Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem24 Structured version   Visualization version   GIF version

Theorem fourierdlem24 46103
Description: A sufficient condition for module being nonzero. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
fourierdlem24 (𝐴 ∈ ((-π[,]π) ∖ {0}) → (𝐴 mod (2 · π)) ≠ 0)

Proof of Theorem fourierdlem24
StepHypRef Expression
1 0zd 12608 . . . . 5 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 0 < 𝐴) → 0 ∈ ℤ)
2 pire 26436 . . . . . . . . . 10 π ∈ ℝ
32renegcli 11552 . . . . . . . . 9 -π ∈ ℝ
4 iccssre 13451 . . . . . . . . 9 ((-π ∈ ℝ ∧ π ∈ ℝ) → (-π[,]π) ⊆ ℝ)
53, 2, 4mp2an 692 . . . . . . . 8 (-π[,]π) ⊆ ℝ
6 eldifi 4111 . . . . . . . 8 (𝐴 ∈ ((-π[,]π) ∖ {0}) → 𝐴 ∈ (-π[,]π))
75, 6sselid 3961 . . . . . . 7 (𝐴 ∈ ((-π[,]π) ∖ {0}) → 𝐴 ∈ ℝ)
87adantr 480 . . . . . 6 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 0 < 𝐴) → 𝐴 ∈ ℝ)
9 2re 12322 . . . . . . . 8 2 ∈ ℝ
109, 2remulcli 11259 . . . . . . 7 (2 · π) ∈ ℝ
1110a1i 11 . . . . . 6 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 0 < 𝐴) → (2 · π) ∈ ℝ)
12 simpr 484 . . . . . 6 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 0 < 𝐴) → 0 < 𝐴)
13 2pos 12351 . . . . . . . 8 0 < 2
14 pipos 26438 . . . . . . . 8 0 < π
159, 2, 13, 14mulgt0ii 11376 . . . . . . 7 0 < (2 · π)
1615a1i 11 . . . . . 6 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 0 < 𝐴) → 0 < (2 · π))
178, 11, 12, 16divgt0d 12185 . . . . 5 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 0 < 𝐴) → 0 < (𝐴 / (2 · π)))
1811, 16elrpd 13056 . . . . . . . 8 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 0 < 𝐴) → (2 · π) ∈ ℝ+)
192a1i 11 . . . . . . . . . 10 (𝐴 ∈ ((-π[,]π) ∖ {0}) → π ∈ ℝ)
2010a1i 11 . . . . . . . . . 10 (𝐴 ∈ ((-π[,]π) ∖ {0}) → (2 · π) ∈ ℝ)
213rexri 11301 . . . . . . . . . . . 12 -π ∈ ℝ*
2221a1i 11 . . . . . . . . . . 11 (𝐴 ∈ ((-π[,]π) ∖ {0}) → -π ∈ ℝ*)
2319rexrd 11293 . . . . . . . . . . 11 (𝐴 ∈ ((-π[,]π) ∖ {0}) → π ∈ ℝ*)
24 iccleub 13424 . . . . . . . . . . 11 ((-π ∈ ℝ* ∧ π ∈ ℝ*𝐴 ∈ (-π[,]π)) → 𝐴 ≤ π)
2522, 23, 6, 24syl3anc 1372 . . . . . . . . . 10 (𝐴 ∈ ((-π[,]π) ∖ {0}) → 𝐴 ≤ π)
26 pirp 26439 . . . . . . . . . . 11 π ∈ ℝ+
27 2timesgt 45257 . . . . . . . . . . 11 (π ∈ ℝ+ → π < (2 · π))
2826, 27mp1i 13 . . . . . . . . . 10 (𝐴 ∈ ((-π[,]π) ∖ {0}) → π < (2 · π))
297, 19, 20, 25, 28lelttrd 11401 . . . . . . . . 9 (𝐴 ∈ ((-π[,]π) ∖ {0}) → 𝐴 < (2 · π))
3029adantr 480 . . . . . . . 8 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 0 < 𝐴) → 𝐴 < (2 · π))
318, 11, 18, 30ltdiv1dd 13116 . . . . . . 7 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 0 < 𝐴) → (𝐴 / (2 · π)) < ((2 · π) / (2 · π)))
3210recni 11257 . . . . . . . 8 (2 · π) ∈ ℂ
3310, 15gt0ne0ii 11781 . . . . . . . 8 (2 · π) ≠ 0
3432, 33dividi 11982 . . . . . . 7 ((2 · π) / (2 · π)) = 1
3531, 34breqtrdi 5164 . . . . . 6 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 0 < 𝐴) → (𝐴 / (2 · π)) < 1)
36 0p1e1 12370 . . . . . 6 (0 + 1) = 1
3735, 36breqtrrdi 5165 . . . . 5 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 0 < 𝐴) → (𝐴 / (2 · π)) < (0 + 1))
38 btwnnz 12677 . . . . 5 ((0 ∈ ℤ ∧ 0 < (𝐴 / (2 · π)) ∧ (𝐴 / (2 · π)) < (0 + 1)) → ¬ (𝐴 / (2 · π)) ∈ ℤ)
391, 17, 37, 38syl3anc 1372 . . . 4 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 0 < 𝐴) → ¬ (𝐴 / (2 · π)) ∈ ℤ)
40 simpl 482 . . . . 5 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ ¬ 0 < 𝐴) → 𝐴 ∈ ((-π[,]π) ∖ {0}))
417adantr 480 . . . . . 6 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ ¬ 0 < 𝐴) → 𝐴 ∈ ℝ)
42 0red 11246 . . . . . 6 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ ¬ 0 < 𝐴) → 0 ∈ ℝ)
43 simpr 484 . . . . . . 7 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ ¬ 0 < 𝐴) → ¬ 0 < 𝐴)
4441, 42, 43nltled 11393 . . . . . 6 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ ¬ 0 < 𝐴) → 𝐴 ≤ 0)
45 eldifsni 4770 . . . . . . . 8 (𝐴 ∈ ((-π[,]π) ∖ {0}) → 𝐴 ≠ 0)
4645necomd 2986 . . . . . . 7 (𝐴 ∈ ((-π[,]π) ∖ {0}) → 0 ≠ 𝐴)
4746adantr 480 . . . . . 6 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ ¬ 0 < 𝐴) → 0 ≠ 𝐴)
4841, 42, 44, 47leneltd 11397 . . . . 5 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ ¬ 0 < 𝐴) → 𝐴 < 0)
49 neg1z 12636 . . . . . . 7 -1 ∈ ℤ
5049a1i 11 . . . . . 6 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 𝐴 < 0) → -1 ∈ ℤ)
5133a1i 11 . . . . . . . . 9 (𝐴 ∈ ((-π[,]π) ∖ {0}) → (2 · π) ≠ 0)
527, 20, 51redivcld 12077 . . . . . . . 8 (𝐴 ∈ ((-π[,]π) ∖ {0}) → (𝐴 / (2 · π)) ∈ ℝ)
5352adantr 480 . . . . . . 7 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 𝐴 < 0) → (𝐴 / (2 · π)) ∈ ℝ)
54 1red 11244 . . . . . . 7 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 𝐴 < 0) → 1 ∈ ℝ)
557recnd 11271 . . . . . . . . . 10 (𝐴 ∈ ((-π[,]π) ∖ {0}) → 𝐴 ∈ ℂ)
5655adantr 480 . . . . . . . . 9 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 𝐴 < 0) → 𝐴 ∈ ℂ)
5732a1i 11 . . . . . . . . 9 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 𝐴 < 0) → (2 · π) ∈ ℂ)
5833a1i 11 . . . . . . . . 9 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 𝐴 < 0) → (2 · π) ≠ 0)
5956, 57, 58divnegd 12038 . . . . . . . 8 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 𝐴 < 0) → -(𝐴 / (2 · π)) = (-𝐴 / (2 · π)))
607renegcld 11672 . . . . . . . . . . 11 (𝐴 ∈ ((-π[,]π) ∖ {0}) → -𝐴 ∈ ℝ)
6160adantr 480 . . . . . . . . . 10 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 𝐴 < 0) → -𝐴 ∈ ℝ)
6210a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 𝐴 < 0) → (2 · π) ∈ ℝ)
63 2rp 13021 . . . . . . . . . . . 12 2 ∈ ℝ+
64 rpmulcl 13040 . . . . . . . . . . . 12 ((2 ∈ ℝ+ ∧ π ∈ ℝ+) → (2 · π) ∈ ℝ+)
6563, 26, 64mp2an 692 . . . . . . . . . . 11 (2 · π) ∈ ℝ+
6665a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 𝐴 < 0) → (2 · π) ∈ ℝ+)
67 iccgelb 13425 . . . . . . . . . . . . . 14 ((-π ∈ ℝ* ∧ π ∈ ℝ*𝐴 ∈ (-π[,]π)) → -π ≤ 𝐴)
6822, 23, 6, 67syl3anc 1372 . . . . . . . . . . . . 13 (𝐴 ∈ ((-π[,]π) ∖ {0}) → -π ≤ 𝐴)
6919, 7, 68lenegcon1d 11827 . . . . . . . . . . . 12 (𝐴 ∈ ((-π[,]π) ∖ {0}) → -𝐴 ≤ π)
7060, 19, 20, 69, 28lelttrd 11401 . . . . . . . . . . 11 (𝐴 ∈ ((-π[,]π) ∖ {0}) → -𝐴 < (2 · π))
7170adantr 480 . . . . . . . . . 10 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 𝐴 < 0) → -𝐴 < (2 · π))
7261, 62, 66, 71ltdiv1dd 13116 . . . . . . . . 9 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 𝐴 < 0) → (-𝐴 / (2 · π)) < ((2 · π) / (2 · π)))
7372, 34breqtrdi 5164 . . . . . . . 8 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 𝐴 < 0) → (-𝐴 / (2 · π)) < 1)
7459, 73eqbrtrd 5145 . . . . . . 7 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 𝐴 < 0) → -(𝐴 / (2 · π)) < 1)
7553, 54, 74ltnegcon1d 11825 . . . . . 6 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 𝐴 < 0) → -1 < (𝐴 / (2 · π)))
767adantr 480 . . . . . . . 8 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 𝐴 < 0) → 𝐴 ∈ ℝ)
77 simpr 484 . . . . . . . 8 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 𝐴 < 0) → 𝐴 < 0)
7876, 66, 77divlt0gt0d 45255 . . . . . . 7 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 𝐴 < 0) → (𝐴 / (2 · π)) < 0)
79 neg1cn 12362 . . . . . . . . 9 -1 ∈ ℂ
80 ax-1cn 11195 . . . . . . . . 9 1 ∈ ℂ
8179, 80addcomi 11434 . . . . . . . 8 (-1 + 1) = (1 + -1)
82 1pneg1e0 12367 . . . . . . . 8 (1 + -1) = 0
8381, 82eqtr2i 2758 . . . . . . 7 0 = (-1 + 1)
8478, 83breqtrdi 5164 . . . . . 6 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 𝐴 < 0) → (𝐴 / (2 · π)) < (-1 + 1))
85 btwnnz 12677 . . . . . 6 ((-1 ∈ ℤ ∧ -1 < (𝐴 / (2 · π)) ∧ (𝐴 / (2 · π)) < (-1 + 1)) → ¬ (𝐴 / (2 · π)) ∈ ℤ)
8650, 75, 84, 85syl3anc 1372 . . . . 5 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 𝐴 < 0) → ¬ (𝐴 / (2 · π)) ∈ ℤ)
8740, 48, 86syl2anc 584 . . . 4 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ ¬ 0 < 𝐴) → ¬ (𝐴 / (2 · π)) ∈ ℤ)
8839, 87pm2.61dan 812 . . 3 (𝐴 ∈ ((-π[,]π) ∖ {0}) → ¬ (𝐴 / (2 · π)) ∈ ℤ)
8965a1i 11 . . . 4 (𝐴 ∈ ((-π[,]π) ∖ {0}) → (2 · π) ∈ ℝ+)
90 mod0 13898 . . . 4 ((𝐴 ∈ ℝ ∧ (2 · π) ∈ ℝ+) → ((𝐴 mod (2 · π)) = 0 ↔ (𝐴 / (2 · π)) ∈ ℤ))
917, 89, 90syl2anc 584 . . 3 (𝐴 ∈ ((-π[,]π) ∖ {0}) → ((𝐴 mod (2 · π)) = 0 ↔ (𝐴 / (2 · π)) ∈ ℤ))
9288, 91mtbird 325 . 2 (𝐴 ∈ ((-π[,]π) ∖ {0}) → ¬ (𝐴 mod (2 · π)) = 0)
9392neqned 2938 1 (𝐴 ∈ ((-π[,]π) ∖ {0}) → (𝐴 mod (2 · π)) ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wne 2931  cdif 3928  wss 3931  {csn 4606   class class class wbr 5123  (class class class)co 7413  cc 11135  cr 11136  0cc0 11137  1c1 11138   + caddc 11140   · cmul 11142  *cxr 11276   < clt 11277  cle 11278  -cneg 11475   / cdiv 11902  2c2 12303  cz 12596  +crp 13016  [,]cicc 13372   mod cmo 13891  πcpi 16084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-inf2 9663  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-pre-sup 11215  ax-addf 11216
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-iin 4974  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-se 5618  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-isom 6550  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-of 7679  df-om 7870  df-1st 7996  df-2nd 7997  df-supp 8168  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-er 8727  df-map 8850  df-pm 8851  df-ixp 8920  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-fsupp 9384  df-fi 9433  df-sup 9464  df-inf 9465  df-oi 9532  df-card 9961  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-div 11903  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-9 12318  df-n0 12510  df-z 12597  df-dec 12717  df-uz 12861  df-q 12973  df-rp 13017  df-xneg 13136  df-xadd 13137  df-xmul 13138  df-ioo 13373  df-ioc 13374  df-ico 13375  df-icc 13376  df-fz 13530  df-fzo 13677  df-fl 13814  df-mod 13892  df-seq 14025  df-exp 14085  df-fac 14295  df-bc 14324  df-hash 14352  df-shft 15088  df-cj 15120  df-re 15121  df-im 15122  df-sqrt 15256  df-abs 15257  df-limsup 15489  df-clim 15506  df-rlim 15507  df-sum 15705  df-ef 16085  df-sin 16087  df-cos 16088  df-pi 16090  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17230  df-ress 17253  df-plusg 17286  df-mulr 17287  df-starv 17288  df-sca 17289  df-vsca 17290  df-ip 17291  df-tset 17292  df-ple 17293  df-ds 17295  df-unif 17296  df-hom 17297  df-cco 17298  df-rest 17438  df-topn 17439  df-0g 17457  df-gsum 17458  df-topgen 17459  df-pt 17460  df-prds 17463  df-xrs 17518  df-qtop 17523  df-imas 17524  df-xps 17526  df-mre 17600  df-mrc 17601  df-acs 17603  df-mgm 18622  df-sgrp 18701  df-mnd 18717  df-submnd 18766  df-mulg 19055  df-cntz 19304  df-cmn 19768  df-psmet 21318  df-xmet 21319  df-met 21320  df-bl 21321  df-mopn 21322  df-fbas 21323  df-fg 21324  df-cnfld 21327  df-top 22848  df-topon 22865  df-topsp 22887  df-bases 22900  df-cld 22973  df-ntr 22974  df-cls 22975  df-nei 23052  df-lp 23090  df-perf 23091  df-cn 23181  df-cnp 23182  df-haus 23269  df-tx 23516  df-hmeo 23709  df-fil 23800  df-fm 23892  df-flim 23893  df-flf 23894  df-xms 24275  df-ms 24276  df-tms 24277  df-cncf 24840  df-limc 25837  df-dv 25838
This theorem is referenced by:  fourierdlem66  46144
  Copyright terms: Public domain W3C validator