MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mod2ile Structured version   Visualization version   GIF version

Theorem mod2ile 18539
Description: The weak direction of the modular law (e.g., pmod2iN 39851) that holds in any lattice. (Contributed by NM, 11-May-2012.)
Hypotheses
Ref Expression
modle.b 𝐵 = (Base‘𝐾)
modle.l = (le‘𝐾)
modle.j = (join‘𝐾)
modle.m = (meet‘𝐾)
Assertion
Ref Expression
mod2ile ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑍 𝑋 → ((𝑋 𝑌) 𝑍) (𝑋 (𝑌 𝑍))))

Proof of Theorem mod2ile
StepHypRef Expression
1 simpll 767 . . . . 5 (((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑍 𝑋) → 𝐾 ∈ Lat)
2 simplr3 1218 . . . . . 6 (((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑍 𝑋) → 𝑍𝐵)
3 simplr2 1217 . . . . . 6 (((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑍 𝑋) → 𝑌𝐵)
4 simplr1 1216 . . . . . 6 (((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑍 𝑋) → 𝑋𝐵)
52, 3, 43jca 1129 . . . . 5 (((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑍 𝑋) → (𝑍𝐵𝑌𝐵𝑋𝐵))
61, 5jca 511 . . . 4 (((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑍 𝑋) → (𝐾 ∈ Lat ∧ (𝑍𝐵𝑌𝐵𝑋𝐵)))
7 simpr 484 . . . 4 (((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑍 𝑋) → 𝑍 𝑋)
8 modle.b . . . . 5 𝐵 = (Base‘𝐾)
9 modle.l . . . . 5 = (le‘𝐾)
10 modle.j . . . . 5 = (join‘𝐾)
11 modle.m . . . . 5 = (meet‘𝐾)
128, 9, 10, 11mod1ile 18538 . . . 4 ((𝐾 ∈ Lat ∧ (𝑍𝐵𝑌𝐵𝑋𝐵)) → (𝑍 𝑋 → (𝑍 (𝑌 𝑋)) ((𝑍 𝑌) 𝑋)))
136, 7, 12sylc 65 . . 3 (((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑍 𝑋) → (𝑍 (𝑌 𝑋)) ((𝑍 𝑌) 𝑋))
148, 11latmcom 18508 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = (𝑌 𝑋))
151, 4, 3, 14syl3anc 1373 . . . . 5 (((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑍 𝑋) → (𝑋 𝑌) = (𝑌 𝑋))
1615oveq1d 7446 . . . 4 (((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑍 𝑋) → ((𝑋 𝑌) 𝑍) = ((𝑌 𝑋) 𝑍))
178, 11latmcl 18485 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑋𝐵) → (𝑌 𝑋) ∈ 𝐵)
181, 3, 4, 17syl3anc 1373 . . . . 5 (((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑍 𝑋) → (𝑌 𝑋) ∈ 𝐵)
198, 10latjcom 18492 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑌 𝑋) ∈ 𝐵𝑍𝐵) → ((𝑌 𝑋) 𝑍) = (𝑍 (𝑌 𝑋)))
201, 18, 2, 19syl3anc 1373 . . . 4 (((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑍 𝑋) → ((𝑌 𝑋) 𝑍) = (𝑍 (𝑌 𝑋)))
2116, 20eqtrd 2777 . . 3 (((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑍 𝑋) → ((𝑋 𝑌) 𝑍) = (𝑍 (𝑌 𝑋)))
228, 10latjcom 18492 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑍𝐵) → (𝑌 𝑍) = (𝑍 𝑌))
231, 3, 2, 22syl3anc 1373 . . . . 5 (((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑍 𝑋) → (𝑌 𝑍) = (𝑍 𝑌))
2423oveq2d 7447 . . . 4 (((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑍 𝑋) → (𝑋 (𝑌 𝑍)) = (𝑋 (𝑍 𝑌)))
258, 10latjcl 18484 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑍𝐵𝑌𝐵) → (𝑍 𝑌) ∈ 𝐵)
261, 2, 3, 25syl3anc 1373 . . . . 5 (((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑍 𝑋) → (𝑍 𝑌) ∈ 𝐵)
278, 11latmcom 18508 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵 ∧ (𝑍 𝑌) ∈ 𝐵) → (𝑋 (𝑍 𝑌)) = ((𝑍 𝑌) 𝑋))
281, 4, 26, 27syl3anc 1373 . . . 4 (((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑍 𝑋) → (𝑋 (𝑍 𝑌)) = ((𝑍 𝑌) 𝑋))
2924, 28eqtrd 2777 . . 3 (((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑍 𝑋) → (𝑋 (𝑌 𝑍)) = ((𝑍 𝑌) 𝑋))
3013, 21, 293brtr4d 5175 . 2 (((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ 𝑍 𝑋) → ((𝑋 𝑌) 𝑍) (𝑋 (𝑌 𝑍)))
3130ex 412 1 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑍 𝑋 → ((𝑋 𝑌) 𝑍) (𝑋 (𝑌 𝑍))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108   class class class wbr 5143  cfv 6561  (class class class)co 7431  Basecbs 17247  lecple 17304  joincjn 18357  meetcmee 18358  Latclat 18476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-poset 18359  df-lub 18391  df-glb 18392  df-join 18393  df-meet 18394  df-lat 18477
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator