MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  miduniq Structured version   Visualization version   GIF version

Theorem miduniq 28693
Description: Uniqueness of the middle point, expressed with point inversion. Theorem 7.17 of [Schwabhauser] p. 51. (Contributed by Thierry Arnoux, 30-Jul-2019.)
Hypotheses
Ref Expression
mirval.p 𝑃 = (Base‘𝐺)
mirval.d = (dist‘𝐺)
mirval.i 𝐼 = (Itv‘𝐺)
mirval.l 𝐿 = (LineG‘𝐺)
mirval.s 𝑆 = (pInvG‘𝐺)
mirval.g (𝜑𝐺 ∈ TarskiG)
miduniq.a (𝜑𝐴𝑃)
miduniq.b (𝜑𝐵𝑃)
miduniq.x (𝜑𝑋𝑃)
miduniq.y (𝜑𝑌𝑃)
miduniq.e (𝜑 → ((𝑆𝐴)‘𝑋) = 𝑌)
miduniq.f (𝜑 → ((𝑆𝐵)‘𝑋) = 𝑌)
Assertion
Ref Expression
miduniq (𝜑𝐴 = 𝐵)

Proof of Theorem miduniq
StepHypRef Expression
1 mirval.p . . . 4 𝑃 = (Base‘𝐺)
2 mirval.l . . . 4 𝐿 = (LineG‘𝐺)
3 mirval.i . . . 4 𝐼 = (Itv‘𝐺)
4 mirval.g . . . 4 (𝜑𝐺 ∈ TarskiG)
5 miduniq.x . . . 4 (𝜑𝑋𝑃)
6 miduniq.y . . . 4 (𝜑𝑌𝑃)
7 miduniq.b . . . 4 (𝜑𝐵𝑃)
8 eqid 2737 . . . 4 (cgrG‘𝐺) = (cgrG‘𝐺)
9 mirval.d . . . . 5 = (dist‘𝐺)
10 mirval.s . . . . 5 𝑆 = (pInvG‘𝐺)
11 miduniq.a . . . . 5 (𝜑𝐴𝑃)
12 eqid 2737 . . . . 5 (𝑆𝐴) = (𝑆𝐴)
131, 9, 3, 2, 10, 4, 11, 12, 7mircl 28669 . . . 4 (𝜑 → ((𝑆𝐴)‘𝐵) ∈ 𝑃)
14 eqid 2737 . . . . . . 7 (𝑆𝐵) = (𝑆𝐵)
151, 9, 3, 2, 10, 4, 7, 14, 5mirbtwn 28666 . . . . . 6 (𝜑𝐵 ∈ (((𝑆𝐵)‘𝑋)𝐼𝑋))
16 miduniq.f . . . . . . 7 (𝜑 → ((𝑆𝐵)‘𝑋) = 𝑌)
1716oveq1d 7446 . . . . . 6 (𝜑 → (((𝑆𝐵)‘𝑋)𝐼𝑋) = (𝑌𝐼𝑋))
1815, 17eleqtrd 2843 . . . . 5 (𝜑𝐵 ∈ (𝑌𝐼𝑋))
191, 9, 3, 4, 6, 7, 5, 18tgbtwncom 28496 . . . 4 (𝜑𝐵 ∈ (𝑋𝐼𝑌))
201, 9, 3, 2, 10, 4, 11, 12, 6, 7miriso 28678 . . . . 5 (𝜑 → (((𝑆𝐴)‘𝑌) ((𝑆𝐴)‘𝐵)) = (𝑌 𝐵))
21 miduniq.e . . . . . . 7 (𝜑 → ((𝑆𝐴)‘𝑋) = 𝑌)
221, 9, 3, 2, 10, 4, 11, 12, 5, 21mircom 28671 . . . . . 6 (𝜑 → ((𝑆𝐴)‘𝑌) = 𝑋)
2322oveq1d 7446 . . . . 5 (𝜑 → (((𝑆𝐴)‘𝑌) ((𝑆𝐴)‘𝐵)) = (𝑋 ((𝑆𝐴)‘𝐵)))
241, 9, 3, 2, 10, 4, 7, 14, 5mircgr 28665 . . . . . . . 8 (𝜑 → (𝐵 ((𝑆𝐵)‘𝑋)) = (𝐵 𝑋))
2516oveq2d 7447 . . . . . . . 8 (𝜑 → (𝐵 ((𝑆𝐵)‘𝑋)) = (𝐵 𝑌))
2624, 25eqtr3d 2779 . . . . . . 7 (𝜑 → (𝐵 𝑋) = (𝐵 𝑌))
2726eqcomd 2743 . . . . . 6 (𝜑 → (𝐵 𝑌) = (𝐵 𝑋))
281, 9, 3, 4, 7, 6, 7, 5, 27tgcgrcomlr 28488 . . . . 5 (𝜑 → (𝑌 𝐵) = (𝑋 𝐵))
2920, 23, 283eqtr3rd 2786 . . . 4 (𝜑 → (𝑋 𝐵) = (𝑋 ((𝑆𝐴)‘𝐵)))
301, 9, 3, 2, 10, 4, 11, 12, 5, 7miriso 28678 . . . . 5 (𝜑 → (((𝑆𝐴)‘𝑋) ((𝑆𝐴)‘𝐵)) = (𝑋 𝐵))
3121oveq1d 7446 . . . . 5 (𝜑 → (((𝑆𝐴)‘𝑋) ((𝑆𝐴)‘𝐵)) = (𝑌 ((𝑆𝐴)‘𝐵)))
321, 9, 3, 4, 7, 5, 7, 6, 26tgcgrcomlr 28488 . . . . 5 (𝜑 → (𝑋 𝐵) = (𝑌 𝐵))
3330, 31, 323eqtr3rd 2786 . . . 4 (𝜑 → (𝑌 𝐵) = (𝑌 ((𝑆𝐴)‘𝐵)))
341, 2, 3, 4, 5, 6, 7, 8, 13, 11, 9, 19, 29, 33tgidinside 28579 . . 3 (𝜑𝐵 = ((𝑆𝐴)‘𝐵))
3534eqcomd 2743 . 2 (𝜑 → ((𝑆𝐴)‘𝐵) = 𝐵)
361, 9, 3, 2, 10, 4, 11, 12, 7mirinv 28674 . 2 (𝜑 → (((𝑆𝐴)‘𝐵) = 𝐵𝐴 = 𝐵))
3735, 36mpbid 232 1 (𝜑𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  cfv 6561  (class class class)co 7431  Basecbs 17247  distcds 17306  TarskiGcstrkg 28435  Itvcitv 28441  LineGclng 28442  cgrGccgrg 28518  pInvGcmir 28660
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-oadd 8510  df-er 8745  df-pm 8869  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-dju 9941  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-xnn0 12600  df-z 12614  df-uz 12879  df-fz 13548  df-fzo 13695  df-hash 14370  df-word 14553  df-concat 14609  df-s1 14634  df-s2 14887  df-s3 14888  df-trkgc 28456  df-trkgb 28457  df-trkgcb 28458  df-trkg 28461  df-cgrg 28519  df-mir 28661
This theorem is referenced by:  miduniq1  28694  krippenlem  28698  mideu  28746  opphllem3  28757
  Copyright terms: Public domain W3C validator