Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem24 Structured version   Visualization version   GIF version

Theorem fourierdlem24 46087
Description: A sufficient condition for module being nonzero. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
fourierdlem24 (𝐴 ∈ ((-π[,]π) ∖ {0}) → (𝐴 mod (2 · π)) ≠ 0)

Proof of Theorem fourierdlem24
StepHypRef Expression
1 0zd 12623 . . . . 5 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 0 < 𝐴) → 0 ∈ ℤ)
2 pire 26515 . . . . . . . . . 10 π ∈ ℝ
32renegcli 11568 . . . . . . . . 9 -π ∈ ℝ
4 iccssre 13466 . . . . . . . . 9 ((-π ∈ ℝ ∧ π ∈ ℝ) → (-π[,]π) ⊆ ℝ)
53, 2, 4mp2an 692 . . . . . . . 8 (-π[,]π) ⊆ ℝ
6 eldifi 4141 . . . . . . . 8 (𝐴 ∈ ((-π[,]π) ∖ {0}) → 𝐴 ∈ (-π[,]π))
75, 6sselid 3993 . . . . . . 7 (𝐴 ∈ ((-π[,]π) ∖ {0}) → 𝐴 ∈ ℝ)
87adantr 480 . . . . . 6 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 0 < 𝐴) → 𝐴 ∈ ℝ)
9 2re 12338 . . . . . . . 8 2 ∈ ℝ
109, 2remulcli 11275 . . . . . . 7 (2 · π) ∈ ℝ
1110a1i 11 . . . . . 6 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 0 < 𝐴) → (2 · π) ∈ ℝ)
12 simpr 484 . . . . . 6 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 0 < 𝐴) → 0 < 𝐴)
13 2pos 12367 . . . . . . . 8 0 < 2
14 pipos 26517 . . . . . . . 8 0 < π
159, 2, 13, 14mulgt0ii 11392 . . . . . . 7 0 < (2 · π)
1615a1i 11 . . . . . 6 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 0 < 𝐴) → 0 < (2 · π))
178, 11, 12, 16divgt0d 12201 . . . . 5 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 0 < 𝐴) → 0 < (𝐴 / (2 · π)))
1811, 16elrpd 13072 . . . . . . . 8 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 0 < 𝐴) → (2 · π) ∈ ℝ+)
192a1i 11 . . . . . . . . . 10 (𝐴 ∈ ((-π[,]π) ∖ {0}) → π ∈ ℝ)
2010a1i 11 . . . . . . . . . 10 (𝐴 ∈ ((-π[,]π) ∖ {0}) → (2 · π) ∈ ℝ)
213rexri 11317 . . . . . . . . . . . 12 -π ∈ ℝ*
2221a1i 11 . . . . . . . . . . 11 (𝐴 ∈ ((-π[,]π) ∖ {0}) → -π ∈ ℝ*)
2319rexrd 11309 . . . . . . . . . . 11 (𝐴 ∈ ((-π[,]π) ∖ {0}) → π ∈ ℝ*)
24 iccleub 13439 . . . . . . . . . . 11 ((-π ∈ ℝ* ∧ π ∈ ℝ*𝐴 ∈ (-π[,]π)) → 𝐴 ≤ π)
2522, 23, 6, 24syl3anc 1370 . . . . . . . . . 10 (𝐴 ∈ ((-π[,]π) ∖ {0}) → 𝐴 ≤ π)
26 pirp 26518 . . . . . . . . . . 11 π ∈ ℝ+
27 2timesgt 45239 . . . . . . . . . . 11 (π ∈ ℝ+ → π < (2 · π))
2826, 27mp1i 13 . . . . . . . . . 10 (𝐴 ∈ ((-π[,]π) ∖ {0}) → π < (2 · π))
297, 19, 20, 25, 28lelttrd 11417 . . . . . . . . 9 (𝐴 ∈ ((-π[,]π) ∖ {0}) → 𝐴 < (2 · π))
3029adantr 480 . . . . . . . 8 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 0 < 𝐴) → 𝐴 < (2 · π))
318, 11, 18, 30ltdiv1dd 13132 . . . . . . 7 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 0 < 𝐴) → (𝐴 / (2 · π)) < ((2 · π) / (2 · π)))
3210recni 11273 . . . . . . . 8 (2 · π) ∈ ℂ
3310, 15gt0ne0ii 11797 . . . . . . . 8 (2 · π) ≠ 0
3432, 33dividi 11998 . . . . . . 7 ((2 · π) / (2 · π)) = 1
3531, 34breqtrdi 5189 . . . . . 6 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 0 < 𝐴) → (𝐴 / (2 · π)) < 1)
36 0p1e1 12386 . . . . . 6 (0 + 1) = 1
3735, 36breqtrrdi 5190 . . . . 5 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 0 < 𝐴) → (𝐴 / (2 · π)) < (0 + 1))
38 btwnnz 12692 . . . . 5 ((0 ∈ ℤ ∧ 0 < (𝐴 / (2 · π)) ∧ (𝐴 / (2 · π)) < (0 + 1)) → ¬ (𝐴 / (2 · π)) ∈ ℤ)
391, 17, 37, 38syl3anc 1370 . . . 4 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 0 < 𝐴) → ¬ (𝐴 / (2 · π)) ∈ ℤ)
40 simpl 482 . . . . 5 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ ¬ 0 < 𝐴) → 𝐴 ∈ ((-π[,]π) ∖ {0}))
417adantr 480 . . . . . 6 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ ¬ 0 < 𝐴) → 𝐴 ∈ ℝ)
42 0red 11262 . . . . . 6 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ ¬ 0 < 𝐴) → 0 ∈ ℝ)
43 simpr 484 . . . . . . 7 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ ¬ 0 < 𝐴) → ¬ 0 < 𝐴)
4441, 42, 43nltled 11409 . . . . . 6 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ ¬ 0 < 𝐴) → 𝐴 ≤ 0)
45 eldifsni 4795 . . . . . . . 8 (𝐴 ∈ ((-π[,]π) ∖ {0}) → 𝐴 ≠ 0)
4645necomd 2994 . . . . . . 7 (𝐴 ∈ ((-π[,]π) ∖ {0}) → 0 ≠ 𝐴)
4746adantr 480 . . . . . 6 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ ¬ 0 < 𝐴) → 0 ≠ 𝐴)
4841, 42, 44, 47leneltd 11413 . . . . 5 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ ¬ 0 < 𝐴) → 𝐴 < 0)
49 neg1z 12651 . . . . . . 7 -1 ∈ ℤ
5049a1i 11 . . . . . 6 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 𝐴 < 0) → -1 ∈ ℤ)
5133a1i 11 . . . . . . . . 9 (𝐴 ∈ ((-π[,]π) ∖ {0}) → (2 · π) ≠ 0)
527, 20, 51redivcld 12093 . . . . . . . 8 (𝐴 ∈ ((-π[,]π) ∖ {0}) → (𝐴 / (2 · π)) ∈ ℝ)
5352adantr 480 . . . . . . 7 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 𝐴 < 0) → (𝐴 / (2 · π)) ∈ ℝ)
54 1red 11260 . . . . . . 7 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 𝐴 < 0) → 1 ∈ ℝ)
557recnd 11287 . . . . . . . . . 10 (𝐴 ∈ ((-π[,]π) ∖ {0}) → 𝐴 ∈ ℂ)
5655adantr 480 . . . . . . . . 9 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 𝐴 < 0) → 𝐴 ∈ ℂ)
5732a1i 11 . . . . . . . . 9 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 𝐴 < 0) → (2 · π) ∈ ℂ)
5833a1i 11 . . . . . . . . 9 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 𝐴 < 0) → (2 · π) ≠ 0)
5956, 57, 58divnegd 12054 . . . . . . . 8 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 𝐴 < 0) → -(𝐴 / (2 · π)) = (-𝐴 / (2 · π)))
607renegcld 11688 . . . . . . . . . . 11 (𝐴 ∈ ((-π[,]π) ∖ {0}) → -𝐴 ∈ ℝ)
6160adantr 480 . . . . . . . . . 10 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 𝐴 < 0) → -𝐴 ∈ ℝ)
6210a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 𝐴 < 0) → (2 · π) ∈ ℝ)
63 2rp 13037 . . . . . . . . . . . 12 2 ∈ ℝ+
64 rpmulcl 13056 . . . . . . . . . . . 12 ((2 ∈ ℝ+ ∧ π ∈ ℝ+) → (2 · π) ∈ ℝ+)
6563, 26, 64mp2an 692 . . . . . . . . . . 11 (2 · π) ∈ ℝ+
6665a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 𝐴 < 0) → (2 · π) ∈ ℝ+)
67 iccgelb 13440 . . . . . . . . . . . . . 14 ((-π ∈ ℝ* ∧ π ∈ ℝ*𝐴 ∈ (-π[,]π)) → -π ≤ 𝐴)
6822, 23, 6, 67syl3anc 1370 . . . . . . . . . . . . 13 (𝐴 ∈ ((-π[,]π) ∖ {0}) → -π ≤ 𝐴)
6919, 7, 68lenegcon1d 11843 . . . . . . . . . . . 12 (𝐴 ∈ ((-π[,]π) ∖ {0}) → -𝐴 ≤ π)
7060, 19, 20, 69, 28lelttrd 11417 . . . . . . . . . . 11 (𝐴 ∈ ((-π[,]π) ∖ {0}) → -𝐴 < (2 · π))
7170adantr 480 . . . . . . . . . 10 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 𝐴 < 0) → -𝐴 < (2 · π))
7261, 62, 66, 71ltdiv1dd 13132 . . . . . . . . 9 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 𝐴 < 0) → (-𝐴 / (2 · π)) < ((2 · π) / (2 · π)))
7372, 34breqtrdi 5189 . . . . . . . 8 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 𝐴 < 0) → (-𝐴 / (2 · π)) < 1)
7459, 73eqbrtrd 5170 . . . . . . 7 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 𝐴 < 0) → -(𝐴 / (2 · π)) < 1)
7553, 54, 74ltnegcon1d 11841 . . . . . 6 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 𝐴 < 0) → -1 < (𝐴 / (2 · π)))
767adantr 480 . . . . . . . 8 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 𝐴 < 0) → 𝐴 ∈ ℝ)
77 simpr 484 . . . . . . . 8 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 𝐴 < 0) → 𝐴 < 0)
7876, 66, 77divlt0gt0d 45237 . . . . . . 7 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 𝐴 < 0) → (𝐴 / (2 · π)) < 0)
79 neg1cn 12378 . . . . . . . . 9 -1 ∈ ℂ
80 ax-1cn 11211 . . . . . . . . 9 1 ∈ ℂ
8179, 80addcomi 11450 . . . . . . . 8 (-1 + 1) = (1 + -1)
82 1pneg1e0 12383 . . . . . . . 8 (1 + -1) = 0
8381, 82eqtr2i 2764 . . . . . . 7 0 = (-1 + 1)
8478, 83breqtrdi 5189 . . . . . 6 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 𝐴 < 0) → (𝐴 / (2 · π)) < (-1 + 1))
85 btwnnz 12692 . . . . . 6 ((-1 ∈ ℤ ∧ -1 < (𝐴 / (2 · π)) ∧ (𝐴 / (2 · π)) < (-1 + 1)) → ¬ (𝐴 / (2 · π)) ∈ ℤ)
8650, 75, 84, 85syl3anc 1370 . . . . 5 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 𝐴 < 0) → ¬ (𝐴 / (2 · π)) ∈ ℤ)
8740, 48, 86syl2anc 584 . . . 4 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ ¬ 0 < 𝐴) → ¬ (𝐴 / (2 · π)) ∈ ℤ)
8839, 87pm2.61dan 813 . . 3 (𝐴 ∈ ((-π[,]π) ∖ {0}) → ¬ (𝐴 / (2 · π)) ∈ ℤ)
8965a1i 11 . . . 4 (𝐴 ∈ ((-π[,]π) ∖ {0}) → (2 · π) ∈ ℝ+)
90 mod0 13913 . . . 4 ((𝐴 ∈ ℝ ∧ (2 · π) ∈ ℝ+) → ((𝐴 mod (2 · π)) = 0 ↔ (𝐴 / (2 · π)) ∈ ℤ))
917, 89, 90syl2anc 584 . . 3 (𝐴 ∈ ((-π[,]π) ∖ {0}) → ((𝐴 mod (2 · π)) = 0 ↔ (𝐴 / (2 · π)) ∈ ℤ))
9288, 91mtbird 325 . 2 (𝐴 ∈ ((-π[,]π) ∖ {0}) → ¬ (𝐴 mod (2 · π)) = 0)
9392neqned 2945 1 (𝐴 ∈ ((-π[,]π) ∖ {0}) → (𝐴 mod (2 · π)) ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wne 2938  cdif 3960  wss 3963  {csn 4631   class class class wbr 5148  (class class class)co 7431  cc 11151  cr 11152  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158  *cxr 11292   < clt 11293  cle 11294  -cneg 11491   / cdiv 11918  2c2 12319  cz 12611  +crp 13032  [,]cicc 13387   mod cmo 13906  πcpi 16099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-pm 8868  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-fi 9449  df-sup 9480  df-inf 9481  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ioo 13388  df-ioc 13389  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-fac 14310  df-bc 14339  df-hash 14367  df-shft 15103  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-limsup 15504  df-clim 15521  df-rlim 15522  df-sum 15720  df-ef 16100  df-sin 16102  df-cos 16103  df-pi 16105  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17469  df-topn 17470  df-0g 17488  df-gsum 17489  df-topgen 17490  df-pt 17491  df-prds 17494  df-xrs 17549  df-qtop 17554  df-imas 17555  df-xps 17557  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-mulg 19099  df-cntz 19348  df-cmn 19815  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-fbas 21379  df-fg 21380  df-cnfld 21383  df-top 22916  df-topon 22933  df-topsp 22955  df-bases 22969  df-cld 23043  df-ntr 23044  df-cls 23045  df-nei 23122  df-lp 23160  df-perf 23161  df-cn 23251  df-cnp 23252  df-haus 23339  df-tx 23586  df-hmeo 23779  df-fil 23870  df-fm 23962  df-flim 23963  df-flf 23964  df-xms 24346  df-ms 24347  df-tms 24348  df-cncf 24918  df-limc 25916  df-dv 25917
This theorem is referenced by:  fourierdlem66  46128
  Copyright terms: Public domain W3C validator