MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ang180lem1 Structured version   Visualization version   GIF version

Theorem ang180lem1 26870
Description: Lemma for ang180 26875. Show that the "revolution number" 𝑁 is an integer, using efeq1 26588 to show that since the product of the three arguments 𝐴, 1 / (1 − 𝐴), (𝐴 − 1) / 𝐴 is -1, the sum of the logarithms must be an integer multiple of 2πi away from πi = log(-1). (Contributed by Mario Carneiro, 23-Sep-2014.)
Hypotheses
Ref Expression
ang.1 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))
ang180lem1.2 𝑇 = (((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴))
ang180lem1.3 𝑁 = (((𝑇 / i) / (2 · π)) − (1 / 2))
Assertion
Ref Expression
ang180lem1 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝑁 ∈ ℤ ∧ (𝑇 / i) ∈ ℝ))
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝑇(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑁(𝑥,𝑦)

Proof of Theorem ang180lem1
StepHypRef Expression
1 picn 26519 . . . . . . 7 π ∈ ℂ
2 2re 12367 . . . . . . . . . 10 2 ∈ ℝ
3 pire 26518 . . . . . . . . . 10 π ∈ ℝ
42, 3remulcli 11306 . . . . . . . . 9 (2 · π) ∈ ℝ
54recni 11304 . . . . . . . 8 (2 · π) ∈ ℂ
6 2pos 12396 . . . . . . . . . 10 0 < 2
7 pipos 26520 . . . . . . . . . 10 0 < π
82, 3, 6, 7mulgt0ii 11423 . . . . . . . . 9 0 < (2 · π)
94, 8gt0ne0ii 11826 . . . . . . . 8 (2 · π) ≠ 0
105, 9pm3.2i 470 . . . . . . 7 ((2 · π) ∈ ℂ ∧ (2 · π) ≠ 0)
11 ax-icn 11243 . . . . . . . 8 i ∈ ℂ
12 ine0 11725 . . . . . . . 8 i ≠ 0
1311, 12pm3.2i 470 . . . . . . 7 (i ∈ ℂ ∧ i ≠ 0)
14 divcan5 11996 . . . . . . 7 ((π ∈ ℂ ∧ ((2 · π) ∈ ℂ ∧ (2 · π) ≠ 0) ∧ (i ∈ ℂ ∧ i ≠ 0)) → ((i · π) / (i · (2 · π))) = (π / (2 · π)))
151, 10, 13, 14mp3an 1461 . . . . . 6 ((i · π) / (i · (2 · π))) = (π / (2 · π))
163, 7gt0ne0ii 11826 . . . . . . 7 π ≠ 0
17 recdiv 12000 . . . . . . 7 ((((2 · π) ∈ ℂ ∧ (2 · π) ≠ 0) ∧ (π ∈ ℂ ∧ π ≠ 0)) → (1 / ((2 · π) / π)) = (π / (2 · π)))
185, 9, 1, 16, 17mp4an 692 . . . . . 6 (1 / ((2 · π) / π)) = (π / (2 · π))
192recni 11304 . . . . . . . 8 2 ∈ ℂ
2019, 1, 16divcan4i 12041 . . . . . . 7 ((2 · π) / π) = 2
2120oveq2i 7459 . . . . . 6 (1 / ((2 · π) / π)) = (1 / 2)
2215, 18, 213eqtr2i 2774 . . . . 5 ((i · π) / (i · (2 · π))) = (1 / 2)
2322oveq2i 7459 . . . 4 ((𝑇 / (i · (2 · π))) − ((i · π) / (i · (2 · π)))) = ((𝑇 / (i · (2 · π))) − (1 / 2))
24 ang180lem1.2 . . . . . 6 𝑇 = (((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴))
25 ax-1cn 11242 . . . . . . . . . . 11 1 ∈ ℂ
26 simp1 1136 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝐴 ∈ ℂ)
27 subcl 11535 . . . . . . . . . . 11 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 − 𝐴) ∈ ℂ)
2825, 26, 27sylancr 586 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (1 − 𝐴) ∈ ℂ)
29 simp3 1138 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝐴 ≠ 1)
3029necomd 3002 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 1 ≠ 𝐴)
31 subeq0 11562 . . . . . . . . . . . . 13 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((1 − 𝐴) = 0 ↔ 1 = 𝐴))
3225, 26, 31sylancr 586 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((1 − 𝐴) = 0 ↔ 1 = 𝐴))
3332necon3bid 2991 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((1 − 𝐴) ≠ 0 ↔ 1 ≠ 𝐴))
3430, 33mpbird 257 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (1 − 𝐴) ≠ 0)
3528, 34reccld 12063 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (1 / (1 − 𝐴)) ∈ ℂ)
3628, 34recne0d 12064 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (1 / (1 − 𝐴)) ≠ 0)
3735, 36logcld 26630 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (log‘(1 / (1 − 𝐴))) ∈ ℂ)
38 subcl 11535 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 − 1) ∈ ℂ)
3926, 25, 38sylancl 585 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝐴 − 1) ∈ ℂ)
40 simp2 1137 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝐴 ≠ 0)
4139, 26, 40divcld 12070 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝐴 − 1) / 𝐴) ∈ ℂ)
42 subeq0 11562 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 − 1) = 0 ↔ 𝐴 = 1))
4326, 25, 42sylancl 585 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝐴 − 1) = 0 ↔ 𝐴 = 1))
4443necon3bid 2991 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝐴 − 1) ≠ 0 ↔ 𝐴 ≠ 1))
4529, 44mpbird 257 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝐴 − 1) ≠ 0)
4639, 26, 45, 40divne0d 12086 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝐴 − 1) / 𝐴) ≠ 0)
4741, 46logcld 26630 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (log‘((𝐴 − 1) / 𝐴)) ∈ ℂ)
4837, 47addcld 11309 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) ∈ ℂ)
4926, 40logcld 26630 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (log‘𝐴) ∈ ℂ)
5048, 49addcld 11309 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴)) ∈ ℂ)
5124, 50eqeltrid 2848 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝑇 ∈ ℂ)
5211, 1mulcli 11297 . . . . . 6 (i · π) ∈ ℂ
5352a1i 11 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (i · π) ∈ ℂ)
5411, 5mulcli 11297 . . . . . 6 (i · (2 · π)) ∈ ℂ
5554a1i 11 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (i · (2 · π)) ∈ ℂ)
5611, 5, 12, 9mulne0i 11933 . . . . . 6 (i · (2 · π)) ≠ 0
5756a1i 11 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (i · (2 · π)) ≠ 0)
5851, 53, 55, 57divsubdird 12109 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝑇 − (i · π)) / (i · (2 · π))) = ((𝑇 / (i · (2 · π))) − ((i · π) / (i · (2 · π)))))
59 ang180lem1.3 . . . . 5 𝑁 = (((𝑇 / i) / (2 · π)) − (1 / 2))
6013a1i 11 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (i ∈ ℂ ∧ i ≠ 0))
6110a1i 11 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((2 · π) ∈ ℂ ∧ (2 · π) ≠ 0))
62 divdiv1 12005 . . . . . . 7 ((𝑇 ∈ ℂ ∧ (i ∈ ℂ ∧ i ≠ 0) ∧ ((2 · π) ∈ ℂ ∧ (2 · π) ≠ 0)) → ((𝑇 / i) / (2 · π)) = (𝑇 / (i · (2 · π))))
6351, 60, 61, 62syl3anc 1371 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝑇 / i) / (2 · π)) = (𝑇 / (i · (2 · π))))
6463oveq1d 7463 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (((𝑇 / i) / (2 · π)) − (1 / 2)) = ((𝑇 / (i · (2 · π))) − (1 / 2)))
6559, 64eqtrid 2792 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝑁 = ((𝑇 / (i · (2 · π))) − (1 / 2)))
6623, 58, 653eqtr4a 2806 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝑇 − (i · π)) / (i · (2 · π))) = 𝑁)
67 efsub 16148 . . . . . 6 ((𝑇 ∈ ℂ ∧ (i · π) ∈ ℂ) → (exp‘(𝑇 − (i · π))) = ((exp‘𝑇) / (exp‘(i · π))))
6851, 52, 67sylancl 585 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (exp‘(𝑇 − (i · π))) = ((exp‘𝑇) / (exp‘(i · π))))
69 efipi 26533 . . . . . . 7 (exp‘(i · π)) = -1
7069oveq2i 7459 . . . . . 6 ((exp‘𝑇) / (exp‘(i · π))) = ((exp‘𝑇) / -1)
7124fveq2i 6923 . . . . . . . . 9 (exp‘𝑇) = (exp‘(((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴)))
72 efadd 16142 . . . . . . . . . . 11 ((((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) ∈ ℂ ∧ (log‘𝐴) ∈ ℂ) → (exp‘(((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴))) = ((exp‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) · (exp‘(log‘𝐴))))
7348, 49, 72syl2anc 583 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (exp‘(((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴))) = ((exp‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) · (exp‘(log‘𝐴))))
74 efadd 16142 . . . . . . . . . . . . 13 (((log‘(1 / (1 − 𝐴))) ∈ ℂ ∧ (log‘((𝐴 − 1) / 𝐴)) ∈ ℂ) → (exp‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) = ((exp‘(log‘(1 / (1 − 𝐴)))) · (exp‘(log‘((𝐴 − 1) / 𝐴)))))
7537, 47, 74syl2anc 583 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (exp‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) = ((exp‘(log‘(1 / (1 − 𝐴)))) · (exp‘(log‘((𝐴 − 1) / 𝐴)))))
76 eflog 26636 . . . . . . . . . . . . . 14 (((1 / (1 − 𝐴)) ∈ ℂ ∧ (1 / (1 − 𝐴)) ≠ 0) → (exp‘(log‘(1 / (1 − 𝐴)))) = (1 / (1 − 𝐴)))
7735, 36, 76syl2anc 583 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (exp‘(log‘(1 / (1 − 𝐴)))) = (1 / (1 − 𝐴)))
78 eflog 26636 . . . . . . . . . . . . . 14 ((((𝐴 − 1) / 𝐴) ∈ ℂ ∧ ((𝐴 − 1) / 𝐴) ≠ 0) → (exp‘(log‘((𝐴 − 1) / 𝐴))) = ((𝐴 − 1) / 𝐴))
7941, 46, 78syl2anc 583 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (exp‘(log‘((𝐴 − 1) / 𝐴))) = ((𝐴 − 1) / 𝐴))
8077, 79oveq12d 7466 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((exp‘(log‘(1 / (1 − 𝐴)))) · (exp‘(log‘((𝐴 − 1) / 𝐴)))) = ((1 / (1 − 𝐴)) · ((𝐴 − 1) / 𝐴)))
8135, 41mulcomd 11311 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((1 / (1 − 𝐴)) · ((𝐴 − 1) / 𝐴)) = (((𝐴 − 1) / 𝐴) · (1 / (1 − 𝐴))))
8225a1i 11 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 1 ∈ ℂ)
8382, 28, 34div2negd 12085 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (-1 / -(1 − 𝐴)) = (1 / (1 − 𝐴)))
84 negsubdi2 11595 . . . . . . . . . . . . . . . . 17 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → -(1 − 𝐴) = (𝐴 − 1))
8525, 26, 84sylancr 586 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → -(1 − 𝐴) = (𝐴 − 1))
8685oveq2d 7464 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (-1 / -(1 − 𝐴)) = (-1 / (𝐴 − 1)))
8783, 86eqtr3d 2782 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (1 / (1 − 𝐴)) = (-1 / (𝐴 − 1)))
8887oveq2d 7464 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (((𝐴 − 1) / 𝐴) · (1 / (1 − 𝐴))) = (((𝐴 − 1) / 𝐴) · (-1 / (𝐴 − 1))))
89 neg1cn 12407 . . . . . . . . . . . . . . 15 -1 ∈ ℂ
9089a1i 11 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → -1 ∈ ℂ)
9190, 39, 26, 45, 40dmdcand 12099 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (((𝐴 − 1) / 𝐴) · (-1 / (𝐴 − 1))) = (-1 / 𝐴))
9281, 88, 913eqtrd 2784 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((1 / (1 − 𝐴)) · ((𝐴 − 1) / 𝐴)) = (-1 / 𝐴))
9375, 80, 923eqtrd 2784 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (exp‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) = (-1 / 𝐴))
94 eflog 26636 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(log‘𝐴)) = 𝐴)
9526, 40, 94syl2anc 583 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (exp‘(log‘𝐴)) = 𝐴)
9693, 95oveq12d 7466 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((exp‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) · (exp‘(log‘𝐴))) = ((-1 / 𝐴) · 𝐴))
9790, 26, 40divcan1d 12071 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((-1 / 𝐴) · 𝐴) = -1)
9873, 96, 973eqtrd 2784 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (exp‘(((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴))) = -1)
9971, 98eqtrid 2792 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (exp‘𝑇) = -1)
10099oveq1d 7463 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((exp‘𝑇) / -1) = (-1 / -1))
101 neg1ne0 12409 . . . . . . . 8 -1 ≠ 0
10289, 101dividi 12027 . . . . . . 7 (-1 / -1) = 1
103100, 102eqtrdi 2796 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((exp‘𝑇) / -1) = 1)
10470, 103eqtrid 2792 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((exp‘𝑇) / (exp‘(i · π))) = 1)
10568, 104eqtrd 2780 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (exp‘(𝑇 − (i · π))) = 1)
106 subcl 11535 . . . . . 6 ((𝑇 ∈ ℂ ∧ (i · π) ∈ ℂ) → (𝑇 − (i · π)) ∈ ℂ)
10751, 52, 106sylancl 585 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝑇 − (i · π)) ∈ ℂ)
108 efeq1 26588 . . . . 5 ((𝑇 − (i · π)) ∈ ℂ → ((exp‘(𝑇 − (i · π))) = 1 ↔ ((𝑇 − (i · π)) / (i · (2 · π))) ∈ ℤ))
109107, 108syl 17 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((exp‘(𝑇 − (i · π))) = 1 ↔ ((𝑇 − (i · π)) / (i · (2 · π))) ∈ ℤ))
110105, 109mpbid 232 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝑇 − (i · π)) / (i · (2 · π))) ∈ ℤ)
11166, 110eqeltrrd 2845 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝑁 ∈ ℤ)
11211a1i 11 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → i ∈ ℂ)
11312a1i 11 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → i ≠ 0)
11451, 112, 113divcld 12070 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝑇 / i) ∈ ℂ)
1155a1i 11 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (2 · π) ∈ ℂ)
1169a1i 11 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (2 · π) ≠ 0)
117114, 115, 116divcan1d 12071 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (((𝑇 / i) / (2 · π)) · (2 · π)) = (𝑇 / i))
11859oveq1i 7458 . . . . . 6 (𝑁 + (1 / 2)) = ((((𝑇 / i) / (2 · π)) − (1 / 2)) + (1 / 2))
119114, 115, 116divcld 12070 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝑇 / i) / (2 · π)) ∈ ℂ)
120 halfre 12507 . . . . . . . 8 (1 / 2) ∈ ℝ
121120recni 11304 . . . . . . 7 (1 / 2) ∈ ℂ
122 npcan 11545 . . . . . . 7 ((((𝑇 / i) / (2 · π)) ∈ ℂ ∧ (1 / 2) ∈ ℂ) → ((((𝑇 / i) / (2 · π)) − (1 / 2)) + (1 / 2)) = ((𝑇 / i) / (2 · π)))
123119, 121, 122sylancl 585 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((((𝑇 / i) / (2 · π)) − (1 / 2)) + (1 / 2)) = ((𝑇 / i) / (2 · π)))
124118, 123eqtrid 2792 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝑁 + (1 / 2)) = ((𝑇 / i) / (2 · π)))
125111zred 12747 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝑁 ∈ ℝ)
126 readdcl 11267 . . . . . 6 ((𝑁 ∈ ℝ ∧ (1 / 2) ∈ ℝ) → (𝑁 + (1 / 2)) ∈ ℝ)
127125, 120, 126sylancl 585 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝑁 + (1 / 2)) ∈ ℝ)
128124, 127eqeltrrd 2845 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝑇 / i) / (2 · π)) ∈ ℝ)
129 remulcl 11269 . . . 4 ((((𝑇 / i) / (2 · π)) ∈ ℝ ∧ (2 · π) ∈ ℝ) → (((𝑇 / i) / (2 · π)) · (2 · π)) ∈ ℝ)
130128, 4, 129sylancl 585 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (((𝑇 / i) / (2 · π)) · (2 · π)) ∈ ℝ)
131117, 130eqeltrrd 2845 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝑇 / i) ∈ ℝ)
132111, 131jca 511 1 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝑁 ∈ ℤ ∧ (𝑇 / i) ∈ ℝ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  cdif 3973  {csn 4648  cfv 6573  (class class class)co 7448  cmpo 7450  cc 11182  cr 11183  0cc0 11184  1c1 11185  ici 11186   + caddc 11187   · cmul 11189  cmin 11520  -cneg 11521   / cdiv 11947  2c2 12348  cz 12639  cim 15147  expce 16109  πcpi 16114  logclog 26614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-fac 14323  df-bc 14352  df-hash 14380  df-shft 15116  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-rlim 15535  df-sum 15735  df-ef 16115  df-sin 16117  df-cos 16118  df-pi 16120  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-perf 23166  df-cn 23256  df-cnp 23257  df-haus 23344  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923  df-limc 25921  df-dv 25922  df-log 26616
This theorem is referenced by:  ang180lem2  26871  ang180lem3  26872
  Copyright terms: Public domain W3C validator