Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem24 Structured version   Visualization version   GIF version

Theorem fourierdlem24 46132
Description: A sufficient condition for module being nonzero. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Assertion
Ref Expression
fourierdlem24 (𝐴 ∈ ((-π[,]π) ∖ {0}) → (𝐴 mod (2 · π)) ≠ 0)

Proof of Theorem fourierdlem24
StepHypRef Expression
1 0zd 12502 . . . . 5 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 0 < 𝐴) → 0 ∈ ℤ)
2 pire 26383 . . . . . . . . . 10 π ∈ ℝ
32renegcli 11444 . . . . . . . . 9 -π ∈ ℝ
4 iccssre 13351 . . . . . . . . 9 ((-π ∈ ℝ ∧ π ∈ ℝ) → (-π[,]π) ⊆ ℝ)
53, 2, 4mp2an 692 . . . . . . . 8 (-π[,]π) ⊆ ℝ
6 eldifi 4084 . . . . . . . 8 (𝐴 ∈ ((-π[,]π) ∖ {0}) → 𝐴 ∈ (-π[,]π))
75, 6sselid 3935 . . . . . . 7 (𝐴 ∈ ((-π[,]π) ∖ {0}) → 𝐴 ∈ ℝ)
87adantr 480 . . . . . 6 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 0 < 𝐴) → 𝐴 ∈ ℝ)
9 2re 12221 . . . . . . . 8 2 ∈ ℝ
109, 2remulcli 11150 . . . . . . 7 (2 · π) ∈ ℝ
1110a1i 11 . . . . . 6 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 0 < 𝐴) → (2 · π) ∈ ℝ)
12 simpr 484 . . . . . 6 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 0 < 𝐴) → 0 < 𝐴)
13 2pos 12250 . . . . . . . 8 0 < 2
14 pipos 26385 . . . . . . . 8 0 < π
159, 2, 13, 14mulgt0ii 11268 . . . . . . 7 0 < (2 · π)
1615a1i 11 . . . . . 6 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 0 < 𝐴) → 0 < (2 · π))
178, 11, 12, 16divgt0d 12079 . . . . 5 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 0 < 𝐴) → 0 < (𝐴 / (2 · π)))
1811, 16elrpd 12953 . . . . . . . 8 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 0 < 𝐴) → (2 · π) ∈ ℝ+)
192a1i 11 . . . . . . . . . 10 (𝐴 ∈ ((-π[,]π) ∖ {0}) → π ∈ ℝ)
2010a1i 11 . . . . . . . . . 10 (𝐴 ∈ ((-π[,]π) ∖ {0}) → (2 · π) ∈ ℝ)
213rexri 11192 . . . . . . . . . . . 12 -π ∈ ℝ*
2221a1i 11 . . . . . . . . . . 11 (𝐴 ∈ ((-π[,]π) ∖ {0}) → -π ∈ ℝ*)
2319rexrd 11184 . . . . . . . . . . 11 (𝐴 ∈ ((-π[,]π) ∖ {0}) → π ∈ ℝ*)
24 iccleub 13323 . . . . . . . . . . 11 ((-π ∈ ℝ* ∧ π ∈ ℝ*𝐴 ∈ (-π[,]π)) → 𝐴 ≤ π)
2522, 23, 6, 24syl3anc 1373 . . . . . . . . . 10 (𝐴 ∈ ((-π[,]π) ∖ {0}) → 𝐴 ≤ π)
26 pirp 26387 . . . . . . . . . . 11 π ∈ ℝ+
27 2timesgt 45290 . . . . . . . . . . 11 (π ∈ ℝ+ → π < (2 · π))
2826, 27mp1i 13 . . . . . . . . . 10 (𝐴 ∈ ((-π[,]π) ∖ {0}) → π < (2 · π))
297, 19, 20, 25, 28lelttrd 11293 . . . . . . . . 9 (𝐴 ∈ ((-π[,]π) ∖ {0}) → 𝐴 < (2 · π))
3029adantr 480 . . . . . . . 8 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 0 < 𝐴) → 𝐴 < (2 · π))
318, 11, 18, 30ltdiv1dd 13013 . . . . . . 7 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 0 < 𝐴) → (𝐴 / (2 · π)) < ((2 · π) / (2 · π)))
3210recni 11148 . . . . . . . 8 (2 · π) ∈ ℂ
3310, 15gt0ne0ii 11675 . . . . . . . 8 (2 · π) ≠ 0
3432, 33dividi 11876 . . . . . . 7 ((2 · π) / (2 · π)) = 1
3531, 34breqtrdi 5136 . . . . . 6 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 0 < 𝐴) → (𝐴 / (2 · π)) < 1)
36 0p1e1 12264 . . . . . 6 (0 + 1) = 1
3735, 36breqtrrdi 5137 . . . . 5 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 0 < 𝐴) → (𝐴 / (2 · π)) < (0 + 1))
38 btwnnz 12571 . . . . 5 ((0 ∈ ℤ ∧ 0 < (𝐴 / (2 · π)) ∧ (𝐴 / (2 · π)) < (0 + 1)) → ¬ (𝐴 / (2 · π)) ∈ ℤ)
391, 17, 37, 38syl3anc 1373 . . . 4 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 0 < 𝐴) → ¬ (𝐴 / (2 · π)) ∈ ℤ)
40 simpl 482 . . . . 5 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ ¬ 0 < 𝐴) → 𝐴 ∈ ((-π[,]π) ∖ {0}))
417adantr 480 . . . . . 6 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ ¬ 0 < 𝐴) → 𝐴 ∈ ℝ)
42 0red 11137 . . . . . 6 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ ¬ 0 < 𝐴) → 0 ∈ ℝ)
43 simpr 484 . . . . . . 7 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ ¬ 0 < 𝐴) → ¬ 0 < 𝐴)
4441, 42, 43nltled 11285 . . . . . 6 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ ¬ 0 < 𝐴) → 𝐴 ≤ 0)
45 eldifsni 4744 . . . . . . . 8 (𝐴 ∈ ((-π[,]π) ∖ {0}) → 𝐴 ≠ 0)
4645necomd 2980 . . . . . . 7 (𝐴 ∈ ((-π[,]π) ∖ {0}) → 0 ≠ 𝐴)
4746adantr 480 . . . . . 6 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ ¬ 0 < 𝐴) → 0 ≠ 𝐴)
4841, 42, 44, 47leneltd 11289 . . . . 5 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ ¬ 0 < 𝐴) → 𝐴 < 0)
49 neg1z 12530 . . . . . . 7 -1 ∈ ℤ
5049a1i 11 . . . . . 6 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 𝐴 < 0) → -1 ∈ ℤ)
5133a1i 11 . . . . . . . . 9 (𝐴 ∈ ((-π[,]π) ∖ {0}) → (2 · π) ≠ 0)
527, 20, 51redivcld 11971 . . . . . . . 8 (𝐴 ∈ ((-π[,]π) ∖ {0}) → (𝐴 / (2 · π)) ∈ ℝ)
5352adantr 480 . . . . . . 7 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 𝐴 < 0) → (𝐴 / (2 · π)) ∈ ℝ)
54 1red 11135 . . . . . . 7 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 𝐴 < 0) → 1 ∈ ℝ)
557recnd 11162 . . . . . . . . . 10 (𝐴 ∈ ((-π[,]π) ∖ {0}) → 𝐴 ∈ ℂ)
5655adantr 480 . . . . . . . . 9 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 𝐴 < 0) → 𝐴 ∈ ℂ)
5732a1i 11 . . . . . . . . 9 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 𝐴 < 0) → (2 · π) ∈ ℂ)
5833a1i 11 . . . . . . . . 9 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 𝐴 < 0) → (2 · π) ≠ 0)
5956, 57, 58divnegd 11932 . . . . . . . 8 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 𝐴 < 0) → -(𝐴 / (2 · π)) = (-𝐴 / (2 · π)))
607renegcld 11566 . . . . . . . . . . 11 (𝐴 ∈ ((-π[,]π) ∖ {0}) → -𝐴 ∈ ℝ)
6160adantr 480 . . . . . . . . . 10 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 𝐴 < 0) → -𝐴 ∈ ℝ)
6210a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 𝐴 < 0) → (2 · π) ∈ ℝ)
63 2rp 12917 . . . . . . . . . . . 12 2 ∈ ℝ+
64 rpmulcl 12937 . . . . . . . . . . . 12 ((2 ∈ ℝ+ ∧ π ∈ ℝ+) → (2 · π) ∈ ℝ+)
6563, 26, 64mp2an 692 . . . . . . . . . . 11 (2 · π) ∈ ℝ+
6665a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 𝐴 < 0) → (2 · π) ∈ ℝ+)
67 iccgelb 13324 . . . . . . . . . . . . . 14 ((-π ∈ ℝ* ∧ π ∈ ℝ*𝐴 ∈ (-π[,]π)) → -π ≤ 𝐴)
6822, 23, 6, 67syl3anc 1373 . . . . . . . . . . . . 13 (𝐴 ∈ ((-π[,]π) ∖ {0}) → -π ≤ 𝐴)
6919, 7, 68lenegcon1d 11721 . . . . . . . . . . . 12 (𝐴 ∈ ((-π[,]π) ∖ {0}) → -𝐴 ≤ π)
7060, 19, 20, 69, 28lelttrd 11293 . . . . . . . . . . 11 (𝐴 ∈ ((-π[,]π) ∖ {0}) → -𝐴 < (2 · π))
7170adantr 480 . . . . . . . . . 10 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 𝐴 < 0) → -𝐴 < (2 · π))
7261, 62, 66, 71ltdiv1dd 13013 . . . . . . . . 9 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 𝐴 < 0) → (-𝐴 / (2 · π)) < ((2 · π) / (2 · π)))
7372, 34breqtrdi 5136 . . . . . . . 8 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 𝐴 < 0) → (-𝐴 / (2 · π)) < 1)
7459, 73eqbrtrd 5117 . . . . . . 7 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 𝐴 < 0) → -(𝐴 / (2 · π)) < 1)
7553, 54, 74ltnegcon1d 11719 . . . . . 6 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 𝐴 < 0) → -1 < (𝐴 / (2 · π)))
767adantr 480 . . . . . . . 8 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 𝐴 < 0) → 𝐴 ∈ ℝ)
77 simpr 484 . . . . . . . 8 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 𝐴 < 0) → 𝐴 < 0)
7876, 66, 77divlt0gt0d 45288 . . . . . . 7 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 𝐴 < 0) → (𝐴 / (2 · π)) < 0)
79 neg1cn 12132 . . . . . . . . 9 -1 ∈ ℂ
80 ax-1cn 11086 . . . . . . . . 9 1 ∈ ℂ
8179, 80addcomi 11326 . . . . . . . 8 (-1 + 1) = (1 + -1)
82 1pneg1e0 12261 . . . . . . . 8 (1 + -1) = 0
8381, 82eqtr2i 2753 . . . . . . 7 0 = (-1 + 1)
8478, 83breqtrdi 5136 . . . . . 6 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 𝐴 < 0) → (𝐴 / (2 · π)) < (-1 + 1))
85 btwnnz 12571 . . . . . 6 ((-1 ∈ ℤ ∧ -1 < (𝐴 / (2 · π)) ∧ (𝐴 / (2 · π)) < (-1 + 1)) → ¬ (𝐴 / (2 · π)) ∈ ℤ)
8650, 75, 84, 85syl3anc 1373 . . . . 5 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ 𝐴 < 0) → ¬ (𝐴 / (2 · π)) ∈ ℤ)
8740, 48, 86syl2anc 584 . . . 4 ((𝐴 ∈ ((-π[,]π) ∖ {0}) ∧ ¬ 0 < 𝐴) → ¬ (𝐴 / (2 · π)) ∈ ℤ)
8839, 87pm2.61dan 812 . . 3 (𝐴 ∈ ((-π[,]π) ∖ {0}) → ¬ (𝐴 / (2 · π)) ∈ ℤ)
8965a1i 11 . . . 4 (𝐴 ∈ ((-π[,]π) ∖ {0}) → (2 · π) ∈ ℝ+)
90 mod0 13799 . . . 4 ((𝐴 ∈ ℝ ∧ (2 · π) ∈ ℝ+) → ((𝐴 mod (2 · π)) = 0 ↔ (𝐴 / (2 · π)) ∈ ℤ))
917, 89, 90syl2anc 584 . . 3 (𝐴 ∈ ((-π[,]π) ∖ {0}) → ((𝐴 mod (2 · π)) = 0 ↔ (𝐴 / (2 · π)) ∈ ℤ))
9288, 91mtbird 325 . 2 (𝐴 ∈ ((-π[,]π) ∖ {0}) → ¬ (𝐴 mod (2 · π)) = 0)
9392neqned 2932 1 (𝐴 ∈ ((-π[,]π) ∖ {0}) → (𝐴 mod (2 · π)) ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  cdif 3902  wss 3905  {csn 4579   class class class wbr 5095  (class class class)co 7353  cc 11026  cr 11027  0cc0 11028  1c1 11029   + caddc 11031   · cmul 11033  *cxr 11167   < clt 11168  cle 11169  -cneg 11367   / cdiv 11796  2c2 12202  cz 12490  +crp 12912  [,]cicc 13270   mod cmo 13792  πcpi 15992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-fi 9320  df-sup 9351  df-inf 9352  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-div 11797  df-nn 12148  df-2 12210  df-3 12211  df-4 12212  df-5 12213  df-6 12214  df-7 12215  df-8 12216  df-9 12217  df-n0 12404  df-z 12491  df-dec 12611  df-uz 12755  df-q 12869  df-rp 12913  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13271  df-ioc 13272  df-ico 13273  df-icc 13274  df-fz 13430  df-fzo 13577  df-fl 13715  df-mod 13793  df-seq 13928  df-exp 13988  df-fac 14200  df-bc 14229  df-hash 14257  df-shft 14993  df-cj 15025  df-re 15026  df-im 15027  df-sqrt 15161  df-abs 15162  df-limsup 15397  df-clim 15414  df-rlim 15415  df-sum 15613  df-ef 15993  df-sin 15995  df-cos 15996  df-pi 15998  df-struct 17077  df-sets 17094  df-slot 17112  df-ndx 17124  df-base 17140  df-ress 17161  df-plusg 17193  df-mulr 17194  df-starv 17195  df-sca 17196  df-vsca 17197  df-ip 17198  df-tset 17199  df-ple 17200  df-ds 17202  df-unif 17203  df-hom 17204  df-cco 17205  df-rest 17345  df-topn 17346  df-0g 17364  df-gsum 17365  df-topgen 17366  df-pt 17367  df-prds 17370  df-xrs 17425  df-qtop 17430  df-imas 17431  df-xps 17433  df-mre 17507  df-mrc 17508  df-acs 17510  df-mgm 18533  df-sgrp 18612  df-mnd 18628  df-submnd 18677  df-mulg 18966  df-cntz 19215  df-cmn 19680  df-psmet 21272  df-xmet 21273  df-met 21274  df-bl 21275  df-mopn 21276  df-fbas 21277  df-fg 21278  df-cnfld 21281  df-top 22798  df-topon 22815  df-topsp 22837  df-bases 22850  df-cld 22923  df-ntr 22924  df-cls 22925  df-nei 23002  df-lp 23040  df-perf 23041  df-cn 23131  df-cnp 23132  df-haus 23219  df-tx 23466  df-hmeo 23659  df-fil 23750  df-fm 23842  df-flim 23843  df-flf 23844  df-xms 24225  df-ms 24226  df-tms 24227  df-cncf 24788  df-limc 25784  df-dv 25785
This theorem is referenced by:  fourierdlem66  46173
  Copyright terms: Public domain W3C validator