| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > naddf | Structured version Visualization version GIF version | ||
| Description: Function statement for natural addition. (Contributed by Scott Fenton, 20-Jan-2025.) |
| Ref | Expression |
|---|---|
| naddf | ⊢ +no :(On × On)⟶On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | naddfn 8616 | . 2 ⊢ +no Fn (On × On) | |
| 2 | naddcl 8618 | . . . 4 ⊢ ((𝑦 ∈ On ∧ 𝑧 ∈ On) → (𝑦 +no 𝑧) ∈ On) | |
| 3 | 2 | rgen2 3175 | . . 3 ⊢ ∀𝑦 ∈ On ∀𝑧 ∈ On (𝑦 +no 𝑧) ∈ On |
| 4 | fveq2 6840 | . . . . . 6 ⊢ (𝑥 = 〈𝑦, 𝑧〉 → ( +no ‘𝑥) = ( +no ‘〈𝑦, 𝑧〉)) | |
| 5 | df-ov 7372 | . . . . . 6 ⊢ (𝑦 +no 𝑧) = ( +no ‘〈𝑦, 𝑧〉) | |
| 6 | 4, 5 | eqtr4di 2782 | . . . . 5 ⊢ (𝑥 = 〈𝑦, 𝑧〉 → ( +no ‘𝑥) = (𝑦 +no 𝑧)) |
| 7 | 6 | eleq1d 2813 | . . . 4 ⊢ (𝑥 = 〈𝑦, 𝑧〉 → (( +no ‘𝑥) ∈ On ↔ (𝑦 +no 𝑧) ∈ On)) |
| 8 | 7 | ralxp 5795 | . . 3 ⊢ (∀𝑥 ∈ (On × On)( +no ‘𝑥) ∈ On ↔ ∀𝑦 ∈ On ∀𝑧 ∈ On (𝑦 +no 𝑧) ∈ On) |
| 9 | 3, 8 | mpbir 231 | . 2 ⊢ ∀𝑥 ∈ (On × On)( +no ‘𝑥) ∈ On |
| 10 | ffnfv 7073 | . 2 ⊢ ( +no :(On × On)⟶On ↔ ( +no Fn (On × On) ∧ ∀𝑥 ∈ (On × On)( +no ‘𝑥) ∈ On)) | |
| 11 | 1, 9, 10 | mpbir2an 711 | 1 ⊢ +no :(On × On)⟶On |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ∀wral 3044 〈cop 4591 × cxp 5629 Oncon0 6320 Fn wfn 6494 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 +no cnadd 8606 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-frecs 8237 df-nadd 8607 |
| This theorem is referenced by: naddunif 8634 naddasslem1 8635 naddasslem2 8636 |
| Copyright terms: Public domain | W3C validator |