Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdpglem22 Structured version   Visualization version   GIF version

Theorem mapdpglem22 41687
Description: Lemma for mapdpg 41700. Baer p. 45, line 9: "(F(x-y))* = ... = G(x'-y')." (Contributed by NM, 20-Mar-2015.)
Hypotheses
Ref Expression
mapdpglem.h 𝐻 = (LHyp‘𝐾)
mapdpglem.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdpglem.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdpglem.v 𝑉 = (Base‘𝑈)
mapdpglem.s = (-g𝑈)
mapdpglem.n 𝑁 = (LSpan‘𝑈)
mapdpglem.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdpglem.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdpglem.x (𝜑𝑋𝑉)
mapdpglem.y (𝜑𝑌𝑉)
mapdpglem1.p = (LSSum‘𝐶)
mapdpglem2.j 𝐽 = (LSpan‘𝐶)
mapdpglem3.f 𝐹 = (Base‘𝐶)
mapdpglem3.te (𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) (𝑀‘(𝑁‘{𝑌}))))
mapdpglem3.a 𝐴 = (Scalar‘𝑈)
mapdpglem3.b 𝐵 = (Base‘𝐴)
mapdpglem3.t · = ( ·𝑠𝐶)
mapdpglem3.r 𝑅 = (-g𝐶)
mapdpglem3.g (𝜑𝐺𝐹)
mapdpglem3.e (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))
mapdpglem4.q 𝑄 = (0g𝑈)
mapdpglem.ne (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
mapdpglem4.jt (𝜑 → (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡}))
mapdpglem4.z 0 = (0g𝐴)
mapdpglem4.g4 (𝜑𝑔𝐵)
mapdpglem4.z4 (𝜑𝑧 ∈ (𝑀‘(𝑁‘{𝑌})))
mapdpglem4.t4 (𝜑𝑡 = ((𝑔 · 𝐺)𝑅𝑧))
mapdpglem4.xn (𝜑𝑋𝑄)
mapdpglem12.yn (𝜑𝑌𝑄)
mapdpglem17.ep 𝐸 = (((invr𝐴)‘𝑔) · 𝑧)
Assertion
Ref Expression
mapdpglem22 (𝜑 → (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝐸)}))
Distinct variable groups:   𝑡,   𝑡,𝐶   𝑡,𝐽   𝑡,𝑀   𝑡,𝑁   𝑡,𝑋   𝑡,𝑌   𝐵,𝑔   𝑧,𝑔,𝐶   𝑔,𝐹   𝑔,𝐺,𝑧   𝑔,𝐽,𝑧   𝑔,𝑀,𝑧   𝑔,𝑁,𝑧   𝑅,𝑔,𝑧   · ,𝑔,𝑧   𝑔,𝑌,𝑧,𝑡
Allowed substitution hints:   𝜑(𝑧,𝑡,𝑔)   𝐴(𝑧,𝑡,𝑔)   𝐵(𝑧,𝑡)   (𝑧,𝑡,𝑔)   𝑄(𝑧,𝑡,𝑔)   𝑅(𝑡)   · (𝑡)   𝑈(𝑧,𝑡,𝑔)   𝐸(𝑧,𝑡,𝑔)   𝐹(𝑧,𝑡)   𝐺(𝑡)   𝐻(𝑧,𝑡,𝑔)   𝐾(𝑧,𝑡,𝑔)   (𝑧,𝑔)   𝑉(𝑧,𝑡,𝑔)   𝑊(𝑧,𝑡,𝑔)   𝑋(𝑧,𝑔)   0 (𝑧,𝑡,𝑔)

Proof of Theorem mapdpglem22
StepHypRef Expression
1 mapdpglem4.jt . 2 (𝜑 → (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{𝑡}))
2 mapdpglem.h . . . 4 𝐻 = (LHyp‘𝐾)
3 mapdpglem.c . . . 4 𝐶 = ((LCDual‘𝐾)‘𝑊)
4 mapdpglem.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
52, 3, 4lcdlvec 41585 . . 3 (𝜑𝐶 ∈ LVec)
6 mapdpglem.u . . . . . . 7 𝑈 = ((DVecH‘𝐾)‘𝑊)
72, 6, 4dvhlvec 41103 . . . . . 6 (𝜑𝑈 ∈ LVec)
8 mapdpglem3.a . . . . . . 7 𝐴 = (Scalar‘𝑈)
98lvecdrng 21012 . . . . . 6 (𝑈 ∈ LVec → 𝐴 ∈ DivRing)
107, 9syl 17 . . . . 5 (𝜑𝐴 ∈ DivRing)
11 mapdpglem4.g4 . . . . 5 (𝜑𝑔𝐵)
12 mapdpglem.m . . . . . 6 𝑀 = ((mapd‘𝐾)‘𝑊)
13 mapdpglem.v . . . . . 6 𝑉 = (Base‘𝑈)
14 mapdpglem.s . . . . . 6 = (-g𝑈)
15 mapdpglem.n . . . . . 6 𝑁 = (LSpan‘𝑈)
16 mapdpglem.x . . . . . 6 (𝜑𝑋𝑉)
17 mapdpglem.y . . . . . 6 (𝜑𝑌𝑉)
18 mapdpglem1.p . . . . . 6 = (LSSum‘𝐶)
19 mapdpglem2.j . . . . . 6 𝐽 = (LSpan‘𝐶)
20 mapdpglem3.f . . . . . 6 𝐹 = (Base‘𝐶)
21 mapdpglem3.te . . . . . 6 (𝜑𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) (𝑀‘(𝑁‘{𝑌}))))
22 mapdpglem3.b . . . . . 6 𝐵 = (Base‘𝐴)
23 mapdpglem3.t . . . . . 6 · = ( ·𝑠𝐶)
24 mapdpglem3.r . . . . . 6 𝑅 = (-g𝐶)
25 mapdpglem3.g . . . . . 6 (𝜑𝐺𝐹)
26 mapdpglem3.e . . . . . 6 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))
27 mapdpglem4.q . . . . . 6 𝑄 = (0g𝑈)
28 mapdpglem.ne . . . . . 6 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
29 mapdpglem4.z . . . . . 6 0 = (0g𝐴)
30 mapdpglem4.z4 . . . . . 6 (𝜑𝑧 ∈ (𝑀‘(𝑁‘{𝑌})))
31 mapdpglem4.t4 . . . . . 6 (𝜑𝑡 = ((𝑔 · 𝐺)𝑅𝑧))
32 mapdpglem4.xn . . . . . 6 (𝜑𝑋𝑄)
332, 12, 6, 13, 14, 15, 3, 4, 16, 17, 18, 19, 20, 21, 8, 22, 23, 24, 25, 26, 27, 28, 1, 29, 11, 30, 31, 32mapdpglem11 41676 . . . . 5 (𝜑𝑔0 )
34 eqid 2729 . . . . . 6 (invr𝐴) = (invr𝐴)
3522, 29, 34drnginvrcl 20662 . . . . 5 ((𝐴 ∈ DivRing ∧ 𝑔𝐵𝑔0 ) → ((invr𝐴)‘𝑔) ∈ 𝐵)
3610, 11, 33, 35syl3anc 1373 . . . 4 (𝜑 → ((invr𝐴)‘𝑔) ∈ 𝐵)
37 eqid 2729 . . . . 5 (Scalar‘𝐶) = (Scalar‘𝐶)
38 eqid 2729 . . . . 5 (Base‘(Scalar‘𝐶)) = (Base‘(Scalar‘𝐶))
392, 6, 8, 22, 3, 37, 38, 4lcdsbase 41594 . . . 4 (𝜑 → (Base‘(Scalar‘𝐶)) = 𝐵)
4036, 39eleqtrrd 2831 . . 3 (𝜑 → ((invr𝐴)‘𝑔) ∈ (Base‘(Scalar‘𝐶)))
4122, 29, 34drnginvrn0 20663 . . . . 5 ((𝐴 ∈ DivRing ∧ 𝑔𝐵𝑔0 ) → ((invr𝐴)‘𝑔) ≠ 0 )
4210, 11, 33, 41syl3anc 1373 . . . 4 (𝜑 → ((invr𝐴)‘𝑔) ≠ 0 )
43 eqid 2729 . . . . 5 (0g‘(Scalar‘𝐶)) = (0g‘(Scalar‘𝐶))
442, 6, 8, 29, 3, 37, 43, 4lcd0 41602 . . . 4 (𝜑 → (0g‘(Scalar‘𝐶)) = 0 )
4542, 44neeqtrrd 2999 . . 3 (𝜑 → ((invr𝐴)‘𝑔) ≠ (0g‘(Scalar‘𝐶)))
462, 12, 6, 13, 14, 15, 3, 4, 16, 17, 18, 19, 20, 21mapdpglem2a 41668 . . 3 (𝜑𝑡𝐹)
4720, 37, 23, 38, 43, 19lspsnvs 21024 . . 3 ((𝐶 ∈ LVec ∧ (((invr𝐴)‘𝑔) ∈ (Base‘(Scalar‘𝐶)) ∧ ((invr𝐴)‘𝑔) ≠ (0g‘(Scalar‘𝐶))) ∧ 𝑡𝐹) → (𝐽‘{(((invr𝐴)‘𝑔) · 𝑡)}) = (𝐽‘{𝑡}))
485, 40, 45, 46, 47syl121anc 1377 . 2 (𝜑 → (𝐽‘{(((invr𝐴)‘𝑔) · 𝑡)}) = (𝐽‘{𝑡}))
49 mapdpglem12.yn . . . . 5 (𝜑𝑌𝑄)
50 mapdpglem17.ep . . . . 5 𝐸 = (((invr𝐴)‘𝑔) · 𝑧)
512, 12, 6, 13, 14, 15, 3, 4, 16, 17, 18, 19, 20, 21, 8, 22, 23, 24, 25, 26, 27, 28, 1, 29, 11, 30, 31, 32, 49, 50mapdpglem21 41686 . . . 4 (𝜑 → (((invr𝐴)‘𝑔) · 𝑡) = (𝐺𝑅𝐸))
5251sneqd 4601 . . 3 (𝜑 → {(((invr𝐴)‘𝑔) · 𝑡)} = {(𝐺𝑅𝐸)})
5352fveq2d 6862 . 2 (𝜑 → (𝐽‘{(((invr𝐴)‘𝑔) · 𝑡)}) = (𝐽‘{(𝐺𝑅𝐸)}))
541, 48, 533eqtr2d 2770 1 (𝜑 → (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝐸)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  {csn 4589  cfv 6511  (class class class)co 7387  Basecbs 17179  Scalarcsca 17223   ·𝑠 cvsca 17224  0gc0g 17402  -gcsg 18867  LSSumclsm 19564  invrcinvr 20296  DivRingcdr 20638  LSpanclspn 20877  LVecclvec 21009  HLchlt 39343  LHypclh 39978  DVecHcdvh 41072  LCDualclcd 41580  mapdcmpd 41618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-riotaBAD 38946
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-tpos 8205  df-undef 8252  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-0g 17404  df-mre 17547  df-mrc 17548  df-acs 17550  df-proset 18255  df-poset 18274  df-plt 18289  df-lub 18305  df-glb 18306  df-join 18307  df-meet 18308  df-p0 18384  df-p1 18385  df-lat 18391  df-clat 18458  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-subg 19055  df-cntz 19249  df-oppg 19278  df-lsm 19566  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-oppr 20246  df-dvdsr 20266  df-unit 20267  df-invr 20297  df-dvr 20310  df-nzr 20422  df-rlreg 20603  df-domn 20604  df-drng 20640  df-lmod 20768  df-lss 20838  df-lsp 20878  df-lvec 21010  df-lsatoms 38969  df-lshyp 38970  df-lcv 39012  df-lfl 39051  df-lkr 39079  df-ldual 39117  df-oposet 39169  df-ol 39171  df-oml 39172  df-covers 39259  df-ats 39260  df-atl 39291  df-cvlat 39315  df-hlat 39344  df-llines 39492  df-lplanes 39493  df-lvols 39494  df-lines 39495  df-psubsp 39497  df-pmap 39498  df-padd 39790  df-lhyp 39982  df-laut 39983  df-ldil 40098  df-ltrn 40099  df-trl 40153  df-tgrp 40737  df-tendo 40749  df-edring 40751  df-dveca 40997  df-disoa 41023  df-dvech 41073  df-dib 41133  df-dic 41167  df-dih 41223  df-doch 41342  df-djh 41389  df-lcdual 41581  df-mapd 41619
This theorem is referenced by:  mapdpglem23  41688
  Copyright terms: Public domain W3C validator