MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ang180lem1 Structured version   Visualization version   GIF version

Theorem ang180lem1 26719
Description: Lemma for ang180 26724. Show that the "revolution number" 𝑁 is an integer, using efeq1 26437 to show that since the product of the three arguments 𝐴, 1 / (1 − 𝐴), (𝐴 − 1) / 𝐴 is -1, the sum of the logarithms must be an integer multiple of 2πi away from πi = log(-1). (Contributed by Mario Carneiro, 23-Sep-2014.)
Hypotheses
Ref Expression
ang.1 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))
ang180lem1.2 𝑇 = (((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴))
ang180lem1.3 𝑁 = (((𝑇 / i) / (2 · π)) − (1 / 2))
Assertion
Ref Expression
ang180lem1 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝑁 ∈ ℤ ∧ (𝑇 / i) ∈ ℝ))
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝑇(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑁(𝑥,𝑦)

Proof of Theorem ang180lem1
StepHypRef Expression
1 picn 26367 . . . . . . 7 π ∈ ℂ
2 2re 12260 . . . . . . . . . 10 2 ∈ ℝ
3 pire 26366 . . . . . . . . . 10 π ∈ ℝ
42, 3remulcli 11190 . . . . . . . . 9 (2 · π) ∈ ℝ
54recni 11188 . . . . . . . 8 (2 · π) ∈ ℂ
6 2pos 12289 . . . . . . . . . 10 0 < 2
7 pipos 26368 . . . . . . . . . 10 0 < π
82, 3, 6, 7mulgt0ii 11307 . . . . . . . . 9 0 < (2 · π)
94, 8gt0ne0ii 11714 . . . . . . . 8 (2 · π) ≠ 0
105, 9pm3.2i 470 . . . . . . 7 ((2 · π) ∈ ℂ ∧ (2 · π) ≠ 0)
11 ax-icn 11127 . . . . . . . 8 i ∈ ℂ
12 ine0 11613 . . . . . . . 8 i ≠ 0
1311, 12pm3.2i 470 . . . . . . 7 (i ∈ ℂ ∧ i ≠ 0)
14 divcan5 11884 . . . . . . 7 ((π ∈ ℂ ∧ ((2 · π) ∈ ℂ ∧ (2 · π) ≠ 0) ∧ (i ∈ ℂ ∧ i ≠ 0)) → ((i · π) / (i · (2 · π))) = (π / (2 · π)))
151, 10, 13, 14mp3an 1463 . . . . . 6 ((i · π) / (i · (2 · π))) = (π / (2 · π))
163, 7gt0ne0ii 11714 . . . . . . 7 π ≠ 0
17 recdiv 11888 . . . . . . 7 ((((2 · π) ∈ ℂ ∧ (2 · π) ≠ 0) ∧ (π ∈ ℂ ∧ π ≠ 0)) → (1 / ((2 · π) / π)) = (π / (2 · π)))
185, 9, 1, 16, 17mp4an 693 . . . . . 6 (1 / ((2 · π) / π)) = (π / (2 · π))
192recni 11188 . . . . . . . 8 2 ∈ ℂ
2019, 1, 16divcan4i 11929 . . . . . . 7 ((2 · π) / π) = 2
2120oveq2i 7398 . . . . . 6 (1 / ((2 · π) / π)) = (1 / 2)
2215, 18, 213eqtr2i 2758 . . . . 5 ((i · π) / (i · (2 · π))) = (1 / 2)
2322oveq2i 7398 . . . 4 ((𝑇 / (i · (2 · π))) − ((i · π) / (i · (2 · π)))) = ((𝑇 / (i · (2 · π))) − (1 / 2))
24 ang180lem1.2 . . . . . 6 𝑇 = (((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴))
25 ax-1cn 11126 . . . . . . . . . . 11 1 ∈ ℂ
26 simp1 1136 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝐴 ∈ ℂ)
27 subcl 11420 . . . . . . . . . . 11 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 − 𝐴) ∈ ℂ)
2825, 26, 27sylancr 587 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (1 − 𝐴) ∈ ℂ)
29 simp3 1138 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝐴 ≠ 1)
3029necomd 2980 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 1 ≠ 𝐴)
31 subeq0 11448 . . . . . . . . . . . . 13 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((1 − 𝐴) = 0 ↔ 1 = 𝐴))
3225, 26, 31sylancr 587 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((1 − 𝐴) = 0 ↔ 1 = 𝐴))
3332necon3bid 2969 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((1 − 𝐴) ≠ 0 ↔ 1 ≠ 𝐴))
3430, 33mpbird 257 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (1 − 𝐴) ≠ 0)
3528, 34reccld 11951 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (1 / (1 − 𝐴)) ∈ ℂ)
3628, 34recne0d 11952 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (1 / (1 − 𝐴)) ≠ 0)
3735, 36logcld 26479 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (log‘(1 / (1 − 𝐴))) ∈ ℂ)
38 subcl 11420 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 − 1) ∈ ℂ)
3926, 25, 38sylancl 586 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝐴 − 1) ∈ ℂ)
40 simp2 1137 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝐴 ≠ 0)
4139, 26, 40divcld 11958 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝐴 − 1) / 𝐴) ∈ ℂ)
42 subeq0 11448 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 − 1) = 0 ↔ 𝐴 = 1))
4326, 25, 42sylancl 586 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝐴 − 1) = 0 ↔ 𝐴 = 1))
4443necon3bid 2969 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝐴 − 1) ≠ 0 ↔ 𝐴 ≠ 1))
4529, 44mpbird 257 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝐴 − 1) ≠ 0)
4639, 26, 45, 40divne0d 11974 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝐴 − 1) / 𝐴) ≠ 0)
4741, 46logcld 26479 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (log‘((𝐴 − 1) / 𝐴)) ∈ ℂ)
4837, 47addcld 11193 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) ∈ ℂ)
4926, 40logcld 26479 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (log‘𝐴) ∈ ℂ)
5048, 49addcld 11193 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴)) ∈ ℂ)
5124, 50eqeltrid 2832 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝑇 ∈ ℂ)
5211, 1mulcli 11181 . . . . . 6 (i · π) ∈ ℂ
5352a1i 11 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (i · π) ∈ ℂ)
5411, 5mulcli 11181 . . . . . 6 (i · (2 · π)) ∈ ℂ
5554a1i 11 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (i · (2 · π)) ∈ ℂ)
5611, 5, 12, 9mulne0i 11821 . . . . . 6 (i · (2 · π)) ≠ 0
5756a1i 11 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (i · (2 · π)) ≠ 0)
5851, 53, 55, 57divsubdird 11997 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝑇 − (i · π)) / (i · (2 · π))) = ((𝑇 / (i · (2 · π))) − ((i · π) / (i · (2 · π)))))
59 ang180lem1.3 . . . . 5 𝑁 = (((𝑇 / i) / (2 · π)) − (1 / 2))
6013a1i 11 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (i ∈ ℂ ∧ i ≠ 0))
6110a1i 11 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((2 · π) ∈ ℂ ∧ (2 · π) ≠ 0))
62 divdiv1 11893 . . . . . . 7 ((𝑇 ∈ ℂ ∧ (i ∈ ℂ ∧ i ≠ 0) ∧ ((2 · π) ∈ ℂ ∧ (2 · π) ≠ 0)) → ((𝑇 / i) / (2 · π)) = (𝑇 / (i · (2 · π))))
6351, 60, 61, 62syl3anc 1373 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝑇 / i) / (2 · π)) = (𝑇 / (i · (2 · π))))
6463oveq1d 7402 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (((𝑇 / i) / (2 · π)) − (1 / 2)) = ((𝑇 / (i · (2 · π))) − (1 / 2)))
6559, 64eqtrid 2776 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝑁 = ((𝑇 / (i · (2 · π))) − (1 / 2)))
6623, 58, 653eqtr4a 2790 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝑇 − (i · π)) / (i · (2 · π))) = 𝑁)
67 efsub 16068 . . . . . 6 ((𝑇 ∈ ℂ ∧ (i · π) ∈ ℂ) → (exp‘(𝑇 − (i · π))) = ((exp‘𝑇) / (exp‘(i · π))))
6851, 52, 67sylancl 586 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (exp‘(𝑇 − (i · π))) = ((exp‘𝑇) / (exp‘(i · π))))
69 efipi 26382 . . . . . . 7 (exp‘(i · π)) = -1
7069oveq2i 7398 . . . . . 6 ((exp‘𝑇) / (exp‘(i · π))) = ((exp‘𝑇) / -1)
7124fveq2i 6861 . . . . . . . . 9 (exp‘𝑇) = (exp‘(((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴)))
72 efadd 16060 . . . . . . . . . . 11 ((((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) ∈ ℂ ∧ (log‘𝐴) ∈ ℂ) → (exp‘(((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴))) = ((exp‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) · (exp‘(log‘𝐴))))
7348, 49, 72syl2anc 584 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (exp‘(((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴))) = ((exp‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) · (exp‘(log‘𝐴))))
74 efadd 16060 . . . . . . . . . . . . 13 (((log‘(1 / (1 − 𝐴))) ∈ ℂ ∧ (log‘((𝐴 − 1) / 𝐴)) ∈ ℂ) → (exp‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) = ((exp‘(log‘(1 / (1 − 𝐴)))) · (exp‘(log‘((𝐴 − 1) / 𝐴)))))
7537, 47, 74syl2anc 584 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (exp‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) = ((exp‘(log‘(1 / (1 − 𝐴)))) · (exp‘(log‘((𝐴 − 1) / 𝐴)))))
76 eflog 26485 . . . . . . . . . . . . . 14 (((1 / (1 − 𝐴)) ∈ ℂ ∧ (1 / (1 − 𝐴)) ≠ 0) → (exp‘(log‘(1 / (1 − 𝐴)))) = (1 / (1 − 𝐴)))
7735, 36, 76syl2anc 584 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (exp‘(log‘(1 / (1 − 𝐴)))) = (1 / (1 − 𝐴)))
78 eflog 26485 . . . . . . . . . . . . . 14 ((((𝐴 − 1) / 𝐴) ∈ ℂ ∧ ((𝐴 − 1) / 𝐴) ≠ 0) → (exp‘(log‘((𝐴 − 1) / 𝐴))) = ((𝐴 − 1) / 𝐴))
7941, 46, 78syl2anc 584 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (exp‘(log‘((𝐴 − 1) / 𝐴))) = ((𝐴 − 1) / 𝐴))
8077, 79oveq12d 7405 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((exp‘(log‘(1 / (1 − 𝐴)))) · (exp‘(log‘((𝐴 − 1) / 𝐴)))) = ((1 / (1 − 𝐴)) · ((𝐴 − 1) / 𝐴)))
8135, 41mulcomd 11195 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((1 / (1 − 𝐴)) · ((𝐴 − 1) / 𝐴)) = (((𝐴 − 1) / 𝐴) · (1 / (1 − 𝐴))))
8225a1i 11 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 1 ∈ ℂ)
8382, 28, 34div2negd 11973 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (-1 / -(1 − 𝐴)) = (1 / (1 − 𝐴)))
84 negsubdi2 11481 . . . . . . . . . . . . . . . . 17 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → -(1 − 𝐴) = (𝐴 − 1))
8525, 26, 84sylancr 587 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → -(1 − 𝐴) = (𝐴 − 1))
8685oveq2d 7403 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (-1 / -(1 − 𝐴)) = (-1 / (𝐴 − 1)))
8783, 86eqtr3d 2766 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (1 / (1 − 𝐴)) = (-1 / (𝐴 − 1)))
8887oveq2d 7403 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (((𝐴 − 1) / 𝐴) · (1 / (1 − 𝐴))) = (((𝐴 − 1) / 𝐴) · (-1 / (𝐴 − 1))))
89 neg1cn 12171 . . . . . . . . . . . . . . 15 -1 ∈ ℂ
9089a1i 11 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → -1 ∈ ℂ)
9190, 39, 26, 45, 40dmdcand 11987 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (((𝐴 − 1) / 𝐴) · (-1 / (𝐴 − 1))) = (-1 / 𝐴))
9281, 88, 913eqtrd 2768 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((1 / (1 − 𝐴)) · ((𝐴 − 1) / 𝐴)) = (-1 / 𝐴))
9375, 80, 923eqtrd 2768 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (exp‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) = (-1 / 𝐴))
94 eflog 26485 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(log‘𝐴)) = 𝐴)
9526, 40, 94syl2anc 584 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (exp‘(log‘𝐴)) = 𝐴)
9693, 95oveq12d 7405 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((exp‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) · (exp‘(log‘𝐴))) = ((-1 / 𝐴) · 𝐴))
9790, 26, 40divcan1d 11959 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((-1 / 𝐴) · 𝐴) = -1)
9873, 96, 973eqtrd 2768 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (exp‘(((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴))) = -1)
9971, 98eqtrid 2776 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (exp‘𝑇) = -1)
10099oveq1d 7402 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((exp‘𝑇) / -1) = (-1 / -1))
101 neg1ne0 12173 . . . . . . . 8 -1 ≠ 0
10289, 101dividi 11915 . . . . . . 7 (-1 / -1) = 1
103100, 102eqtrdi 2780 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((exp‘𝑇) / -1) = 1)
10470, 103eqtrid 2776 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((exp‘𝑇) / (exp‘(i · π))) = 1)
10568, 104eqtrd 2764 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (exp‘(𝑇 − (i · π))) = 1)
106 subcl 11420 . . . . . 6 ((𝑇 ∈ ℂ ∧ (i · π) ∈ ℂ) → (𝑇 − (i · π)) ∈ ℂ)
10751, 52, 106sylancl 586 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝑇 − (i · π)) ∈ ℂ)
108 efeq1 26437 . . . . 5 ((𝑇 − (i · π)) ∈ ℂ → ((exp‘(𝑇 − (i · π))) = 1 ↔ ((𝑇 − (i · π)) / (i · (2 · π))) ∈ ℤ))
109107, 108syl 17 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((exp‘(𝑇 − (i · π))) = 1 ↔ ((𝑇 − (i · π)) / (i · (2 · π))) ∈ ℤ))
110105, 109mpbid 232 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝑇 − (i · π)) / (i · (2 · π))) ∈ ℤ)
11166, 110eqeltrrd 2829 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝑁 ∈ ℤ)
11211a1i 11 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → i ∈ ℂ)
11312a1i 11 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → i ≠ 0)
11451, 112, 113divcld 11958 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝑇 / i) ∈ ℂ)
1155a1i 11 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (2 · π) ∈ ℂ)
1169a1i 11 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (2 · π) ≠ 0)
117114, 115, 116divcan1d 11959 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (((𝑇 / i) / (2 · π)) · (2 · π)) = (𝑇 / i))
11859oveq1i 7397 . . . . . 6 (𝑁 + (1 / 2)) = ((((𝑇 / i) / (2 · π)) − (1 / 2)) + (1 / 2))
119114, 115, 116divcld 11958 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝑇 / i) / (2 · π)) ∈ ℂ)
120 halfre 12395 . . . . . . . 8 (1 / 2) ∈ ℝ
121120recni 11188 . . . . . . 7 (1 / 2) ∈ ℂ
122 npcan 11430 . . . . . . 7 ((((𝑇 / i) / (2 · π)) ∈ ℂ ∧ (1 / 2) ∈ ℂ) → ((((𝑇 / i) / (2 · π)) − (1 / 2)) + (1 / 2)) = ((𝑇 / i) / (2 · π)))
123119, 121, 122sylancl 586 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((((𝑇 / i) / (2 · π)) − (1 / 2)) + (1 / 2)) = ((𝑇 / i) / (2 · π)))
124118, 123eqtrid 2776 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝑁 + (1 / 2)) = ((𝑇 / i) / (2 · π)))
125111zred 12638 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝑁 ∈ ℝ)
126 readdcl 11151 . . . . . 6 ((𝑁 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (𝑁 + (1 / 2)) ∈ ℝ)
127125, 120, 126sylancl 586 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝑁 + (1 / 2)) ∈ ℝ)
128124, 127eqeltrrd 2829 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝑇 / i) / (2 · π)) ∈ ℝ)
129 remulcl 11153 . . . 4 ((((𝑇 / i) / (2 · π)) ∈ ℝ ∧ (2 · π) ∈ ℝ) → (((𝑇 / i) / (2 · π)) · (2 · π)) ∈ ℝ)
130128, 4, 129sylancl 586 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (((𝑇 / i) / (2 · π)) · (2 · π)) ∈ ℝ)
131117, 130eqeltrrd 2829 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝑇 / i) ∈ ℝ)
132111, 131jca 511 1 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝑁 ∈ ℤ ∧ (𝑇 / i) ∈ ℝ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  cdif 3911  {csn 4589  cfv 6511  (class class class)co 7387  cmpo 7389  cc 11066  cr 11067  0cc0 11068  1c1 11069  ici 11070   + caddc 11071   · cmul 11073  cmin 11405  -cneg 11406   / cdiv 11835  2c2 12241  cz 12529  cim 15064  expce 16027  πcpi 16032  logclog 26463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-sum 15653  df-ef 16033  df-sin 16035  df-cos 16036  df-pi 16038  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-haus 23202  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-limc 25767  df-dv 25768  df-log 26465
This theorem is referenced by:  ang180lem2  26720  ang180lem3  26721
  Copyright terms: Public domain W3C validator