| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > naddf | Structured version Visualization version GIF version | ||
| Description: Function statement for natural addition. (Contributed by Scott Fenton, 20-Jan-2025.) |
| Ref | Expression |
|---|---|
| naddf | ⊢ +no :(On × On)⟶On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | naddfn 8593 | . 2 ⊢ +no Fn (On × On) | |
| 2 | naddcl 8595 | . . . 4 ⊢ ((𝑦 ∈ On ∧ 𝑧 ∈ On) → (𝑦 +no 𝑧) ∈ On) | |
| 3 | 2 | rgen2 3169 | . . 3 ⊢ ∀𝑦 ∈ On ∀𝑧 ∈ On (𝑦 +no 𝑧) ∈ On |
| 4 | fveq2 6822 | . . . . . 6 ⊢ (𝑥 = 〈𝑦, 𝑧〉 → ( +no ‘𝑥) = ( +no ‘〈𝑦, 𝑧〉)) | |
| 5 | df-ov 7352 | . . . . . 6 ⊢ (𝑦 +no 𝑧) = ( +no ‘〈𝑦, 𝑧〉) | |
| 6 | 4, 5 | eqtr4di 2782 | . . . . 5 ⊢ (𝑥 = 〈𝑦, 𝑧〉 → ( +no ‘𝑥) = (𝑦 +no 𝑧)) |
| 7 | 6 | eleq1d 2813 | . . . 4 ⊢ (𝑥 = 〈𝑦, 𝑧〉 → (( +no ‘𝑥) ∈ On ↔ (𝑦 +no 𝑧) ∈ On)) |
| 8 | 7 | ralxp 5784 | . . 3 ⊢ (∀𝑥 ∈ (On × On)( +no ‘𝑥) ∈ On ↔ ∀𝑦 ∈ On ∀𝑧 ∈ On (𝑦 +no 𝑧) ∈ On) |
| 9 | 3, 8 | mpbir 231 | . 2 ⊢ ∀𝑥 ∈ (On × On)( +no ‘𝑥) ∈ On |
| 10 | ffnfv 7053 | . 2 ⊢ ( +no :(On × On)⟶On ↔ ( +no Fn (On × On) ∧ ∀𝑥 ∈ (On × On)( +no ‘𝑥) ∈ On)) | |
| 11 | 1, 9, 10 | mpbir2an 711 | 1 ⊢ +no :(On × On)⟶On |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ∀wral 3044 〈cop 4583 × cxp 5617 Oncon0 6307 Fn wfn 6477 ⟶wf 6478 ‘cfv 6482 (class class class)co 7349 +no cnadd 8583 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-1st 7924 df-2nd 7925 df-frecs 8214 df-nadd 8584 |
| This theorem is referenced by: naddunif 8611 naddasslem1 8612 naddasslem2 8613 |
| Copyright terms: Public domain | W3C validator |