MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ang180lem1 Structured version   Visualization version   GIF version

Theorem ang180lem1 26776
Description: Lemma for ang180 26781. Show that the "revolution number" 𝑁 is an integer, using efeq1 26494 to show that since the product of the three arguments 𝐴, 1 / (1 − 𝐴), (𝐴 − 1) / 𝐴 is -1, the sum of the logarithms must be an integer multiple of 2πi away from πi = log(-1). (Contributed by Mario Carneiro, 23-Sep-2014.)
Hypotheses
Ref Expression
ang.1 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))
ang180lem1.2 𝑇 = (((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴))
ang180lem1.3 𝑁 = (((𝑇 / i) / (2 · π)) − (1 / 2))
Assertion
Ref Expression
ang180lem1 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝑁 ∈ ℤ ∧ (𝑇 / i) ∈ ℝ))
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝑇(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑁(𝑥,𝑦)

Proof of Theorem ang180lem1
StepHypRef Expression
1 picn 26424 . . . . . . 7 π ∈ ℂ
2 2re 12319 . . . . . . . . . 10 2 ∈ ℝ
3 pire 26423 . . . . . . . . . 10 π ∈ ℝ
42, 3remulcli 11256 . . . . . . . . 9 (2 · π) ∈ ℝ
54recni 11254 . . . . . . . 8 (2 · π) ∈ ℂ
6 2pos 12348 . . . . . . . . . 10 0 < 2
7 pipos 26425 . . . . . . . . . 10 0 < π
82, 3, 6, 7mulgt0ii 11373 . . . . . . . . 9 0 < (2 · π)
94, 8gt0ne0ii 11778 . . . . . . . 8 (2 · π) ≠ 0
105, 9pm3.2i 470 . . . . . . 7 ((2 · π) ∈ ℂ ∧ (2 · π) ≠ 0)
11 ax-icn 11193 . . . . . . . 8 i ∈ ℂ
12 ine0 11677 . . . . . . . 8 i ≠ 0
1311, 12pm3.2i 470 . . . . . . 7 (i ∈ ℂ ∧ i ≠ 0)
14 divcan5 11948 . . . . . . 7 ((π ∈ ℂ ∧ ((2 · π) ∈ ℂ ∧ (2 · π) ≠ 0) ∧ (i ∈ ℂ ∧ i ≠ 0)) → ((i · π) / (i · (2 · π))) = (π / (2 · π)))
151, 10, 13, 14mp3an 1463 . . . . . 6 ((i · π) / (i · (2 · π))) = (π / (2 · π))
163, 7gt0ne0ii 11778 . . . . . . 7 π ≠ 0
17 recdiv 11952 . . . . . . 7 ((((2 · π) ∈ ℂ ∧ (2 · π) ≠ 0) ∧ (π ∈ ℂ ∧ π ≠ 0)) → (1 / ((2 · π) / π)) = (π / (2 · π)))
185, 9, 1, 16, 17mp4an 693 . . . . . 6 (1 / ((2 · π) / π)) = (π / (2 · π))
192recni 11254 . . . . . . . 8 2 ∈ ℂ
2019, 1, 16divcan4i 11993 . . . . . . 7 ((2 · π) / π) = 2
2120oveq2i 7421 . . . . . 6 (1 / ((2 · π) / π)) = (1 / 2)
2215, 18, 213eqtr2i 2765 . . . . 5 ((i · π) / (i · (2 · π))) = (1 / 2)
2322oveq2i 7421 . . . 4 ((𝑇 / (i · (2 · π))) − ((i · π) / (i · (2 · π)))) = ((𝑇 / (i · (2 · π))) − (1 / 2))
24 ang180lem1.2 . . . . . 6 𝑇 = (((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴))
25 ax-1cn 11192 . . . . . . . . . . 11 1 ∈ ℂ
26 simp1 1136 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝐴 ∈ ℂ)
27 subcl 11486 . . . . . . . . . . 11 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 − 𝐴) ∈ ℂ)
2825, 26, 27sylancr 587 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (1 − 𝐴) ∈ ℂ)
29 simp3 1138 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝐴 ≠ 1)
3029necomd 2988 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 1 ≠ 𝐴)
31 subeq0 11514 . . . . . . . . . . . . 13 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((1 − 𝐴) = 0 ↔ 1 = 𝐴))
3225, 26, 31sylancr 587 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((1 − 𝐴) = 0 ↔ 1 = 𝐴))
3332necon3bid 2977 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((1 − 𝐴) ≠ 0 ↔ 1 ≠ 𝐴))
3430, 33mpbird 257 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (1 − 𝐴) ≠ 0)
3528, 34reccld 12015 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (1 / (1 − 𝐴)) ∈ ℂ)
3628, 34recne0d 12016 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (1 / (1 − 𝐴)) ≠ 0)
3735, 36logcld 26536 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (log‘(1 / (1 − 𝐴))) ∈ ℂ)
38 subcl 11486 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 − 1) ∈ ℂ)
3926, 25, 38sylancl 586 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝐴 − 1) ∈ ℂ)
40 simp2 1137 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝐴 ≠ 0)
4139, 26, 40divcld 12022 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝐴 − 1) / 𝐴) ∈ ℂ)
42 subeq0 11514 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 − 1) = 0 ↔ 𝐴 = 1))
4326, 25, 42sylancl 586 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝐴 − 1) = 0 ↔ 𝐴 = 1))
4443necon3bid 2977 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝐴 − 1) ≠ 0 ↔ 𝐴 ≠ 1))
4529, 44mpbird 257 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝐴 − 1) ≠ 0)
4639, 26, 45, 40divne0d 12038 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝐴 − 1) / 𝐴) ≠ 0)
4741, 46logcld 26536 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (log‘((𝐴 − 1) / 𝐴)) ∈ ℂ)
4837, 47addcld 11259 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) ∈ ℂ)
4926, 40logcld 26536 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (log‘𝐴) ∈ ℂ)
5048, 49addcld 11259 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴)) ∈ ℂ)
5124, 50eqeltrid 2839 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝑇 ∈ ℂ)
5211, 1mulcli 11247 . . . . . 6 (i · π) ∈ ℂ
5352a1i 11 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (i · π) ∈ ℂ)
5411, 5mulcli 11247 . . . . . 6 (i · (2 · π)) ∈ ℂ
5554a1i 11 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (i · (2 · π)) ∈ ℂ)
5611, 5, 12, 9mulne0i 11885 . . . . . 6 (i · (2 · π)) ≠ 0
5756a1i 11 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (i · (2 · π)) ≠ 0)
5851, 53, 55, 57divsubdird 12061 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝑇 − (i · π)) / (i · (2 · π))) = ((𝑇 / (i · (2 · π))) − ((i · π) / (i · (2 · π)))))
59 ang180lem1.3 . . . . 5 𝑁 = (((𝑇 / i) / (2 · π)) − (1 / 2))
6013a1i 11 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (i ∈ ℂ ∧ i ≠ 0))
6110a1i 11 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((2 · π) ∈ ℂ ∧ (2 · π) ≠ 0))
62 divdiv1 11957 . . . . . . 7 ((𝑇 ∈ ℂ ∧ (i ∈ ℂ ∧ i ≠ 0) ∧ ((2 · π) ∈ ℂ ∧ (2 · π) ≠ 0)) → ((𝑇 / i) / (2 · π)) = (𝑇 / (i · (2 · π))))
6351, 60, 61, 62syl3anc 1373 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝑇 / i) / (2 · π)) = (𝑇 / (i · (2 · π))))
6463oveq1d 7425 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (((𝑇 / i) / (2 · π)) − (1 / 2)) = ((𝑇 / (i · (2 · π))) − (1 / 2)))
6559, 64eqtrid 2783 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝑁 = ((𝑇 / (i · (2 · π))) − (1 / 2)))
6623, 58, 653eqtr4a 2797 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝑇 − (i · π)) / (i · (2 · π))) = 𝑁)
67 efsub 16123 . . . . . 6 ((𝑇 ∈ ℂ ∧ (i · π) ∈ ℂ) → (exp‘(𝑇 − (i · π))) = ((exp‘𝑇) / (exp‘(i · π))))
6851, 52, 67sylancl 586 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (exp‘(𝑇 − (i · π))) = ((exp‘𝑇) / (exp‘(i · π))))
69 efipi 26439 . . . . . . 7 (exp‘(i · π)) = -1
7069oveq2i 7421 . . . . . 6 ((exp‘𝑇) / (exp‘(i · π))) = ((exp‘𝑇) / -1)
7124fveq2i 6884 . . . . . . . . 9 (exp‘𝑇) = (exp‘(((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴)))
72 efadd 16115 . . . . . . . . . . 11 ((((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) ∈ ℂ ∧ (log‘𝐴) ∈ ℂ) → (exp‘(((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴))) = ((exp‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) · (exp‘(log‘𝐴))))
7348, 49, 72syl2anc 584 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (exp‘(((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴))) = ((exp‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) · (exp‘(log‘𝐴))))
74 efadd 16115 . . . . . . . . . . . . 13 (((log‘(1 / (1 − 𝐴))) ∈ ℂ ∧ (log‘((𝐴 − 1) / 𝐴)) ∈ ℂ) → (exp‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) = ((exp‘(log‘(1 / (1 − 𝐴)))) · (exp‘(log‘((𝐴 − 1) / 𝐴)))))
7537, 47, 74syl2anc 584 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (exp‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) = ((exp‘(log‘(1 / (1 − 𝐴)))) · (exp‘(log‘((𝐴 − 1) / 𝐴)))))
76 eflog 26542 . . . . . . . . . . . . . 14 (((1 / (1 − 𝐴)) ∈ ℂ ∧ (1 / (1 − 𝐴)) ≠ 0) → (exp‘(log‘(1 / (1 − 𝐴)))) = (1 / (1 − 𝐴)))
7735, 36, 76syl2anc 584 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (exp‘(log‘(1 / (1 − 𝐴)))) = (1 / (1 − 𝐴)))
78 eflog 26542 . . . . . . . . . . . . . 14 ((((𝐴 − 1) / 𝐴) ∈ ℂ ∧ ((𝐴 − 1) / 𝐴) ≠ 0) → (exp‘(log‘((𝐴 − 1) / 𝐴))) = ((𝐴 − 1) / 𝐴))
7941, 46, 78syl2anc 584 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (exp‘(log‘((𝐴 − 1) / 𝐴))) = ((𝐴 − 1) / 𝐴))
8077, 79oveq12d 7428 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((exp‘(log‘(1 / (1 − 𝐴)))) · (exp‘(log‘((𝐴 − 1) / 𝐴)))) = ((1 / (1 − 𝐴)) · ((𝐴 − 1) / 𝐴)))
8135, 41mulcomd 11261 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((1 / (1 − 𝐴)) · ((𝐴 − 1) / 𝐴)) = (((𝐴 − 1) / 𝐴) · (1 / (1 − 𝐴))))
8225a1i 11 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 1 ∈ ℂ)
8382, 28, 34div2negd 12037 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (-1 / -(1 − 𝐴)) = (1 / (1 − 𝐴)))
84 negsubdi2 11547 . . . . . . . . . . . . . . . . 17 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → -(1 − 𝐴) = (𝐴 − 1))
8525, 26, 84sylancr 587 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → -(1 − 𝐴) = (𝐴 − 1))
8685oveq2d 7426 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (-1 / -(1 − 𝐴)) = (-1 / (𝐴 − 1)))
8783, 86eqtr3d 2773 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (1 / (1 − 𝐴)) = (-1 / (𝐴 − 1)))
8887oveq2d 7426 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (((𝐴 − 1) / 𝐴) · (1 / (1 − 𝐴))) = (((𝐴 − 1) / 𝐴) · (-1 / (𝐴 − 1))))
89 neg1cn 12359 . . . . . . . . . . . . . . 15 -1 ∈ ℂ
9089a1i 11 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → -1 ∈ ℂ)
9190, 39, 26, 45, 40dmdcand 12051 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (((𝐴 − 1) / 𝐴) · (-1 / (𝐴 − 1))) = (-1 / 𝐴))
9281, 88, 913eqtrd 2775 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((1 / (1 − 𝐴)) · ((𝐴 − 1) / 𝐴)) = (-1 / 𝐴))
9375, 80, 923eqtrd 2775 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (exp‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) = (-1 / 𝐴))
94 eflog 26542 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(log‘𝐴)) = 𝐴)
9526, 40, 94syl2anc 584 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (exp‘(log‘𝐴)) = 𝐴)
9693, 95oveq12d 7428 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((exp‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) · (exp‘(log‘𝐴))) = ((-1 / 𝐴) · 𝐴))
9790, 26, 40divcan1d 12023 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((-1 / 𝐴) · 𝐴) = -1)
9873, 96, 973eqtrd 2775 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (exp‘(((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴))) = -1)
9971, 98eqtrid 2783 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (exp‘𝑇) = -1)
10099oveq1d 7425 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((exp‘𝑇) / -1) = (-1 / -1))
101 neg1ne0 12361 . . . . . . . 8 -1 ≠ 0
10289, 101dividi 11979 . . . . . . 7 (-1 / -1) = 1
103100, 102eqtrdi 2787 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((exp‘𝑇) / -1) = 1)
10470, 103eqtrid 2783 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((exp‘𝑇) / (exp‘(i · π))) = 1)
10568, 104eqtrd 2771 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (exp‘(𝑇 − (i · π))) = 1)
106 subcl 11486 . . . . . 6 ((𝑇 ∈ ℂ ∧ (i · π) ∈ ℂ) → (𝑇 − (i · π)) ∈ ℂ)
10751, 52, 106sylancl 586 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝑇 − (i · π)) ∈ ℂ)
108 efeq1 26494 . . . . 5 ((𝑇 − (i · π)) ∈ ℂ → ((exp‘(𝑇 − (i · π))) = 1 ↔ ((𝑇 − (i · π)) / (i · (2 · π))) ∈ ℤ))
109107, 108syl 17 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((exp‘(𝑇 − (i · π))) = 1 ↔ ((𝑇 − (i · π)) / (i · (2 · π))) ∈ ℤ))
110105, 109mpbid 232 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝑇 − (i · π)) / (i · (2 · π))) ∈ ℤ)
11166, 110eqeltrrd 2836 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝑁 ∈ ℤ)
11211a1i 11 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → i ∈ ℂ)
11312a1i 11 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → i ≠ 0)
11451, 112, 113divcld 12022 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝑇 / i) ∈ ℂ)
1155a1i 11 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (2 · π) ∈ ℂ)
1169a1i 11 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (2 · π) ≠ 0)
117114, 115, 116divcan1d 12023 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (((𝑇 / i) / (2 · π)) · (2 · π)) = (𝑇 / i))
11859oveq1i 7420 . . . . . 6 (𝑁 + (1 / 2)) = ((((𝑇 / i) / (2 · π)) − (1 / 2)) + (1 / 2))
119114, 115, 116divcld 12022 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝑇 / i) / (2 · π)) ∈ ℂ)
120 halfre 12459 . . . . . . . 8 (1 / 2) ∈ ℝ
121120recni 11254 . . . . . . 7 (1 / 2) ∈ ℂ
122 npcan 11496 . . . . . . 7 ((((𝑇 / i) / (2 · π)) ∈ ℂ ∧ (1 / 2) ∈ ℂ) → ((((𝑇 / i) / (2 · π)) − (1 / 2)) + (1 / 2)) = ((𝑇 / i) / (2 · π)))
123119, 121, 122sylancl 586 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((((𝑇 / i) / (2 · π)) − (1 / 2)) + (1 / 2)) = ((𝑇 / i) / (2 · π)))
124118, 123eqtrid 2783 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝑁 + (1 / 2)) = ((𝑇 / i) / (2 · π)))
125111zred 12702 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝑁 ∈ ℝ)
126 readdcl 11217 . . . . . 6 ((𝑁 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (𝑁 + (1 / 2)) ∈ ℝ)
127125, 120, 126sylancl 586 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝑁 + (1 / 2)) ∈ ℝ)
128124, 127eqeltrrd 2836 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝑇 / i) / (2 · π)) ∈ ℝ)
129 remulcl 11219 . . . 4 ((((𝑇 / i) / (2 · π)) ∈ ℝ ∧ (2 · π) ∈ ℝ) → (((𝑇 / i) / (2 · π)) · (2 · π)) ∈ ℝ)
130128, 4, 129sylancl 586 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (((𝑇 / i) / (2 · π)) · (2 · π)) ∈ ℝ)
131117, 130eqeltrrd 2836 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝑇 / i) ∈ ℝ)
132111, 131jca 511 1 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝑁 ∈ ℤ ∧ (𝑇 / i) ∈ ℝ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2933  cdif 3928  {csn 4606  cfv 6536  (class class class)co 7410  cmpo 7412  cc 11132  cr 11133  0cc0 11134  1c1 11135  ici 11136   + caddc 11137   · cmul 11139  cmin 11471  -cneg 11472   / cdiv 11899  2c2 12300  cz 12593  cim 15122  expce 16082  πcpi 16087  logclog 26520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212  ax-addf 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-fi 9428  df-sup 9459  df-inf 9460  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-q 12970  df-rp 13014  df-xneg 13133  df-xadd 13134  df-xmul 13135  df-ioo 13371  df-ioc 13372  df-ico 13373  df-icc 13374  df-fz 13530  df-fzo 13677  df-fl 13814  df-mod 13892  df-seq 14025  df-exp 14085  df-fac 14297  df-bc 14326  df-hash 14354  df-shft 15091  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-limsup 15492  df-clim 15509  df-rlim 15510  df-sum 15708  df-ef 16088  df-sin 16090  df-cos 16091  df-pi 16093  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-starv 17291  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-hom 17300  df-cco 17301  df-rest 17441  df-topn 17442  df-0g 17460  df-gsum 17461  df-topgen 17462  df-pt 17463  df-prds 17466  df-xrs 17521  df-qtop 17526  df-imas 17527  df-xps 17529  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-mulg 19056  df-cntz 19305  df-cmn 19768  df-psmet 21312  df-xmet 21313  df-met 21314  df-bl 21315  df-mopn 21316  df-fbas 21317  df-fg 21318  df-cnfld 21321  df-top 22837  df-topon 22854  df-topsp 22876  df-bases 22889  df-cld 22962  df-ntr 22963  df-cls 22964  df-nei 23041  df-lp 23079  df-perf 23080  df-cn 23170  df-cnp 23171  df-haus 23258  df-tx 23505  df-hmeo 23698  df-fil 23789  df-fm 23881  df-flim 23882  df-flf 23883  df-xms 24264  df-ms 24265  df-tms 24266  df-cncf 24827  df-limc 25824  df-dv 25825  df-log 26522
This theorem is referenced by:  ang180lem2  26777  ang180lem3  26778
  Copyright terms: Public domain W3C validator