| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > naddf | Structured version Visualization version GIF version | ||
| Description: Function statement for natural addition. (Contributed by Scott Fenton, 20-Jan-2025.) |
| Ref | Expression |
|---|---|
| naddf | ⊢ +no :(On × On)⟶On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | naddfn 8692 | . 2 ⊢ +no Fn (On × On) | |
| 2 | naddcl 8694 | . . . 4 ⊢ ((𝑦 ∈ On ∧ 𝑧 ∈ On) → (𝑦 +no 𝑧) ∈ On) | |
| 3 | 2 | rgen2 3185 | . . 3 ⊢ ∀𝑦 ∈ On ∀𝑧 ∈ On (𝑦 +no 𝑧) ∈ On |
| 4 | fveq2 6881 | . . . . . 6 ⊢ (𝑥 = 〈𝑦, 𝑧〉 → ( +no ‘𝑥) = ( +no ‘〈𝑦, 𝑧〉)) | |
| 5 | df-ov 7413 | . . . . . 6 ⊢ (𝑦 +no 𝑧) = ( +no ‘〈𝑦, 𝑧〉) | |
| 6 | 4, 5 | eqtr4di 2789 | . . . . 5 ⊢ (𝑥 = 〈𝑦, 𝑧〉 → ( +no ‘𝑥) = (𝑦 +no 𝑧)) |
| 7 | 6 | eleq1d 2820 | . . . 4 ⊢ (𝑥 = 〈𝑦, 𝑧〉 → (( +no ‘𝑥) ∈ On ↔ (𝑦 +no 𝑧) ∈ On)) |
| 8 | 7 | ralxp 5826 | . . 3 ⊢ (∀𝑥 ∈ (On × On)( +no ‘𝑥) ∈ On ↔ ∀𝑦 ∈ On ∀𝑧 ∈ On (𝑦 +no 𝑧) ∈ On) |
| 9 | 3, 8 | mpbir 231 | . 2 ⊢ ∀𝑥 ∈ (On × On)( +no ‘𝑥) ∈ On |
| 10 | ffnfv 7114 | . 2 ⊢ ( +no :(On × On)⟶On ↔ ( +no Fn (On × On) ∧ ∀𝑥 ∈ (On × On)( +no ‘𝑥) ∈ On)) | |
| 11 | 1, 9, 10 | mpbir2an 711 | 1 ⊢ +no :(On × On)⟶On |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ∀wral 3052 〈cop 4612 × cxp 5657 Oncon0 6357 Fn wfn 6531 ⟶wf 6532 ‘cfv 6536 (class class class)co 7410 +no cnadd 8682 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-1st 7993 df-2nd 7994 df-frecs 8285 df-nadd 8683 |
| This theorem is referenced by: naddunif 8710 naddasslem1 8711 naddasslem2 8712 |
| Copyright terms: Public domain | W3C validator |