MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  miduniq Structured version   Visualization version   GIF version

Theorem miduniq 28664
Description: Uniqueness of the middle point, expressed with point inversion. Theorem 7.17 of [Schwabhauser] p. 51. (Contributed by Thierry Arnoux, 30-Jul-2019.)
Hypotheses
Ref Expression
mirval.p 𝑃 = (Base‘𝐺)
mirval.d = (dist‘𝐺)
mirval.i 𝐼 = (Itv‘𝐺)
mirval.l 𝐿 = (LineG‘𝐺)
mirval.s 𝑆 = (pInvG‘𝐺)
mirval.g (𝜑𝐺 ∈ TarskiG)
miduniq.a (𝜑𝐴𝑃)
miduniq.b (𝜑𝐵𝑃)
miduniq.x (𝜑𝑋𝑃)
miduniq.y (𝜑𝑌𝑃)
miduniq.e (𝜑 → ((𝑆𝐴)‘𝑋) = 𝑌)
miduniq.f (𝜑 → ((𝑆𝐵)‘𝑋) = 𝑌)
Assertion
Ref Expression
miduniq (𝜑𝐴 = 𝐵)

Proof of Theorem miduniq
StepHypRef Expression
1 mirval.p . . . 4 𝑃 = (Base‘𝐺)
2 mirval.l . . . 4 𝐿 = (LineG‘𝐺)
3 mirval.i . . . 4 𝐼 = (Itv‘𝐺)
4 mirval.g . . . 4 (𝜑𝐺 ∈ TarskiG)
5 miduniq.x . . . 4 (𝜑𝑋𝑃)
6 miduniq.y . . . 4 (𝜑𝑌𝑃)
7 miduniq.b . . . 4 (𝜑𝐵𝑃)
8 eqid 2731 . . . 4 (cgrG‘𝐺) = (cgrG‘𝐺)
9 mirval.d . . . . 5 = (dist‘𝐺)
10 mirval.s . . . . 5 𝑆 = (pInvG‘𝐺)
11 miduniq.a . . . . 5 (𝜑𝐴𝑃)
12 eqid 2731 . . . . 5 (𝑆𝐴) = (𝑆𝐴)
131, 9, 3, 2, 10, 4, 11, 12, 7mircl 28640 . . . 4 (𝜑 → ((𝑆𝐴)‘𝐵) ∈ 𝑃)
14 eqid 2731 . . . . . . 7 (𝑆𝐵) = (𝑆𝐵)
151, 9, 3, 2, 10, 4, 7, 14, 5mirbtwn 28637 . . . . . 6 (𝜑𝐵 ∈ (((𝑆𝐵)‘𝑋)𝐼𝑋))
16 miduniq.f . . . . . . 7 (𝜑 → ((𝑆𝐵)‘𝑋) = 𝑌)
1716oveq1d 7361 . . . . . 6 (𝜑 → (((𝑆𝐵)‘𝑋)𝐼𝑋) = (𝑌𝐼𝑋))
1815, 17eleqtrd 2833 . . . . 5 (𝜑𝐵 ∈ (𝑌𝐼𝑋))
191, 9, 3, 4, 6, 7, 5, 18tgbtwncom 28467 . . . 4 (𝜑𝐵 ∈ (𝑋𝐼𝑌))
201, 9, 3, 2, 10, 4, 11, 12, 6, 7miriso 28649 . . . . 5 (𝜑 → (((𝑆𝐴)‘𝑌) ((𝑆𝐴)‘𝐵)) = (𝑌 𝐵))
21 miduniq.e . . . . . . 7 (𝜑 → ((𝑆𝐴)‘𝑋) = 𝑌)
221, 9, 3, 2, 10, 4, 11, 12, 5, 21mircom 28642 . . . . . 6 (𝜑 → ((𝑆𝐴)‘𝑌) = 𝑋)
2322oveq1d 7361 . . . . 5 (𝜑 → (((𝑆𝐴)‘𝑌) ((𝑆𝐴)‘𝐵)) = (𝑋 ((𝑆𝐴)‘𝐵)))
241, 9, 3, 2, 10, 4, 7, 14, 5mircgr 28636 . . . . . . . 8 (𝜑 → (𝐵 ((𝑆𝐵)‘𝑋)) = (𝐵 𝑋))
2516oveq2d 7362 . . . . . . . 8 (𝜑 → (𝐵 ((𝑆𝐵)‘𝑋)) = (𝐵 𝑌))
2624, 25eqtr3d 2768 . . . . . . 7 (𝜑 → (𝐵 𝑋) = (𝐵 𝑌))
2726eqcomd 2737 . . . . . 6 (𝜑 → (𝐵 𝑌) = (𝐵 𝑋))
281, 9, 3, 4, 7, 6, 7, 5, 27tgcgrcomlr 28459 . . . . 5 (𝜑 → (𝑌 𝐵) = (𝑋 𝐵))
2920, 23, 283eqtr3rd 2775 . . . 4 (𝜑 → (𝑋 𝐵) = (𝑋 ((𝑆𝐴)‘𝐵)))
301, 9, 3, 2, 10, 4, 11, 12, 5, 7miriso 28649 . . . . 5 (𝜑 → (((𝑆𝐴)‘𝑋) ((𝑆𝐴)‘𝐵)) = (𝑋 𝐵))
3121oveq1d 7361 . . . . 5 (𝜑 → (((𝑆𝐴)‘𝑋) ((𝑆𝐴)‘𝐵)) = (𝑌 ((𝑆𝐴)‘𝐵)))
321, 9, 3, 4, 7, 5, 7, 6, 26tgcgrcomlr 28459 . . . . 5 (𝜑 → (𝑋 𝐵) = (𝑌 𝐵))
3330, 31, 323eqtr3rd 2775 . . . 4 (𝜑 → (𝑌 𝐵) = (𝑌 ((𝑆𝐴)‘𝐵)))
341, 2, 3, 4, 5, 6, 7, 8, 13, 11, 9, 19, 29, 33tgidinside 28550 . . 3 (𝜑𝐵 = ((𝑆𝐴)‘𝐵))
3534eqcomd 2737 . 2 (𝜑 → ((𝑆𝐴)‘𝐵) = 𝐵)
361, 9, 3, 2, 10, 4, 11, 12, 7mirinv 28645 . 2 (𝜑 → (((𝑆𝐴)‘𝐵) = 𝐵𝐴 = 𝐵))
3735, 36mpbid 232 1 (𝜑𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  cfv 6481  (class class class)co 7346  Basecbs 17120  distcds 17170  TarskiGcstrkg 28406  Itvcitv 28412  LineGclng 28413  cgrGccgrg 28489  pInvGcmir 28631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-oadd 8389  df-er 8622  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-dju 9794  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-xnn0 12455  df-z 12469  df-uz 12733  df-fz 13408  df-fzo 13555  df-hash 14238  df-word 14421  df-concat 14478  df-s1 14504  df-s2 14755  df-s3 14756  df-trkgc 28427  df-trkgb 28428  df-trkgcb 28429  df-trkg 28432  df-cgrg 28490  df-mir 28632
This theorem is referenced by:  miduniq1  28665  krippenlem  28669  mideu  28717  opphllem3  28728
  Copyright terms: Public domain W3C validator