MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ang180lem1 Structured version   Visualization version   GIF version

Theorem ang180lem1 25088
Description: Lemma for ang180 25093. Show that the "revolution number" 𝑁 is an integer, using efeq1 24814 to show that since the product of the three arguments 𝐴, 1 / (1 − 𝐴), (𝐴 − 1) / 𝐴 is -1, the sum of the logarithms must be an integer multiple of 2πi away from πi = log(-1). (Contributed by Mario Carneiro, 23-Sep-2014.)
Hypotheses
Ref Expression
ang.1 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))
ang180lem1.2 𝑇 = (((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴))
ang180lem1.3 𝑁 = (((𝑇 / i) / (2 · π)) − (1 / 2))
Assertion
Ref Expression
ang180lem1 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝑁 ∈ ℤ ∧ (𝑇 / i) ∈ ℝ))
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝑇(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑁(𝑥,𝑦)

Proof of Theorem ang180lem1
StepHypRef Expression
1 picn 24748 . . . . . . 7 π ∈ ℂ
2 2re 11514 . . . . . . . . . 10 2 ∈ ℝ
3 pire 24747 . . . . . . . . . 10 π ∈ ℝ
42, 3remulcli 10456 . . . . . . . . 9 (2 · π) ∈ ℝ
54recni 10454 . . . . . . . 8 (2 · π) ∈ ℂ
6 2pos 11550 . . . . . . . . . 10 0 < 2
7 pipos 24749 . . . . . . . . . 10 0 < π
82, 3, 6, 7mulgt0ii 10573 . . . . . . . . 9 0 < (2 · π)
94, 8gt0ne0ii 10977 . . . . . . . 8 (2 · π) ≠ 0
105, 9pm3.2i 463 . . . . . . 7 ((2 · π) ∈ ℂ ∧ (2 · π) ≠ 0)
11 ax-icn 10394 . . . . . . . 8 i ∈ ℂ
12 ine0 10876 . . . . . . . 8 i ≠ 0
1311, 12pm3.2i 463 . . . . . . 7 (i ∈ ℂ ∧ i ≠ 0)
14 divcan5 11143 . . . . . . 7 ((π ∈ ℂ ∧ ((2 · π) ∈ ℂ ∧ (2 · π) ≠ 0) ∧ (i ∈ ℂ ∧ i ≠ 0)) → ((i · π) / (i · (2 · π))) = (π / (2 · π)))
151, 10, 13, 14mp3an 1440 . . . . . 6 ((i · π) / (i · (2 · π))) = (π / (2 · π))
163, 7gt0ne0ii 10977 . . . . . . 7 π ≠ 0
17 recdiv 11147 . . . . . . 7 ((((2 · π) ∈ ℂ ∧ (2 · π) ≠ 0) ∧ (π ∈ ℂ ∧ π ≠ 0)) → (1 / ((2 · π) / π)) = (π / (2 · π)))
185, 9, 1, 16, 17mp4an 680 . . . . . 6 (1 / ((2 · π) / π)) = (π / (2 · π))
192recni 10454 . . . . . . . 8 2 ∈ ℂ
2019, 1, 16divcan4i 11188 . . . . . . 7 ((2 · π) / π) = 2
2120oveq2i 6987 . . . . . 6 (1 / ((2 · π) / π)) = (1 / 2)
2215, 18, 213eqtr2i 2808 . . . . 5 ((i · π) / (i · (2 · π))) = (1 / 2)
2322oveq2i 6987 . . . 4 ((𝑇 / (i · (2 · π))) − ((i · π) / (i · (2 · π)))) = ((𝑇 / (i · (2 · π))) − (1 / 2))
24 ang180lem1.2 . . . . . 6 𝑇 = (((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴))
25 ax-1cn 10393 . . . . . . . . . . 11 1 ∈ ℂ
26 simp1 1116 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝐴 ∈ ℂ)
27 subcl 10685 . . . . . . . . . . 11 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 − 𝐴) ∈ ℂ)
2825, 26, 27sylancr 578 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (1 − 𝐴) ∈ ℂ)
29 simp3 1118 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝐴 ≠ 1)
3029necomd 3022 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 1 ≠ 𝐴)
31 subeq0 10713 . . . . . . . . . . . . 13 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((1 − 𝐴) = 0 ↔ 1 = 𝐴))
3225, 26, 31sylancr 578 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((1 − 𝐴) = 0 ↔ 1 = 𝐴))
3332necon3bid 3011 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((1 − 𝐴) ≠ 0 ↔ 1 ≠ 𝐴))
3430, 33mpbird 249 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (1 − 𝐴) ≠ 0)
3528, 34reccld 11210 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (1 / (1 − 𝐴)) ∈ ℂ)
3628, 34recne0d 11211 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (1 / (1 − 𝐴)) ≠ 0)
3735, 36logcld 24855 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (log‘(1 / (1 − 𝐴))) ∈ ℂ)
38 subcl 10685 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 − 1) ∈ ℂ)
3926, 25, 38sylancl 577 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝐴 − 1) ∈ ℂ)
40 simp2 1117 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝐴 ≠ 0)
4139, 26, 40divcld 11217 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝐴 − 1) / 𝐴) ∈ ℂ)
42 subeq0 10713 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 − 1) = 0 ↔ 𝐴 = 1))
4326, 25, 42sylancl 577 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝐴 − 1) = 0 ↔ 𝐴 = 1))
4443necon3bid 3011 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝐴 − 1) ≠ 0 ↔ 𝐴 ≠ 1))
4529, 44mpbird 249 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝐴 − 1) ≠ 0)
4639, 26, 45, 40divne0d 11233 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝐴 − 1) / 𝐴) ≠ 0)
4741, 46logcld 24855 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (log‘((𝐴 − 1) / 𝐴)) ∈ ℂ)
4837, 47addcld 10459 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) ∈ ℂ)
4926, 40logcld 24855 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (log‘𝐴) ∈ ℂ)
5048, 49addcld 10459 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴)) ∈ ℂ)
5124, 50syl5eqel 2870 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝑇 ∈ ℂ)
5211, 1mulcli 10447 . . . . . 6 (i · π) ∈ ℂ
5352a1i 11 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (i · π) ∈ ℂ)
5411, 5mulcli 10447 . . . . . 6 (i · (2 · π)) ∈ ℂ
5554a1i 11 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (i · (2 · π)) ∈ ℂ)
5611, 5, 12, 9mulne0i 11084 . . . . . 6 (i · (2 · π)) ≠ 0
5756a1i 11 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (i · (2 · π)) ≠ 0)
5851, 53, 55, 57divsubdird 11256 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝑇 − (i · π)) / (i · (2 · π))) = ((𝑇 / (i · (2 · π))) − ((i · π) / (i · (2 · π)))))
59 ang180lem1.3 . . . . 5 𝑁 = (((𝑇 / i) / (2 · π)) − (1 / 2))
6013a1i 11 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (i ∈ ℂ ∧ i ≠ 0))
6110a1i 11 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((2 · π) ∈ ℂ ∧ (2 · π) ≠ 0))
62 divdiv1 11152 . . . . . . 7 ((𝑇 ∈ ℂ ∧ (i ∈ ℂ ∧ i ≠ 0) ∧ ((2 · π) ∈ ℂ ∧ (2 · π) ≠ 0)) → ((𝑇 / i) / (2 · π)) = (𝑇 / (i · (2 · π))))
6351, 60, 61, 62syl3anc 1351 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝑇 / i) / (2 · π)) = (𝑇 / (i · (2 · π))))
6463oveq1d 6991 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (((𝑇 / i) / (2 · π)) − (1 / 2)) = ((𝑇 / (i · (2 · π))) − (1 / 2)))
6559, 64syl5eq 2826 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝑁 = ((𝑇 / (i · (2 · π))) − (1 / 2)))
6623, 58, 653eqtr4a 2840 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝑇 − (i · π)) / (i · (2 · π))) = 𝑁)
67 efsub 15313 . . . . . 6 ((𝑇 ∈ ℂ ∧ (i · π) ∈ ℂ) → (exp‘(𝑇 − (i · π))) = ((exp‘𝑇) / (exp‘(i · π))))
6851, 52, 67sylancl 577 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (exp‘(𝑇 − (i · π))) = ((exp‘𝑇) / (exp‘(i · π))))
69 efipi 24762 . . . . . . 7 (exp‘(i · π)) = -1
7069oveq2i 6987 . . . . . 6 ((exp‘𝑇) / (exp‘(i · π))) = ((exp‘𝑇) / -1)
7124fveq2i 6502 . . . . . . . . 9 (exp‘𝑇) = (exp‘(((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴)))
72 efadd 15307 . . . . . . . . . . 11 ((((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) ∈ ℂ ∧ (log‘𝐴) ∈ ℂ) → (exp‘(((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴))) = ((exp‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) · (exp‘(log‘𝐴))))
7348, 49, 72syl2anc 576 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (exp‘(((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴))) = ((exp‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) · (exp‘(log‘𝐴))))
74 efadd 15307 . . . . . . . . . . . . 13 (((log‘(1 / (1 − 𝐴))) ∈ ℂ ∧ (log‘((𝐴 − 1) / 𝐴)) ∈ ℂ) → (exp‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) = ((exp‘(log‘(1 / (1 − 𝐴)))) · (exp‘(log‘((𝐴 − 1) / 𝐴)))))
7537, 47, 74syl2anc 576 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (exp‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) = ((exp‘(log‘(1 / (1 − 𝐴)))) · (exp‘(log‘((𝐴 − 1) / 𝐴)))))
76 eflog 24861 . . . . . . . . . . . . . 14 (((1 / (1 − 𝐴)) ∈ ℂ ∧ (1 / (1 − 𝐴)) ≠ 0) → (exp‘(log‘(1 / (1 − 𝐴)))) = (1 / (1 − 𝐴)))
7735, 36, 76syl2anc 576 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (exp‘(log‘(1 / (1 − 𝐴)))) = (1 / (1 − 𝐴)))
78 eflog 24861 . . . . . . . . . . . . . 14 ((((𝐴 − 1) / 𝐴) ∈ ℂ ∧ ((𝐴 − 1) / 𝐴) ≠ 0) → (exp‘(log‘((𝐴 − 1) / 𝐴))) = ((𝐴 − 1) / 𝐴))
7941, 46, 78syl2anc 576 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (exp‘(log‘((𝐴 − 1) / 𝐴))) = ((𝐴 − 1) / 𝐴))
8077, 79oveq12d 6994 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((exp‘(log‘(1 / (1 − 𝐴)))) · (exp‘(log‘((𝐴 − 1) / 𝐴)))) = ((1 / (1 − 𝐴)) · ((𝐴 − 1) / 𝐴)))
8135, 41mulcomd 10461 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((1 / (1 − 𝐴)) · ((𝐴 − 1) / 𝐴)) = (((𝐴 − 1) / 𝐴) · (1 / (1 − 𝐴))))
8225a1i 11 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 1 ∈ ℂ)
8382, 28, 34div2negd 11232 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (-1 / -(1 − 𝐴)) = (1 / (1 − 𝐴)))
84 negsubdi2 10746 . . . . . . . . . . . . . . . . 17 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → -(1 − 𝐴) = (𝐴 − 1))
8525, 26, 84sylancr 578 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → -(1 − 𝐴) = (𝐴 − 1))
8685oveq2d 6992 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (-1 / -(1 − 𝐴)) = (-1 / (𝐴 − 1)))
8783, 86eqtr3d 2816 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (1 / (1 − 𝐴)) = (-1 / (𝐴 − 1)))
8887oveq2d 6992 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (((𝐴 − 1) / 𝐴) · (1 / (1 − 𝐴))) = (((𝐴 − 1) / 𝐴) · (-1 / (𝐴 − 1))))
89 neg1cn 11561 . . . . . . . . . . . . . . 15 -1 ∈ ℂ
9089a1i 11 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → -1 ∈ ℂ)
9190, 39, 26, 45, 40dmdcand 11246 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (((𝐴 − 1) / 𝐴) · (-1 / (𝐴 − 1))) = (-1 / 𝐴))
9281, 88, 913eqtrd 2818 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((1 / (1 − 𝐴)) · ((𝐴 − 1) / 𝐴)) = (-1 / 𝐴))
9375, 80, 923eqtrd 2818 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (exp‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) = (-1 / 𝐴))
94 eflog 24861 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(log‘𝐴)) = 𝐴)
9526, 40, 94syl2anc 576 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (exp‘(log‘𝐴)) = 𝐴)
9693, 95oveq12d 6994 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((exp‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) · (exp‘(log‘𝐴))) = ((-1 / 𝐴) · 𝐴))
9790, 26, 40divcan1d 11218 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((-1 / 𝐴) · 𝐴) = -1)
9873, 96, 973eqtrd 2818 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (exp‘(((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴))) = -1)
9971, 98syl5eq 2826 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (exp‘𝑇) = -1)
10099oveq1d 6991 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((exp‘𝑇) / -1) = (-1 / -1))
101 neg1ne0 11563 . . . . . . . 8 -1 ≠ 0
10289, 101dividi 11174 . . . . . . 7 (-1 / -1) = 1
103100, 102syl6eq 2830 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((exp‘𝑇) / -1) = 1)
10470, 103syl5eq 2826 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((exp‘𝑇) / (exp‘(i · π))) = 1)
10568, 104eqtrd 2814 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (exp‘(𝑇 − (i · π))) = 1)
106 subcl 10685 . . . . . 6 ((𝑇 ∈ ℂ ∧ (i · π) ∈ ℂ) → (𝑇 − (i · π)) ∈ ℂ)
10751, 52, 106sylancl 577 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝑇 − (i · π)) ∈ ℂ)
108 efeq1 24814 . . . . 5 ((𝑇 − (i · π)) ∈ ℂ → ((exp‘(𝑇 − (i · π))) = 1 ↔ ((𝑇 − (i · π)) / (i · (2 · π))) ∈ ℤ))
109107, 108syl 17 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((exp‘(𝑇 − (i · π))) = 1 ↔ ((𝑇 − (i · π)) / (i · (2 · π))) ∈ ℤ))
110105, 109mpbid 224 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝑇 − (i · π)) / (i · (2 · π))) ∈ ℤ)
11166, 110eqeltrrd 2867 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝑁 ∈ ℤ)
11211a1i 11 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → i ∈ ℂ)
11312a1i 11 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → i ≠ 0)
11451, 112, 113divcld 11217 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝑇 / i) ∈ ℂ)
1155a1i 11 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (2 · π) ∈ ℂ)
1169a1i 11 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (2 · π) ≠ 0)
117114, 115, 116divcan1d 11218 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (((𝑇 / i) / (2 · π)) · (2 · π)) = (𝑇 / i))
11859oveq1i 6986 . . . . . 6 (𝑁 + (1 / 2)) = ((((𝑇 / i) / (2 · π)) − (1 / 2)) + (1 / 2))
119114, 115, 116divcld 11217 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝑇 / i) / (2 · π)) ∈ ℂ)
120 halfre 11661 . . . . . . . 8 (1 / 2) ∈ ℝ
121120recni 10454 . . . . . . 7 (1 / 2) ∈ ℂ
122 npcan 10696 . . . . . . 7 ((((𝑇 / i) / (2 · π)) ∈ ℂ ∧ (1 / 2) ∈ ℂ) → ((((𝑇 / i) / (2 · π)) − (1 / 2)) + (1 / 2)) = ((𝑇 / i) / (2 · π)))
123119, 121, 122sylancl 577 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((((𝑇 / i) / (2 · π)) − (1 / 2)) + (1 / 2)) = ((𝑇 / i) / (2 · π)))
124118, 123syl5eq 2826 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝑁 + (1 / 2)) = ((𝑇 / i) / (2 · π)))
125111zred 11900 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝑁 ∈ ℝ)
126 readdcl 10418 . . . . . 6 ((𝑁 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (𝑁 + (1 / 2)) ∈ ℝ)
127125, 120, 126sylancl 577 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝑁 + (1 / 2)) ∈ ℝ)
128124, 127eqeltrrd 2867 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝑇 / i) / (2 · π)) ∈ ℝ)
129 remulcl 10420 . . . 4 ((((𝑇 / i) / (2 · π)) ∈ ℝ ∧ (2 · π) ∈ ℝ) → (((𝑇 / i) / (2 · π)) · (2 · π)) ∈ ℝ)
130128, 4, 129sylancl 577 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (((𝑇 / i) / (2 · π)) · (2 · π)) ∈ ℝ)
131117, 130eqeltrrd 2867 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝑇 / i) ∈ ℝ)
132111, 131jca 504 1 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝑁 ∈ ℤ ∧ (𝑇 / i) ∈ ℝ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  w3a 1068   = wceq 1507  wcel 2050  wne 2967  cdif 3826  {csn 4441  cfv 6188  (class class class)co 6976  cmpo 6978  cc 10333  cr 10334  0cc0 10335  1c1 10336  ici 10337   + caddc 10338   · cmul 10340  cmin 10670  -cneg 10671   / cdiv 11098  2c2 11495  cz 11793  cim 14318  expce 15275  πcpi 15280  logclog 24839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-rep 5049  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279  ax-inf2 8898  ax-cnex 10391  ax-resscn 10392  ax-1cn 10393  ax-icn 10394  ax-addcl 10395  ax-addrcl 10396  ax-mulcl 10397  ax-mulrcl 10398  ax-mulcom 10399  ax-addass 10400  ax-mulass 10401  ax-distr 10402  ax-i2m1 10403  ax-1ne0 10404  ax-1rid 10405  ax-rnegex 10406  ax-rrecex 10407  ax-cnre 10408  ax-pre-lttri 10409  ax-pre-lttrn 10410  ax-pre-ltadd 10411  ax-pre-mulgt0 10412  ax-pre-sup 10413  ax-addf 10414  ax-mulf 10415
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-fal 1520  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rmo 3096  df-rab 3097  df-v 3417  df-sbc 3682  df-csb 3787  df-dif 3832  df-un 3834  df-in 3836  df-ss 3843  df-pss 3845  df-nul 4179  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-tp 4446  df-op 4448  df-uni 4713  df-int 4750  df-iun 4794  df-iin 4795  df-br 4930  df-opab 4992  df-mpt 5009  df-tr 5031  df-id 5312  df-eprel 5317  df-po 5326  df-so 5327  df-fr 5366  df-se 5367  df-we 5368  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-pred 5986  df-ord 6032  df-on 6033  df-lim 6034  df-suc 6035  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-isom 6197  df-riota 6937  df-ov 6979  df-oprab 6980  df-mpo 6981  df-of 7227  df-om 7397  df-1st 7501  df-2nd 7502  df-supp 7634  df-wrecs 7750  df-recs 7812  df-rdg 7850  df-1o 7905  df-2o 7906  df-oadd 7909  df-er 8089  df-map 8208  df-pm 8209  df-ixp 8260  df-en 8307  df-dom 8308  df-sdom 8309  df-fin 8310  df-fsupp 8629  df-fi 8670  df-sup 8701  df-inf 8702  df-oi 8769  df-card 9162  df-cda 9388  df-pnf 10476  df-mnf 10477  df-xr 10478  df-ltxr 10479  df-le 10480  df-sub 10672  df-neg 10673  df-div 11099  df-nn 11440  df-2 11503  df-3 11504  df-4 11505  df-5 11506  df-6 11507  df-7 11508  df-8 11509  df-9 11510  df-n0 11708  df-z 11794  df-dec 11912  df-uz 12059  df-q 12163  df-rp 12205  df-xneg 12324  df-xadd 12325  df-xmul 12326  df-ioo 12558  df-ioc 12559  df-ico 12560  df-icc 12561  df-fz 12709  df-fzo 12850  df-fl 12977  df-mod 13053  df-seq 13185  df-exp 13245  df-fac 13449  df-bc 13478  df-hash 13506  df-shft 14287  df-cj 14319  df-re 14320  df-im 14321  df-sqrt 14455  df-abs 14456  df-limsup 14689  df-clim 14706  df-rlim 14707  df-sum 14904  df-ef 15281  df-sin 15283  df-cos 15284  df-pi 15286  df-struct 16341  df-ndx 16342  df-slot 16343  df-base 16345  df-sets 16346  df-ress 16347  df-plusg 16434  df-mulr 16435  df-starv 16436  df-sca 16437  df-vsca 16438  df-ip 16439  df-tset 16440  df-ple 16441  df-ds 16443  df-unif 16444  df-hom 16445  df-cco 16446  df-rest 16552  df-topn 16553  df-0g 16571  df-gsum 16572  df-topgen 16573  df-pt 16574  df-prds 16577  df-xrs 16631  df-qtop 16636  df-imas 16637  df-xps 16639  df-mre 16715  df-mrc 16716  df-acs 16718  df-mgm 17710  df-sgrp 17752  df-mnd 17763  df-submnd 17804  df-mulg 18012  df-cntz 18218  df-cmn 18668  df-psmet 20239  df-xmet 20240  df-met 20241  df-bl 20242  df-mopn 20243  df-fbas 20244  df-fg 20245  df-cnfld 20248  df-top 21206  df-topon 21223  df-topsp 21245  df-bases 21258  df-cld 21331  df-ntr 21332  df-cls 21333  df-nei 21410  df-lp 21448  df-perf 21449  df-cn 21539  df-cnp 21540  df-haus 21627  df-tx 21874  df-hmeo 22067  df-fil 22158  df-fm 22250  df-flim 22251  df-flf 22252  df-xms 22633  df-ms 22634  df-tms 22635  df-cncf 23189  df-limc 24167  df-dv 24168  df-log 24841
This theorem is referenced by:  ang180lem2  25089  ang180lem3  25090
  Copyright terms: Public domain W3C validator