Proof of Theorem ang180lem1
Step | Hyp | Ref
| Expression |
1 | | picn 25521 |
. . . . . . 7
⊢ π
∈ ℂ |
2 | | 2re 11977 |
. . . . . . . . . 10
⊢ 2 ∈
ℝ |
3 | | pire 25520 |
. . . . . . . . . 10
⊢ π
∈ ℝ |
4 | 2, 3 | remulcli 10922 |
. . . . . . . . 9
⊢ (2
· π) ∈ ℝ |
5 | 4 | recni 10920 |
. . . . . . . 8
⊢ (2
· π) ∈ ℂ |
6 | | 2pos 12006 |
. . . . . . . . . 10
⊢ 0 <
2 |
7 | | pipos 25522 |
. . . . . . . . . 10
⊢ 0 <
π |
8 | 2, 3, 6, 7 | mulgt0ii 11038 |
. . . . . . . . 9
⊢ 0 < (2
· π) |
9 | 4, 8 | gt0ne0ii 11441 |
. . . . . . . 8
⊢ (2
· π) ≠ 0 |
10 | 5, 9 | pm3.2i 470 |
. . . . . . 7
⊢ ((2
· π) ∈ ℂ ∧ (2 · π) ≠ 0) |
11 | | ax-icn 10861 |
. . . . . . . 8
⊢ i ∈
ℂ |
12 | | ine0 11340 |
. . . . . . . 8
⊢ i ≠
0 |
13 | 11, 12 | pm3.2i 470 |
. . . . . . 7
⊢ (i ∈
ℂ ∧ i ≠ 0) |
14 | | divcan5 11607 |
. . . . . . 7
⊢ ((π
∈ ℂ ∧ ((2 · π) ∈ ℂ ∧ (2 · π)
≠ 0) ∧ (i ∈ ℂ ∧ i ≠ 0)) → ((i · π) / (i
· (2 · π))) = (π / (2 · π))) |
15 | 1, 10, 13, 14 | mp3an 1459 |
. . . . . 6
⊢ ((i
· π) / (i · (2 · π))) = (π / (2 ·
π)) |
16 | 3, 7 | gt0ne0ii 11441 |
. . . . . . 7
⊢ π ≠
0 |
17 | | recdiv 11611 |
. . . . . . 7
⊢ ((((2
· π) ∈ ℂ ∧ (2 · π) ≠ 0) ∧ (π
∈ ℂ ∧ π ≠ 0)) → (1 / ((2 · π) / π)) =
(π / (2 · π))) |
18 | 5, 9, 1, 16, 17 | mp4an 689 |
. . . . . 6
⊢ (1 / ((2
· π) / π)) = (π / (2 · π)) |
19 | 2 | recni 10920 |
. . . . . . . 8
⊢ 2 ∈
ℂ |
20 | 19, 1, 16 | divcan4i 11652 |
. . . . . . 7
⊢ ((2
· π) / π) = 2 |
21 | 20 | oveq2i 7266 |
. . . . . 6
⊢ (1 / ((2
· π) / π)) = (1 / 2) |
22 | 15, 18, 21 | 3eqtr2i 2772 |
. . . . 5
⊢ ((i
· π) / (i · (2 · π))) = (1 / 2) |
23 | 22 | oveq2i 7266 |
. . . 4
⊢ ((𝑇 / (i · (2 ·
π))) − ((i · π) / (i · (2 · π)))) = ((𝑇 / (i · (2 ·
π))) − (1 / 2)) |
24 | | ang180lem1.2 |
. . . . . 6
⊢ 𝑇 = (((log‘(1 / (1 −
𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴)) |
25 | | ax-1cn 10860 |
. . . . . . . . . . 11
⊢ 1 ∈
ℂ |
26 | | simp1 1134 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝐴 ∈ ℂ) |
27 | | subcl 11150 |
. . . . . . . . . . 11
⊢ ((1
∈ ℂ ∧ 𝐴
∈ ℂ) → (1 − 𝐴) ∈ ℂ) |
28 | 25, 26, 27 | sylancr 586 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (1 − 𝐴) ∈ ℂ) |
29 | | simp3 1136 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝐴 ≠ 1) |
30 | 29 | necomd 2998 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 1 ≠ 𝐴) |
31 | | subeq0 11177 |
. . . . . . . . . . . . 13
⊢ ((1
∈ ℂ ∧ 𝐴
∈ ℂ) → ((1 − 𝐴) = 0 ↔ 1 = 𝐴)) |
32 | 25, 26, 31 | sylancr 586 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((1 − 𝐴) = 0 ↔ 1 = 𝐴)) |
33 | 32 | necon3bid 2987 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((1 − 𝐴) ≠ 0 ↔ 1 ≠ 𝐴)) |
34 | 30, 33 | mpbird 256 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (1 − 𝐴) ≠ 0) |
35 | 28, 34 | reccld 11674 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (1 / (1 − 𝐴)) ∈
ℂ) |
36 | 28, 34 | recne0d 11675 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (1 / (1 − 𝐴)) ≠ 0) |
37 | 35, 36 | logcld 25631 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (log‘(1 / (1 −
𝐴))) ∈
ℂ) |
38 | | subcl 11150 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℂ ∧ 1 ∈
ℂ) → (𝐴 −
1) ∈ ℂ) |
39 | 26, 25, 38 | sylancl 585 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝐴 − 1) ∈ ℂ) |
40 | | simp2 1135 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝐴 ≠ 0) |
41 | 39, 26, 40 | divcld 11681 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝐴 − 1) / 𝐴) ∈ ℂ) |
42 | | subeq0 11177 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝐴 −
1) = 0 ↔ 𝐴 =
1)) |
43 | 26, 25, 42 | sylancl 585 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝐴 − 1) = 0 ↔ 𝐴 = 1)) |
44 | 43 | necon3bid 2987 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝐴 − 1) ≠ 0 ↔ 𝐴 ≠ 1)) |
45 | 29, 44 | mpbird 256 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝐴 − 1) ≠ 0) |
46 | 39, 26, 45, 40 | divne0d 11697 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝐴 − 1) / 𝐴) ≠ 0) |
47 | 41, 46 | logcld 25631 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (log‘((𝐴 − 1) / 𝐴)) ∈ ℂ) |
48 | 37, 47 | addcld 10925 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((log‘(1 / (1 −
𝐴))) + (log‘((𝐴 − 1) / 𝐴))) ∈ ℂ) |
49 | 26, 40 | logcld 25631 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (log‘𝐴) ∈ ℂ) |
50 | 48, 49 | addcld 10925 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (((log‘(1 / (1 −
𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴)) ∈ ℂ) |
51 | 24, 50 | eqeltrid 2843 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝑇 ∈ ℂ) |
52 | 11, 1 | mulcli 10913 |
. . . . . 6
⊢ (i
· π) ∈ ℂ |
53 | 52 | a1i 11 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (i · π) ∈
ℂ) |
54 | 11, 5 | mulcli 10913 |
. . . . . 6
⊢ (i
· (2 · π)) ∈ ℂ |
55 | 54 | a1i 11 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (i · (2 ·
π)) ∈ ℂ) |
56 | 11, 5, 12, 9 | mulne0i 11548 |
. . . . . 6
⊢ (i
· (2 · π)) ≠ 0 |
57 | 56 | a1i 11 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (i · (2 ·
π)) ≠ 0) |
58 | 51, 53, 55, 57 | divsubdird 11720 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝑇 − (i · π)) / (i · (2
· π))) = ((𝑇 / (i
· (2 · π))) − ((i · π) / (i · (2
· π))))) |
59 | | ang180lem1.3 |
. . . . 5
⊢ 𝑁 = (((𝑇 / i) / (2 · π)) − (1 /
2)) |
60 | 13 | a1i 11 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (i ∈ ℂ ∧ i
≠ 0)) |
61 | 10 | a1i 11 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((2 · π) ∈
ℂ ∧ (2 · π) ≠ 0)) |
62 | | divdiv1 11616 |
. . . . . . 7
⊢ ((𝑇 ∈ ℂ ∧ (i ∈
ℂ ∧ i ≠ 0) ∧ ((2 · π) ∈ ℂ ∧ (2
· π) ≠ 0)) → ((𝑇 / i) / (2 · π)) = (𝑇 / (i · (2 ·
π)))) |
63 | 51, 60, 61, 62 | syl3anc 1369 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝑇 / i) / (2 · π)) = (𝑇 / (i · (2 ·
π)))) |
64 | 63 | oveq1d 7270 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (((𝑇 / i) / (2 · π)) − (1 / 2))
= ((𝑇 / (i · (2
· π))) − (1 / 2))) |
65 | 59, 64 | syl5eq 2791 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝑁 = ((𝑇 / (i · (2 · π))) −
(1 / 2))) |
66 | 23, 58, 65 | 3eqtr4a 2805 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝑇 − (i · π)) / (i · (2
· π))) = 𝑁) |
67 | | efsub 15737 |
. . . . . 6
⊢ ((𝑇 ∈ ℂ ∧ (i
· π) ∈ ℂ) → (exp‘(𝑇 − (i · π))) =
((exp‘𝑇) /
(exp‘(i · π)))) |
68 | 51, 52, 67 | sylancl 585 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (exp‘(𝑇 − (i · π))) =
((exp‘𝑇) /
(exp‘(i · π)))) |
69 | | efipi 25535 |
. . . . . . 7
⊢
(exp‘(i · π)) = -1 |
70 | 69 | oveq2i 7266 |
. . . . . 6
⊢
((exp‘𝑇) /
(exp‘(i · π))) = ((exp‘𝑇) / -1) |
71 | 24 | fveq2i 6759 |
. . . . . . . . 9
⊢
(exp‘𝑇) =
(exp‘(((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴))) |
72 | | efadd 15731 |
. . . . . . . . . . 11
⊢
((((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) ∈ ℂ ∧ (log‘𝐴) ∈ ℂ) →
(exp‘(((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴))) = ((exp‘((log‘(1 / (1
− 𝐴))) +
(log‘((𝐴 − 1) /
𝐴)))) ·
(exp‘(log‘𝐴)))) |
73 | 48, 49, 72 | syl2anc 583 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (exp‘(((log‘(1 /
(1 − 𝐴))) +
(log‘((𝐴 − 1) /
𝐴))) + (log‘𝐴))) = ((exp‘((log‘(1
/ (1 − 𝐴))) +
(log‘((𝐴 − 1) /
𝐴)))) ·
(exp‘(log‘𝐴)))) |
74 | | efadd 15731 |
. . . . . . . . . . . . 13
⊢
(((log‘(1 / (1 − 𝐴))) ∈ ℂ ∧ (log‘((𝐴 − 1) / 𝐴)) ∈ ℂ) →
(exp‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) = ((exp‘(log‘(1 / (1
− 𝐴)))) ·
(exp‘(log‘((𝐴
− 1) / 𝐴))))) |
75 | 37, 47, 74 | syl2anc 583 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (exp‘((log‘(1 /
(1 − 𝐴))) +
(log‘((𝐴 − 1) /
𝐴)))) =
((exp‘(log‘(1 / (1 − 𝐴)))) · (exp‘(log‘((𝐴 − 1) / 𝐴))))) |
76 | | eflog 25637 |
. . . . . . . . . . . . . 14
⊢ (((1 / (1
− 𝐴)) ∈ ℂ
∧ (1 / (1 − 𝐴))
≠ 0) → (exp‘(log‘(1 / (1 − 𝐴)))) = (1 / (1 − 𝐴))) |
77 | 35, 36, 76 | syl2anc 583 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (exp‘(log‘(1 /
(1 − 𝐴)))) = (1 / (1
− 𝐴))) |
78 | | eflog 25637 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 − 1) / 𝐴) ∈ ℂ ∧ ((𝐴 − 1) / 𝐴) ≠ 0) →
(exp‘(log‘((𝐴
− 1) / 𝐴))) = ((𝐴 − 1) / 𝐴)) |
79 | 41, 46, 78 | syl2anc 583 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) →
(exp‘(log‘((𝐴
− 1) / 𝐴))) = ((𝐴 − 1) / 𝐴)) |
80 | 77, 79 | oveq12d 7273 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((exp‘(log‘(1 /
(1 − 𝐴)))) ·
(exp‘(log‘((𝐴
− 1) / 𝐴)))) = ((1 /
(1 − 𝐴)) ·
((𝐴 − 1) / 𝐴))) |
81 | 35, 41 | mulcomd 10927 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((1 / (1 − 𝐴)) · ((𝐴 − 1) / 𝐴)) = (((𝐴 − 1) / 𝐴) · (1 / (1 − 𝐴)))) |
82 | 25 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 1 ∈
ℂ) |
83 | 82, 28, 34 | div2negd 11696 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (-1 / -(1 − 𝐴)) = (1 / (1 − 𝐴))) |
84 | | negsubdi2 11210 |
. . . . . . . . . . . . . . . . 17
⊢ ((1
∈ ℂ ∧ 𝐴
∈ ℂ) → -(1 − 𝐴) = (𝐴 − 1)) |
85 | 25, 26, 84 | sylancr 586 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → -(1 − 𝐴) = (𝐴 − 1)) |
86 | 85 | oveq2d 7271 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (-1 / -(1 − 𝐴)) = (-1 / (𝐴 − 1))) |
87 | 83, 86 | eqtr3d 2780 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (1 / (1 − 𝐴)) = (-1 / (𝐴 − 1))) |
88 | 87 | oveq2d 7271 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (((𝐴 − 1) / 𝐴) · (1 / (1 − 𝐴))) = (((𝐴 − 1) / 𝐴) · (-1 / (𝐴 − 1)))) |
89 | | neg1cn 12017 |
. . . . . . . . . . . . . . 15
⊢ -1 ∈
ℂ |
90 | 89 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → -1 ∈
ℂ) |
91 | 90, 39, 26, 45, 40 | dmdcand 11710 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (((𝐴 − 1) / 𝐴) · (-1 / (𝐴 − 1))) = (-1 / 𝐴)) |
92 | 81, 88, 91 | 3eqtrd 2782 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((1 / (1 − 𝐴)) · ((𝐴 − 1) / 𝐴)) = (-1 / 𝐴)) |
93 | 75, 80, 92 | 3eqtrd 2782 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (exp‘((log‘(1 /
(1 − 𝐴))) +
(log‘((𝐴 − 1) /
𝐴)))) = (-1 / 𝐴)) |
94 | | eflog 25637 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) →
(exp‘(log‘𝐴)) =
𝐴) |
95 | 26, 40, 94 | syl2anc 583 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (exp‘(log‘𝐴)) = 𝐴) |
96 | 93, 95 | oveq12d 7273 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((exp‘((log‘(1 /
(1 − 𝐴))) +
(log‘((𝐴 − 1) /
𝐴)))) ·
(exp‘(log‘𝐴)))
= ((-1 / 𝐴) · 𝐴)) |
97 | 90, 26, 40 | divcan1d 11682 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((-1 / 𝐴) · 𝐴) = -1) |
98 | 73, 96, 97 | 3eqtrd 2782 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (exp‘(((log‘(1 /
(1 − 𝐴))) +
(log‘((𝐴 − 1) /
𝐴))) + (log‘𝐴))) = -1) |
99 | 71, 98 | syl5eq 2791 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (exp‘𝑇) = -1) |
100 | 99 | oveq1d 7270 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((exp‘𝑇) / -1) = (-1 /
-1)) |
101 | | neg1ne0 12019 |
. . . . . . . 8
⊢ -1 ≠
0 |
102 | 89, 101 | dividi 11638 |
. . . . . . 7
⊢ (-1 / -1)
= 1 |
103 | 100, 102 | eqtrdi 2795 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((exp‘𝑇) / -1) = 1) |
104 | 70, 103 | syl5eq 2791 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((exp‘𝑇) / (exp‘(i ·
π))) = 1) |
105 | 68, 104 | eqtrd 2778 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (exp‘(𝑇 − (i · π))) =
1) |
106 | | subcl 11150 |
. . . . . 6
⊢ ((𝑇 ∈ ℂ ∧ (i
· π) ∈ ℂ) → (𝑇 − (i · π)) ∈
ℂ) |
107 | 51, 52, 106 | sylancl 585 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝑇 − (i · π)) ∈
ℂ) |
108 | | efeq1 25589 |
. . . . 5
⊢ ((𝑇 − (i · π))
∈ ℂ → ((exp‘(𝑇 − (i · π))) = 1 ↔
((𝑇 − (i ·
π)) / (i · (2 · π))) ∈ ℤ)) |
109 | 107, 108 | syl 17 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((exp‘(𝑇 − (i · π))) = 1
↔ ((𝑇 − (i
· π)) / (i · (2 · π))) ∈
ℤ)) |
110 | 105, 109 | mpbid 231 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝑇 − (i · π)) / (i · (2
· π))) ∈ ℤ) |
111 | 66, 110 | eqeltrrd 2840 |
. 2
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝑁 ∈ ℤ) |
112 | 11 | a1i 11 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → i ∈
ℂ) |
113 | 12 | a1i 11 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → i ≠ 0) |
114 | 51, 112, 113 | divcld 11681 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝑇 / i) ∈ ℂ) |
115 | 5 | a1i 11 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (2 · π) ∈
ℂ) |
116 | 9 | a1i 11 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (2 · π) ≠
0) |
117 | 114, 115,
116 | divcan1d 11682 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (((𝑇 / i) / (2 · π)) · (2
· π)) = (𝑇 /
i)) |
118 | 59 | oveq1i 7265 |
. . . . . 6
⊢ (𝑁 + (1 / 2)) = ((((𝑇 / i) / (2 · π))
− (1 / 2)) + (1 / 2)) |
119 | 114, 115,
116 | divcld 11681 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝑇 / i) / (2 · π)) ∈
ℂ) |
120 | | halfre 12117 |
. . . . . . . 8
⊢ (1 / 2)
∈ ℝ |
121 | 120 | recni 10920 |
. . . . . . 7
⊢ (1 / 2)
∈ ℂ |
122 | | npcan 11160 |
. . . . . . 7
⊢ ((((𝑇 / i) / (2 · π))
∈ ℂ ∧ (1 / 2) ∈ ℂ) → ((((𝑇 / i) / (2 · π)) − (1 / 2))
+ (1 / 2)) = ((𝑇 / i) / (2
· π))) |
123 | 119, 121,
122 | sylancl 585 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((((𝑇 / i) / (2 · π)) − (1 / 2))
+ (1 / 2)) = ((𝑇 / i) / (2
· π))) |
124 | 118, 123 | syl5eq 2791 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝑁 + (1 / 2)) = ((𝑇 / i) / (2 · π))) |
125 | 111 | zred 12355 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝑁 ∈ ℝ) |
126 | | readdcl 10885 |
. . . . . 6
⊢ ((𝑁 ∈ ℝ ∧ (1 / 2)
∈ ℝ) → (𝑁 +
(1 / 2)) ∈ ℝ) |
127 | 125, 120,
126 | sylancl 585 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝑁 + (1 / 2)) ∈ ℝ) |
128 | 124, 127 | eqeltrrd 2840 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝑇 / i) / (2 · π)) ∈
ℝ) |
129 | | remulcl 10887 |
. . . 4
⊢ ((((𝑇 / i) / (2 · π))
∈ ℝ ∧ (2 · π) ∈ ℝ) → (((𝑇 / i) / (2 · π))
· (2 · π)) ∈ ℝ) |
130 | 128, 4, 129 | sylancl 585 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (((𝑇 / i) / (2 · π)) · (2
· π)) ∈ ℝ) |
131 | 117, 130 | eqeltrrd 2840 |
. 2
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝑇 / i) ∈ ℝ) |
132 | 111, 131 | jca 511 |
1
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝑁 ∈ ℤ ∧ (𝑇 / i) ∈ ℝ)) |