Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem24 Structured version   Visualization version   GIF version

Theorem fourierdlem24 41853
Description: A sufficient condition for module being nonzero. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
fourierdlem24 (𝐴 ∈ ((-π[,]π) ∖ {0}) → (𝐴 mod (2 · π)) ≠ 0)

Proof of Theorem fourierdlem24
StepHypRef Expression
1 0zd 11805 . . . . 5 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 0 < 𝐴) → 0 ∈ ℤ)
2 pire 24747 . . . . . . . . . 10 π ∈ ℝ
32renegcli 10748 . . . . . . . . 9 -π ∈ ℝ
4 iccssre 12634 . . . . . . . . 9 ((-π ∈ ℝ ∧ π ∈ ℝ) → (-π[,]π) ⊆ ℝ)
53, 2, 4mp2an 679 . . . . . . . 8 (-π[,]π) ⊆ ℝ
6 eldifi 3993 . . . . . . . 8 (𝐴 ∈ ((-π[,]π) ∖ {0}) → 𝐴 ∈ (-π[,]π))
75, 6sseldi 3856 . . . . . . 7 (𝐴 ∈ ((-π[,]π) ∖ {0}) → 𝐴 ∈ ℝ)
87adantr 473 . . . . . 6 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 0 < 𝐴) → 𝐴 ∈ ℝ)
9 2re 11514 . . . . . . . 8 2 ∈ ℝ
109, 2remulcli 10456 . . . . . . 7 (2 · π) ∈ ℝ
1110a1i 11 . . . . . 6 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 0 < 𝐴) → (2 · π) ∈ ℝ)
12 simpr 477 . . . . . 6 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 0 < 𝐴) → 0 < 𝐴)
13 2pos 11550 . . . . . . . 8 0 < 2
14 pipos 24749 . . . . . . . 8 0 < π
159, 2, 13, 14mulgt0ii 10573 . . . . . . 7 0 < (2 · π)
1615a1i 11 . . . . . 6 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 0 < 𝐴) → 0 < (2 · π))
178, 11, 12, 16divgt0d 11376 . . . . 5 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 0 < 𝐴) → 0 < (𝐴 / (2 · π)))
1811, 16elrpd 12245 . . . . . . . 8 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 0 < 𝐴) → (2 · π) ∈ ℝ+)
192a1i 11 . . . . . . . . . 10 (𝐴 ∈ ((-π[,]π) ∖ {0}) → π ∈ ℝ)
2010a1i 11 . . . . . . . . . 10 (𝐴 ∈ ((-π[,]π) ∖ {0}) → (2 · π) ∈ ℝ)
213rexri 10499 . . . . . . . . . . . 12 -π ∈ ℝ*
2221a1i 11 . . . . . . . . . . 11 (𝐴 ∈ ((-π[,]π) ∖ {0}) → -π ∈ ℝ*)
2319rexrd 10490 . . . . . . . . . . 11 (𝐴 ∈ ((-π[,]π) ∖ {0}) → π ∈ ℝ*)
24 iccleub 12608 . . . . . . . . . . 11 ((-π ∈ ℝ* ∧ π ∈ ℝ*𝐴 ∈ (-π[,]π)) → 𝐴 ≤ π)
2522, 23, 6, 24syl3anc 1351 . . . . . . . . . 10 (𝐴 ∈ ((-π[,]π) ∖ {0}) → 𝐴 ≤ π)
26 pirp 24750 . . . . . . . . . . 11 π ∈ ℝ+
27 2timesgt 40989 . . . . . . . . . . 11 (π ∈ ℝ+ → π < (2 · π))
2826, 27mp1i 13 . . . . . . . . . 10 (𝐴 ∈ ((-π[,]π) ∖ {0}) → π < (2 · π))
297, 19, 20, 25, 28lelttrd 10598 . . . . . . . . 9 (𝐴 ∈ ((-π[,]π) ∖ {0}) → 𝐴 < (2 · π))
3029adantr 473 . . . . . . . 8 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 0 < 𝐴) → 𝐴 < (2 · π))
318, 11, 18, 30ltdiv1dd 12305 . . . . . . 7 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 0 < 𝐴) → (𝐴 / (2 · π)) < ((2 · π) / (2 · π)))
3210recni 10454 . . . . . . . 8 (2 · π) ∈ ℂ
3310, 15gt0ne0ii 10977 . . . . . . . 8 (2 · π) ≠ 0
3432, 33dividi 11174 . . . . . . 7 ((2 · π) / (2 · π)) = 1
3531, 34syl6breq 4970 . . . . . 6 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 0 < 𝐴) → (𝐴 / (2 · π)) < 1)
36 0p1e1 11569 . . . . . 6 (0 + 1) = 1
3735, 36syl6breqr 4971 . . . . 5 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 0 < 𝐴) → (𝐴 / (2 · π)) < (0 + 1))
38 btwnnz 11871 . . . . 5 ((0 ∈ ℤ ∧ 0 < (𝐴 / (2 · π)) ∧ (𝐴 / (2 · π)) < (0 + 1)) → ¬ (𝐴 / (2 · π)) ∈ ℤ)
391, 17, 37, 38syl3anc 1351 . . . 4 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 0 < 𝐴) → ¬ (𝐴 / (2 · π)) ∈ ℤ)
40 simpl 475 . . . . 5 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ ¬ 0 < 𝐴) → 𝐴 ∈ ((-π[,]π) ∖ {0}))
417adantr 473 . . . . . 6 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ ¬ 0 < 𝐴) → 𝐴 ∈ ℝ)
42 0red 10443 . . . . . 6 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ ¬ 0 < 𝐴) → 0 ∈ ℝ)
43 simpr 477 . . . . . . 7 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ ¬ 0 < 𝐴) → ¬ 0 < 𝐴)
4441, 42, 43nltled 10590 . . . . . 6 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ ¬ 0 < 𝐴) → 𝐴 ≤ 0)
45 eldifsni 4596 . . . . . . . 8 (𝐴 ∈ ((-π[,]π) ∖ {0}) → 𝐴 ≠ 0)
4645necomd 3022 . . . . . . 7 (𝐴 ∈ ((-π[,]π) ∖ {0}) → 0 ≠ 𝐴)
4746adantr 473 . . . . . 6 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ ¬ 0 < 𝐴) → 0 ≠ 𝐴)
4841, 42, 44, 47leneltd 10594 . . . . 5 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ ¬ 0 < 𝐴) → 𝐴 < 0)
49 neg1z 11831 . . . . . . 7 -1 ∈ ℤ
5049a1i 11 . . . . . 6 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 𝐴 < 0) → -1 ∈ ℤ)
5133a1i 11 . . . . . . . . 9 (𝐴 ∈ ((-π[,]π) ∖ {0}) → (2 · π) ≠ 0)
527, 20, 51redivcld 11269 . . . . . . . 8 (𝐴 ∈ ((-π[,]π) ∖ {0}) → (𝐴 / (2 · π)) ∈ ℝ)
5352adantr 473 . . . . . . 7 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 𝐴 < 0) → (𝐴 / (2 · π)) ∈ ℝ)
54 1red 10440 . . . . . . 7 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 𝐴 < 0) → 1 ∈ ℝ)
557recnd 10468 . . . . . . . . . 10 (𝐴 ∈ ((-π[,]π) ∖ {0}) → 𝐴 ∈ ℂ)
5655adantr 473 . . . . . . . . 9 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 𝐴 < 0) → 𝐴 ∈ ℂ)
5732a1i 11 . . . . . . . . 9 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 𝐴 < 0) → (2 · π) ∈ ℂ)
5833a1i 11 . . . . . . . . 9 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 𝐴 < 0) → (2 · π) ≠ 0)
5956, 57, 58divnegd 11230 . . . . . . . 8 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 𝐴 < 0) → -(𝐴 / (2 · π)) = (-𝐴 / (2 · π)))
607renegcld 10868 . . . . . . . . . . 11 (𝐴 ∈ ((-π[,]π) ∖ {0}) → -𝐴 ∈ ℝ)
6160adantr 473 . . . . . . . . . 10 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 𝐴 < 0) → -𝐴 ∈ ℝ)
6210a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 𝐴 < 0) → (2 · π) ∈ ℝ)
63 2rp 12209 . . . . . . . . . . . 12 2 ∈ ℝ+
64 rpmulcl 12229 . . . . . . . . . . . 12 ((2 ∈ ℝ+ ∧ π ∈ ℝ+) → (2 · π) ∈ ℝ+)
6563, 26, 64mp2an 679 . . . . . . . . . . 11 (2 · π) ∈ ℝ+
6665a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 𝐴 < 0) → (2 · π) ∈ ℝ+)
67 iccgelb 12609 . . . . . . . . . . . . . 14 ((-π ∈ ℝ* ∧ π ∈ ℝ*𝐴 ∈ (-π[,]π)) → -π ≤ 𝐴)
6822, 23, 6, 67syl3anc 1351 . . . . . . . . . . . . 13 (𝐴 ∈ ((-π[,]π) ∖ {0}) → -π ≤ 𝐴)
6919, 7, 68lenegcon1d 11023 . . . . . . . . . . . 12 (𝐴 ∈ ((-π[,]π) ∖ {0}) → -𝐴 ≤ π)
7060, 19, 20, 69, 28lelttrd 10598 . . . . . . . . . . 11 (𝐴 ∈ ((-π[,]π) ∖ {0}) → -𝐴 < (2 · π))
7170adantr 473 . . . . . . . . . 10 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 𝐴 < 0) → -𝐴 < (2 · π))
7261, 62, 66, 71ltdiv1dd 12305 . . . . . . . . 9 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 𝐴 < 0) → (-𝐴 / (2 · π)) < ((2 · π) / (2 · π)))
7372, 34syl6breq 4970 . . . . . . . 8 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 𝐴 < 0) → (-𝐴 / (2 · π)) < 1)
7459, 73eqbrtrd 4951 . . . . . . 7 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 𝐴 < 0) → -(𝐴 / (2 · π)) < 1)
7553, 54, 74ltnegcon1d 11021 . . . . . 6 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 𝐴 < 0) → -1 < (𝐴 / (2 · π)))
767adantr 473 . . . . . . . 8 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 𝐴 < 0) → 𝐴 ∈ ℝ)
77 simpr 477 . . . . . . . 8 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 𝐴 < 0) → 𝐴 < 0)
7876, 66, 77divlt0gt0d 40987 . . . . . . 7 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 𝐴 < 0) → (𝐴 / (2 · π)) < 0)
79 neg1cn 11561 . . . . . . . . 9 -1 ∈ ℂ
80 ax-1cn 10393 . . . . . . . . 9 1 ∈ ℂ
8179, 80addcomi 10631 . . . . . . . 8 (-1 + 1) = (1 + -1)
82 1pneg1e0 11566 . . . . . . . 8 (1 + -1) = 0
8381, 82eqtr2i 2803 . . . . . . 7 0 = (-1 + 1)
8478, 83syl6breq 4970 . . . . . 6 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 𝐴 < 0) → (𝐴 / (2 · π)) < (-1 + 1))
85 btwnnz 11871 . . . . . 6 ((-1 ∈ ℤ ∧ -1 < (𝐴 / (2 · π)) ∧ (𝐴 / (2 · π)) < (-1 + 1)) → ¬ (𝐴 / (2 · π)) ∈ ℤ)
8650, 75, 84, 85syl3anc 1351 . . . . 5 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 𝐴 < 0) → ¬ (𝐴 / (2 · π)) ∈ ℤ)
8740, 48, 86syl2anc 576 . . . 4 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ ¬ 0 < 𝐴) → ¬ (𝐴 / (2 · π)) ∈ ℤ)
8839, 87pm2.61dan 800 . . 3 (𝐴 ∈ ((-π[,]π) ∖ {0}) → ¬ (𝐴 / (2 · π)) ∈ ℤ)
8965a1i 11 . . . 4 (𝐴 ∈ ((-π[,]π) ∖ {0}) → (2 · π) ∈ ℝ+)
90 mod0 13059 . . . 4 ((𝐴 ∈ ℝ ∧ (2 · π) ∈ ℝ+) → ((𝐴 mod (2 · π)) = 0 ↔ (𝐴 / (2 · π)) ∈ ℤ))
917, 89, 90syl2anc 576 . . 3 (𝐴 ∈ ((-π[,]π) ∖ {0}) → ((𝐴 mod (2 · π)) = 0 ↔ (𝐴 / (2 · π)) ∈ ℤ))
9288, 91mtbird 317 . 2 (𝐴 ∈ ((-π[,]π) ∖ {0}) → ¬ (𝐴 mod (2 · π)) = 0)
9392neqned 2974 1 (𝐴 ∈ ((-π[,]π) ∖ {0}) → (𝐴 mod (2 · π)) ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 387   = wceq 1507  wcel 2050  wne 2967  cdif 3826  wss 3829  {csn 4441   class class class wbr 4929  (class class class)co 6976  cc 10333  cr 10334  0cc0 10335  1c1 10336   + caddc 10338   · cmul 10340  *cxr 10473   < clt 10474  cle 10475  -cneg 10671   / cdiv 11098  2c2 11495  cz 11793  +crp 12204  [,]cicc 12557   mod cmo 13052  πcpi 15280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-rep 5049  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279  ax-inf2 8898  ax-cnex 10391  ax-resscn 10392  ax-1cn 10393  ax-icn 10394  ax-addcl 10395  ax-addrcl 10396  ax-mulcl 10397  ax-mulrcl 10398  ax-mulcom 10399  ax-addass 10400  ax-mulass 10401  ax-distr 10402  ax-i2m1 10403  ax-1ne0 10404  ax-1rid 10405  ax-rnegex 10406  ax-rrecex 10407  ax-cnre 10408  ax-pre-lttri 10409  ax-pre-lttrn 10410  ax-pre-ltadd 10411  ax-pre-mulgt0 10412  ax-pre-sup 10413  ax-addf 10414  ax-mulf 10415
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-fal 1520  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rmo 3096  df-rab 3097  df-v 3417  df-sbc 3682  df-csb 3787  df-dif 3832  df-un 3834  df-in 3836  df-ss 3843  df-pss 3845  df-nul 4179  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-tp 4446  df-op 4448  df-uni 4713  df-int 4750  df-iun 4794  df-iin 4795  df-br 4930  df-opab 4992  df-mpt 5009  df-tr 5031  df-id 5312  df-eprel 5317  df-po 5326  df-so 5327  df-fr 5366  df-se 5367  df-we 5368  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-pred 5986  df-ord 6032  df-on 6033  df-lim 6034  df-suc 6035  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-isom 6197  df-riota 6937  df-ov 6979  df-oprab 6980  df-mpo 6981  df-of 7227  df-om 7397  df-1st 7501  df-2nd 7502  df-supp 7634  df-wrecs 7750  df-recs 7812  df-rdg 7850  df-1o 7905  df-2o 7906  df-oadd 7909  df-er 8089  df-map 8208  df-pm 8209  df-ixp 8260  df-en 8307  df-dom 8308  df-sdom 8309  df-fin 8310  df-fsupp 8629  df-fi 8670  df-sup 8701  df-inf 8702  df-oi 8769  df-card 9162  df-cda 9388  df-pnf 10476  df-mnf 10477  df-xr 10478  df-ltxr 10479  df-le 10480  df-sub 10672  df-neg 10673  df-div 11099  df-nn 11440  df-2 11503  df-3 11504  df-4 11505  df-5 11506  df-6 11507  df-7 11508  df-8 11509  df-9 11510  df-n0 11708  df-z 11794  df-dec 11912  df-uz 12059  df-q 12163  df-rp 12205  df-xneg 12324  df-xadd 12325  df-xmul 12326  df-ioo 12558  df-ioc 12559  df-ico 12560  df-icc 12561  df-fz 12709  df-fzo 12850  df-fl 12977  df-mod 13053  df-seq 13185  df-exp 13245  df-fac 13449  df-bc 13478  df-hash 13506  df-shft 14287  df-cj 14319  df-re 14320  df-im 14321  df-sqrt 14455  df-abs 14456  df-limsup 14689  df-clim 14706  df-rlim 14707  df-sum 14904  df-ef 15281  df-sin 15283  df-cos 15284  df-pi 15286  df-struct 16341  df-ndx 16342  df-slot 16343  df-base 16345  df-sets 16346  df-ress 16347  df-plusg 16434  df-mulr 16435  df-starv 16436  df-sca 16437  df-vsca 16438  df-ip 16439  df-tset 16440  df-ple 16441  df-ds 16443  df-unif 16444  df-hom 16445  df-cco 16446  df-rest 16552  df-topn 16553  df-0g 16571  df-gsum 16572  df-topgen 16573  df-pt 16574  df-prds 16577  df-xrs 16631  df-qtop 16636  df-imas 16637  df-xps 16639  df-mre 16715  df-mrc 16716  df-acs 16718  df-mgm 17710  df-sgrp 17752  df-mnd 17763  df-submnd 17804  df-mulg 18012  df-cntz 18218  df-cmn 18668  df-psmet 20239  df-xmet 20240  df-met 20241  df-bl 20242  df-mopn 20243  df-fbas 20244  df-fg 20245  df-cnfld 20248  df-top 21206  df-topon 21223  df-topsp 21245  df-bases 21258  df-cld 21331  df-ntr 21332  df-cls 21333  df-nei 21410  df-lp 21448  df-perf 21449  df-cn 21539  df-cnp 21540  df-haus 21627  df-tx 21874  df-hmeo 22067  df-fil 22158  df-fm 22250  df-flim 22251  df-flf 22252  df-xms 22633  df-ms 22634  df-tms 22635  df-cncf 23189  df-limc 24167  df-dv 24168
This theorem is referenced by:  fourierdlem66  41894
  Copyright terms: Public domain W3C validator