Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdpglem22 Structured version   Visualization version   GIF version

Theorem mapdpglem22 37852
Description: Lemma for mapdpg 37865. Baer p. 45, line 9: "(F(x-y))* = ... = G(x'-y')." (Contributed by NM, 20-Mar-2015.)
Hypotheses
Ref Expression
mapdpglem.h 𝐻 = (LHyp‘𝐾)
mapdpglem.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdpglem.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdpglem.v 𝑉 = (Base‘𝑈)
mapdpglem.s = (-g𝑈)
mapdpglem.n 𝑁 = (LSpan‘𝑈)
mapdpglem.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdpglem.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdpglem.x (𝜑𝑋𝑉)
mapdpglem.y (𝜑𝑌𝑉)
mapdpglem1.p = (LSSum‘𝐶)
mapdpglem2.j 𝐽 = (LSpan‘𝐶)
mapdpglem3.f 𝐹 = (Base‘𝐶)
mapdpglem3.te (𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) (𝑀‘(𝑁‘{𝑌}))))
mapdpglem3.a 𝐴 = (Scalar‘𝑈)
mapdpglem3.b 𝐵 = (Base‘𝐴)
mapdpglem3.t · = ( ·𝑠𝐶)
mapdpglem3.r 𝑅 = (-g𝐶)
mapdpglem3.g (𝜑𝐺𝐹)
mapdpglem3.e (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))
mapdpglem4.q 𝑄 = (0g𝑈)
mapdpglem.ne (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
mapdpglem4.jt (𝜑 → (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡}))
mapdpglem4.z 0 = (0g𝐴)
mapdpglem4.g4 (𝜑𝑔𝐵)
mapdpglem4.z4 (𝜑𝑧 ∈ (𝑀‘(𝑁‘{𝑌})))
mapdpglem4.t4 (𝜑𝑡 = ((𝑔 · 𝐺)𝑅𝑧))
mapdpglem4.xn (𝜑𝑋𝑄)
mapdpglem12.yn (𝜑𝑌𝑄)
mapdpglem17.ep 𝐸 = (((invr𝐴)‘𝑔) · 𝑧)
Assertion
Ref Expression
mapdpglem22 (𝜑 → (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝐸)}))
Distinct variable groups:   𝑡,   𝑡,𝐶   𝑡,𝐽   𝑡,𝑀   𝑡,𝑁   𝑡,𝑋   𝑡,𝑌   𝐵,𝑔   𝑧,𝑔,𝐶   𝑔,𝐹   𝑔,𝐺,𝑧   𝑔,𝐽,𝑧   𝑔,𝑀,𝑧   𝑔,𝑁,𝑧   𝑅,𝑔,𝑧   · ,𝑔,𝑧   𝑔,𝑌,𝑧,𝑡
Allowed substitution hints:   𝜑(𝑧,𝑡,𝑔)   𝐴(𝑧,𝑡,𝑔)   𝐵(𝑧,𝑡)   (𝑧,𝑡,𝑔)   𝑄(𝑧,𝑡,𝑔)   𝑅(𝑡)   · (𝑡)   𝑈(𝑧,𝑡,𝑔)   𝐸(𝑧,𝑡,𝑔)   𝐹(𝑧,𝑡)   𝐺(𝑡)   𝐻(𝑧,𝑡,𝑔)   𝐾(𝑧,𝑡,𝑔)   (𝑧,𝑔)   𝑉(𝑧,𝑡,𝑔)   𝑊(𝑧,𝑡,𝑔)   𝑋(𝑧,𝑔)   0 (𝑧,𝑡,𝑔)

Proof of Theorem mapdpglem22
StepHypRef Expression
1 mapdpglem4.jt . 2 (𝜑 → (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡}))
2 mapdpglem.h . . . 4 𝐻 = (LHyp‘𝐾)
3 mapdpglem.c . . . 4 𝐶 = ((LCDual‘𝐾)‘𝑊)
4 mapdpglem.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
52, 3, 4lcdlvec 37750 . . 3 (𝜑𝐶 ∈ LVec)
6 mapdpglem.u . . . . . . 7 𝑈 = ((DVecH‘𝐾)‘𝑊)
72, 6, 4dvhlvec 37268 . . . . . 6 (𝜑𝑈 ∈ LVec)
8 mapdpglem3.a . . . . . . 7 𝐴 = (Scalar‘𝑈)
98lvecdrng 19504 . . . . . 6 (𝑈 ∈ LVec → 𝐴 ∈ DivRing)
107, 9syl 17 . . . . 5 (𝜑𝐴 ∈ DivRing)
11 mapdpglem4.g4 . . . . 5 (𝜑𝑔𝐵)
12 mapdpglem.m . . . . . 6 𝑀 = ((mapd‘𝐾)‘𝑊)
13 mapdpglem.v . . . . . 6 𝑉 = (Base‘𝑈)
14 mapdpglem.s . . . . . 6 = (-g𝑈)
15 mapdpglem.n . . . . . 6 𝑁 = (LSpan‘𝑈)
16 mapdpglem.x . . . . . 6 (𝜑𝑋𝑉)
17 mapdpglem.y . . . . . 6 (𝜑𝑌𝑉)
18 mapdpglem1.p . . . . . 6 = (LSSum‘𝐶)
19 mapdpglem2.j . . . . . 6 𝐽 = (LSpan‘𝐶)
20 mapdpglem3.f . . . . . 6 𝐹 = (Base‘𝐶)
21 mapdpglem3.te . . . . . 6 (𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) (𝑀‘(𝑁‘{𝑌}))))
22 mapdpglem3.b . . . . . 6 𝐵 = (Base‘𝐴)
23 mapdpglem3.t . . . . . 6 · = ( ·𝑠𝐶)
24 mapdpglem3.r . . . . . 6 𝑅 = (-g𝐶)
25 mapdpglem3.g . . . . . 6 (𝜑𝐺𝐹)
26 mapdpglem3.e . . . . . 6 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))
27 mapdpglem4.q . . . . . 6 𝑄 = (0g𝑈)
28 mapdpglem.ne . . . . . 6 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
29 mapdpglem4.z . . . . . 6 0 = (0g𝐴)
30 mapdpglem4.z4 . . . . . 6 (𝜑𝑧 ∈ (𝑀‘(𝑁‘{𝑌})))
31 mapdpglem4.t4 . . . . . 6 (𝜑𝑡 = ((𝑔 · 𝐺)𝑅𝑧))
32 mapdpglem4.xn . . . . . 6 (𝜑𝑋𝑄)
332, 12, 6, 13, 14, 15, 3, 4, 16, 17, 18, 19, 20, 21, 8, 22, 23, 24, 25, 26, 27, 28, 1, 29, 11, 30, 31, 32mapdpglem11 37841 . . . . 5 (𝜑𝑔0 )
34 eqid 2778 . . . . . 6 (invr𝐴) = (invr𝐴)
3522, 29, 34drnginvrcl 19160 . . . . 5 ((𝐴 ∈ DivRing ∧ 𝑔𝐵𝑔0 ) → ((invr𝐴)‘𝑔) ∈ 𝐵)
3610, 11, 33, 35syl3anc 1439 . . . 4 (𝜑 → ((invr𝐴)‘𝑔) ∈ 𝐵)
37 eqid 2778 . . . . 5 (Scalar‘𝐶) = (Scalar‘𝐶)
38 eqid 2778 . . . . 5 (Base‘(Scalar‘𝐶)) = (Base‘(Scalar‘𝐶))
392, 6, 8, 22, 3, 37, 38, 4lcdsbase 37759 . . . 4 (𝜑 → (Base‘(Scalar‘𝐶)) = 𝐵)
4036, 39eleqtrrd 2862 . . 3 (𝜑 → ((invr𝐴)‘𝑔) ∈ (Base‘(Scalar‘𝐶)))
4122, 29, 34drnginvrn0 19161 . . . . 5 ((𝐴 ∈ DivRing ∧ 𝑔𝐵𝑔0 ) → ((invr𝐴)‘𝑔) ≠ 0 )
4210, 11, 33, 41syl3anc 1439 . . . 4 (𝜑 → ((invr𝐴)‘𝑔) ≠ 0 )
43 eqid 2778 . . . . 5 (0g‘(Scalar‘𝐶)) = (0g‘(Scalar‘𝐶))
442, 6, 8, 29, 3, 37, 43, 4lcd0 37767 . . . 4 (𝜑 → (0g‘(Scalar‘𝐶)) = 0 )
4542, 44neeqtrrd 3043 . . 3 (𝜑 → ((invr𝐴)‘𝑔) ≠ (0g‘(Scalar‘𝐶)))
462, 12, 6, 13, 14, 15, 3, 4, 16, 17, 18, 19, 20, 21mapdpglem2a 37833 . . 3 (𝜑𝑡𝐹)
4720, 37, 23, 38, 43, 19lspsnvs 19513 . . 3 ((𝐶 ∈ LVec ∧ (((invr𝐴)‘𝑔) ∈ (Base‘(Scalar‘𝐶)) ∧ ((invr𝐴)‘𝑔) ≠ (0g‘(Scalar‘𝐶))) ∧ 𝑡𝐹) → (𝐽‘{(((invr𝐴)‘𝑔) · 𝑡)}) = (𝐽‘{𝑡}))
485, 40, 45, 46, 47syl121anc 1443 . 2 (𝜑 → (𝐽‘{(((invr𝐴)‘𝑔) · 𝑡)}) = (𝐽‘{𝑡}))
49 mapdpglem12.yn . . . . 5 (𝜑𝑌𝑄)
50 mapdpglem17.ep . . . . 5 𝐸 = (((invr𝐴)‘𝑔) · 𝑧)
512, 12, 6, 13, 14, 15, 3, 4, 16, 17, 18, 19, 20, 21, 8, 22, 23, 24, 25, 26, 27, 28, 1, 29, 11, 30, 31, 32, 49, 50mapdpglem21 37851 . . . 4 (𝜑 → (((invr𝐴)‘𝑔) · 𝑡) = (𝐺𝑅𝐸))
5251sneqd 4410 . . 3 (𝜑 → {(((invr𝐴)‘𝑔) · 𝑡)} = {(𝐺𝑅𝐸)})
5352fveq2d 6452 . 2 (𝜑 → (𝐽‘{(((invr𝐴)‘𝑔) · 𝑡)}) = (𝐽‘{(𝐺𝑅𝐸)}))
541, 48, 533eqtr2d 2820 1 (𝜑 → (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝐸)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1601  wcel 2107  wne 2969  {csn 4398  cfv 6137  (class class class)co 6924  Basecbs 16259  Scalarcsca 16345   ·𝑠 cvsca 16346  0gc0g 16490  -gcsg 17815  LSSumclsm 18437  invrcinvr 19062  DivRingcdr 19143  LSpanclspn 19370  LVecclvec 19501  HLchlt 35509  LHypclh 36143  DVecHcdvh 37237  LCDualclcd 37745  mapdcmpd 37783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-cnex 10330  ax-resscn 10331  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-addrcl 10335  ax-mulcl 10336  ax-mulrcl 10337  ax-mulcom 10338  ax-addass 10339  ax-mulass 10340  ax-distr 10341  ax-i2m1 10342  ax-1ne0 10343  ax-1rid 10344  ax-rnegex 10345  ax-rrecex 10346  ax-cnre 10347  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350  ax-pre-mulgt0 10351  ax-riotaBAD 35112
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-int 4713  df-iun 4757  df-iin 4758  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-of 7176  df-om 7346  df-1st 7447  df-2nd 7448  df-tpos 7636  df-undef 7683  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-1o 7845  df-oadd 7849  df-er 8028  df-map 8144  df-en 8244  df-dom 8245  df-sdom 8246  df-fin 8247  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-le 10419  df-sub 10610  df-neg 10611  df-nn 11379  df-2 11442  df-3 11443  df-4 11444  df-5 11445  df-6 11446  df-n0 11647  df-z 11733  df-uz 11997  df-fz 12648  df-struct 16261  df-ndx 16262  df-slot 16263  df-base 16265  df-sets 16266  df-ress 16267  df-plusg 16355  df-mulr 16356  df-sca 16358  df-vsca 16359  df-0g 16492  df-mre 16636  df-mrc 16637  df-acs 16639  df-proset 17318  df-poset 17336  df-plt 17348  df-lub 17364  df-glb 17365  df-join 17366  df-meet 17367  df-p0 17429  df-p1 17430  df-lat 17436  df-clat 17498  df-mgm 17632  df-sgrp 17674  df-mnd 17685  df-submnd 17726  df-grp 17816  df-minusg 17817  df-sbg 17818  df-subg 17979  df-cntz 18137  df-oppg 18163  df-lsm 18439  df-cmn 18585  df-abl 18586  df-mgp 18881  df-ur 18893  df-ring 18940  df-oppr 19014  df-dvdsr 19032  df-unit 19033  df-invr 19063  df-dvr 19074  df-drng 19145  df-lmod 19261  df-lss 19329  df-lsp 19371  df-lvec 19502  df-lsatoms 35135  df-lshyp 35136  df-lcv 35178  df-lfl 35217  df-lkr 35245  df-ldual 35283  df-oposet 35335  df-ol 35337  df-oml 35338  df-covers 35425  df-ats 35426  df-atl 35457  df-cvlat 35481  df-hlat 35510  df-llines 35657  df-lplanes 35658  df-lvols 35659  df-lines 35660  df-psubsp 35662  df-pmap 35663  df-padd 35955  df-lhyp 36147  df-laut 36148  df-ldil 36263  df-ltrn 36264  df-trl 36318  df-tgrp 36902  df-tendo 36914  df-edring 36916  df-dveca 37162  df-disoa 37188  df-dvech 37238  df-dib 37298  df-dic 37332  df-dih 37388  df-doch 37507  df-djh 37554  df-lcdual 37746  df-mapd 37784
This theorem is referenced by:  mapdpglem23  37853
  Copyright terms: Public domain W3C validator