 𝐵)) |
| 21 | miduniq.e | . . . . . . 7 ⊢ (𝜑 → ((𝑆‘𝐴)‘𝑋) = 𝑌) | |
| 22 | 1, 9, 3, 2, 10, 4, 11, 12, 5, 21 | mircom 28642 | . . . . . 6 ⊢ (𝜑 → ((𝑆‘𝐴)‘𝑌) = 𝑋) |
| 23 | 22 | oveq1d 7361 | . . . . 5 ⊢ (𝜑 → (((𝑆‘𝐴)‘𝑌) − ((𝑆‘𝐴)‘𝐵)) = (𝑋 − ((𝑆‘𝐴)‘𝐵))) |
| 24 | 1, 9, 3, 2, 10, 4, 7, 14, 5 | mircgr 28636 | . . . . . . . 8 ⊢ (𝜑 → (𝐵 − ((𝑆‘𝐵)‘𝑋)) = (𝐵 − 𝑋)) |
| 25 | 16 | oveq2d 7362 | . . . . . . . 8 ⊢ (𝜑 → (𝐵 − ((𝑆‘𝐵)‘𝑋)) = (𝐵 − 𝑌)) |
| 26 | 24, 25 | eqtr3d 2768 | . . . . . . 7 ⊢ (𝜑 → (𝐵 − 𝑋) = (𝐵 − 𝑌)) |
| 27 | 26 | eqcomd 2737 | . . . . . 6 ⊢ (𝜑 → (𝐵 − 𝑌) = (𝐵 − 𝑋)) |
| 28 | 1, 9, 3, 4, 7, 6, 7, 5, 27 | tgcgrcomlr 28459 | . . . . 5 ⊢ (𝜑 → (𝑌 − 𝐵) = (𝑋 − 𝐵)) |
| 29 | 20, 23, 28 | 3eqtr3rd 2775 | . . . 4 ⊢ (𝜑 → (𝑋 − 𝐵) = (𝑋 − ((𝑆‘𝐴)‘𝐵))) |
| 30 | 1, 9, 3, 2, 10, 4, 11, 12, 5, 7 | miriso 28649 | . . . . 5 ⊢ (𝜑 → (((𝑆‘𝐴)‘𝑋) − ((𝑆‘𝐴)‘𝐵)) = (𝑋 − 𝐵)) |
| 31 | 21 | oveq1d 7361 | . . . . 5 ⊢ (𝜑 → (((𝑆‘𝐴)‘𝑋) − ((𝑆‘𝐴)‘𝐵)) = (𝑌 − ((𝑆‘𝐴)‘𝐵))) |
| 32 | 1, 9, 3, 4, 7, 5, 7, 6, 26 | tgcgrcomlr 28459 | . . . . 5 ⊢ (𝜑 → (𝑋 − 𝐵) = (𝑌 − 𝐵)) |
| 33 | 30, 31, 32 | 3eqtr3rd 2775 | . . . 4 ⊢ (𝜑 → (𝑌 − 𝐵) = (𝑌 − ((𝑆‘𝐴)‘𝐵))) |
| 34 | 1, 2, 3, 4, 5, 6, 7, 8, 13, 11, 9, 19, 29, 33 | tgidinside 28550 | . . 3 ⊢ (𝜑 → 𝐵 = ((𝑆‘𝐴)‘𝐵)) |
| 35 | 34 | eqcomd 2737 | . 2 ⊢ (𝜑 → ((𝑆‘𝐴)‘𝐵) = 𝐵) |
| 36 | 1, 9, 3, 2, 10, 4, 11, 12, 7 | mirinv 28645 | . 2 ⊢ (𝜑 → (((𝑆‘𝐴)‘𝐵) = 𝐵 ↔ 𝐴 = 𝐵)) |
| 37 | 35, 36 | mpbid 232 | 1 ⊢ (𝜑 → 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 distcds 17170 TarskiGcstrkg 28406 Itvcitv 28412 LineGclng 28413 cgrGccgrg 28489 pInvGcmir 28631 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-oadd 8389 df-er 8622 df-pm 8753 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-dju 9794 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-xnn0 12455 df-z 12469 df-uz 12733 df-fz 13408 df-fzo 13555 df-hash 14238 df-word 14421 df-concat 14478 df-s1 14504 df-s2 14755 df-s3 14756 df-trkgc 28427 df-trkgb 28428 df-trkgcb 28429 df-trkg 28432 df-cgrg 28490 df-mir 28632 |
| This theorem is referenced by: miduniq1 28665 krippenlem 28669 mideu 28717 opphllem3 28728 |
| Copyright terms: Public domain | W3C validator |