MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mod2ile Structured version   Visualization version   GIF version

Theorem mod2ile 18212
Description: The weak direction of the modular law (e.g., pmod2iN 37863) that holds in any lattice. (Contributed by NM, 11-May-2012.)
Hypotheses
Ref Expression
modle.b 𝐵 = (Base‘𝐾)
modle.l = (le‘𝐾)
modle.j = (join‘𝐾)
modle.m = (meet‘𝐾)
Assertion
Ref Expression
mod2ile ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑍 𝑋 → ((𝑋 𝑌) 𝑍) (𝑋 (𝑌 𝑍))))

Proof of Theorem mod2ile
StepHypRef Expression
1 simpll 764 . . . . 5 (((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑍 𝑋) → 𝐾 ∈ Lat)
2 simplr3 1216 . . . . . 6 (((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑍 𝑋) → 𝑍𝐵)
3 simplr2 1215 . . . . . 6 (((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑍 𝑋) → 𝑌𝐵)
4 simplr1 1214 . . . . . 6 (((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑍 𝑋) → 𝑋𝐵)
52, 3, 43jca 1127 . . . . 5 (((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑍 𝑋) → (𝑍𝐵𝑌𝐵𝑋𝐵))
61, 5jca 512 . . . 4 (((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑍 𝑋) → (𝐾 ∈ Lat ∧ (𝑍𝐵𝑌𝐵𝑋𝐵)))
7 simpr 485 . . . 4 (((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑍 𝑋) → 𝑍 𝑋)
8 modle.b . . . . 5 𝐵 = (Base‘𝐾)
9 modle.l . . . . 5 = (le‘𝐾)
10 modle.j . . . . 5 = (join‘𝐾)
11 modle.m . . . . 5 = (meet‘𝐾)
128, 9, 10, 11mod1ile 18211 . . . 4 ((𝐾 ∈ Lat ∧ (𝑍𝐵𝑌𝐵𝑋𝐵)) → (𝑍 𝑋 → (𝑍 (𝑌 𝑋)) ((𝑍 𝑌) 𝑋)))
136, 7, 12sylc 65 . . 3 (((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑍 𝑋) → (𝑍 (𝑌 𝑋)) ((𝑍 𝑌) 𝑋))
148, 11latmcom 18181 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = (𝑌 𝑋))
151, 4, 3, 14syl3anc 1370 . . . . 5 (((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑍 𝑋) → (𝑋 𝑌) = (𝑌 𝑋))
1615oveq1d 7290 . . . 4 (((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑍 𝑋) → ((𝑋 𝑌) 𝑍) = ((𝑌 𝑋) 𝑍))
178, 11latmcl 18158 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑋𝐵) → (𝑌 𝑋) ∈ 𝐵)
181, 3, 4, 17syl3anc 1370 . . . . 5 (((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑍 𝑋) → (𝑌 𝑋) ∈ 𝐵)
198, 10latjcom 18165 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑌 𝑋) ∈ 𝐵𝑍𝐵) → ((𝑌 𝑋) 𝑍) = (𝑍 (𝑌 𝑋)))
201, 18, 2, 19syl3anc 1370 . . . 4 (((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑍 𝑋) → ((𝑌 𝑋) 𝑍) = (𝑍 (𝑌 𝑋)))
2116, 20eqtrd 2778 . . 3 (((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑍 𝑋) → ((𝑋 𝑌) 𝑍) = (𝑍 (𝑌 𝑋)))
228, 10latjcom 18165 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑍𝐵) → (𝑌 𝑍) = (𝑍 𝑌))
231, 3, 2, 22syl3anc 1370 . . . . 5 (((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑍 𝑋) → (𝑌 𝑍) = (𝑍 𝑌))
2423oveq2d 7291 . . . 4 (((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑍 𝑋) → (𝑋 (𝑌 𝑍)) = (𝑋 (𝑍 𝑌)))
258, 10latjcl 18157 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑍𝐵𝑌𝐵) → (𝑍 𝑌) ∈ 𝐵)
261, 2, 3, 25syl3anc 1370 . . . . 5 (((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑍 𝑋) → (𝑍 𝑌) ∈ 𝐵)
278, 11latmcom 18181 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ (𝑍 𝑌) ∈ 𝐵) → (𝑋 (𝑍 𝑌)) = ((𝑍 𝑌) 𝑋))
281, 4, 26, 27syl3anc 1370 . . . 4 (((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑍 𝑋) → (𝑋 (𝑍 𝑌)) = ((𝑍 𝑌) 𝑋))
2924, 28eqtrd 2778 . . 3 (((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑍 𝑋) → (𝑋 (𝑌 𝑍)) = ((𝑍 𝑌) 𝑋))
3013, 21, 293brtr4d 5106 . 2 (((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑍 𝑋) → ((𝑋 𝑌) 𝑍) (𝑋 (𝑌 𝑍)))
3130ex 413 1 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑍 𝑋 → ((𝑋 𝑌) 𝑍) (𝑋 (𝑌 𝑍))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106   class class class wbr 5074  cfv 6433  (class class class)co 7275  Basecbs 16912  lecple 16969  joincjn 18029  meetcmee 18030  Latclat 18149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-poset 18031  df-lub 18064  df-glb 18065  df-join 18066  df-meet 18067  df-lat 18150
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator