| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdpglem22 | Structured version Visualization version GIF version | ||
| Description: Lemma for mapdpg 41878. Baer p. 45, line 9: "(F(x-y))* = ... = G(x'-y')." (Contributed by NM, 20-Mar-2015.) |
| Ref | Expression |
|---|---|
| mapdpglem.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| mapdpglem.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
| mapdpglem.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| mapdpglem.v | ⊢ 𝑉 = (Base‘𝑈) |
| mapdpglem.s | ⊢ − = (-g‘𝑈) |
| mapdpglem.n | ⊢ 𝑁 = (LSpan‘𝑈) |
| mapdpglem.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
| mapdpglem.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| mapdpglem.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| mapdpglem.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| mapdpglem1.p | ⊢ ⊕ = (LSSum‘𝐶) |
| mapdpglem2.j | ⊢ 𝐽 = (LSpan‘𝐶) |
| mapdpglem3.f | ⊢ 𝐹 = (Base‘𝐶) |
| mapdpglem3.te | ⊢ (𝜑 → 𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) ⊕ (𝑀‘(𝑁‘{𝑌})))) |
| mapdpglem3.a | ⊢ 𝐴 = (Scalar‘𝑈) |
| mapdpglem3.b | ⊢ 𝐵 = (Base‘𝐴) |
| mapdpglem3.t | ⊢ · = ( ·𝑠 ‘𝐶) |
| mapdpglem3.r | ⊢ 𝑅 = (-g‘𝐶) |
| mapdpglem3.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
| mapdpglem3.e | ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺})) |
| mapdpglem4.q | ⊢ 𝑄 = (0g‘𝑈) |
| mapdpglem.ne | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
| mapdpglem4.jt | ⊢ (𝜑 → (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{𝑡})) |
| mapdpglem4.z | ⊢ 0 = (0g‘𝐴) |
| mapdpglem4.g4 | ⊢ (𝜑 → 𝑔 ∈ 𝐵) |
| mapdpglem4.z4 | ⊢ (𝜑 → 𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))) |
| mapdpglem4.t4 | ⊢ (𝜑 → 𝑡 = ((𝑔 · 𝐺)𝑅𝑧)) |
| mapdpglem4.xn | ⊢ (𝜑 → 𝑋 ≠ 𝑄) |
| mapdpglem12.yn | ⊢ (𝜑 → 𝑌 ≠ 𝑄) |
| mapdpglem17.ep | ⊢ 𝐸 = (((invr‘𝐴)‘𝑔) · 𝑧) |
| Ref | Expression |
|---|---|
| mapdpglem22 | ⊢ (𝜑 → (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅𝐸)})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mapdpglem4.jt | . 2 ⊢ (𝜑 → (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{𝑡})) | |
| 2 | mapdpglem.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 3 | mapdpglem.c | . . . 4 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
| 4 | mapdpglem.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 5 | 2, 3, 4 | lcdlvec 41763 | . . 3 ⊢ (𝜑 → 𝐶 ∈ LVec) |
| 6 | mapdpglem.u | . . . . . . 7 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 7 | 2, 6, 4 | dvhlvec 41281 | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ LVec) |
| 8 | mapdpglem3.a | . . . . . . 7 ⊢ 𝐴 = (Scalar‘𝑈) | |
| 9 | 8 | lvecdrng 21048 | . . . . . 6 ⊢ (𝑈 ∈ LVec → 𝐴 ∈ DivRing) |
| 10 | 7, 9 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ DivRing) |
| 11 | mapdpglem4.g4 | . . . . 5 ⊢ (𝜑 → 𝑔 ∈ 𝐵) | |
| 12 | mapdpglem.m | . . . . . 6 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
| 13 | mapdpglem.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑈) | |
| 14 | mapdpglem.s | . . . . . 6 ⊢ − = (-g‘𝑈) | |
| 15 | mapdpglem.n | . . . . . 6 ⊢ 𝑁 = (LSpan‘𝑈) | |
| 16 | mapdpglem.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 17 | mapdpglem.y | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
| 18 | mapdpglem1.p | . . . . . 6 ⊢ ⊕ = (LSSum‘𝐶) | |
| 19 | mapdpglem2.j | . . . . . 6 ⊢ 𝐽 = (LSpan‘𝐶) | |
| 20 | mapdpglem3.f | . . . . . 6 ⊢ 𝐹 = (Base‘𝐶) | |
| 21 | mapdpglem3.te | . . . . . 6 ⊢ (𝜑 → 𝑡 ∈ ((𝑀‘(𝑁‘{𝑋})) ⊕ (𝑀‘(𝑁‘{𝑌})))) | |
| 22 | mapdpglem3.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐴) | |
| 23 | mapdpglem3.t | . . . . . 6 ⊢ · = ( ·𝑠 ‘𝐶) | |
| 24 | mapdpglem3.r | . . . . . 6 ⊢ 𝑅 = (-g‘𝐶) | |
| 25 | mapdpglem3.g | . . . . . 6 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
| 26 | mapdpglem3.e | . . . . . 6 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺})) | |
| 27 | mapdpglem4.q | . . . . . 6 ⊢ 𝑄 = (0g‘𝑈) | |
| 28 | mapdpglem.ne | . . . . . 6 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) | |
| 29 | mapdpglem4.z | . . . . . 6 ⊢ 0 = (0g‘𝐴) | |
| 30 | mapdpglem4.z4 | . . . . . 6 ⊢ (𝜑 → 𝑧 ∈ (𝑀‘(𝑁‘{𝑌}))) | |
| 31 | mapdpglem4.t4 | . . . . . 6 ⊢ (𝜑 → 𝑡 = ((𝑔 · 𝐺)𝑅𝑧)) | |
| 32 | mapdpglem4.xn | . . . . . 6 ⊢ (𝜑 → 𝑋 ≠ 𝑄) | |
| 33 | 2, 12, 6, 13, 14, 15, 3, 4, 16, 17, 18, 19, 20, 21, 8, 22, 23, 24, 25, 26, 27, 28, 1, 29, 11, 30, 31, 32 | mapdpglem11 41854 | . . . . 5 ⊢ (𝜑 → 𝑔 ≠ 0 ) |
| 34 | eqid 2733 | . . . . . 6 ⊢ (invr‘𝐴) = (invr‘𝐴) | |
| 35 | 22, 29, 34 | drnginvrcl 20677 | . . . . 5 ⊢ ((𝐴 ∈ DivRing ∧ 𝑔 ∈ 𝐵 ∧ 𝑔 ≠ 0 ) → ((invr‘𝐴)‘𝑔) ∈ 𝐵) |
| 36 | 10, 11, 33, 35 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → ((invr‘𝐴)‘𝑔) ∈ 𝐵) |
| 37 | eqid 2733 | . . . . 5 ⊢ (Scalar‘𝐶) = (Scalar‘𝐶) | |
| 38 | eqid 2733 | . . . . 5 ⊢ (Base‘(Scalar‘𝐶)) = (Base‘(Scalar‘𝐶)) | |
| 39 | 2, 6, 8, 22, 3, 37, 38, 4 | lcdsbase 41772 | . . . 4 ⊢ (𝜑 → (Base‘(Scalar‘𝐶)) = 𝐵) |
| 40 | 36, 39 | eleqtrrd 2836 | . . 3 ⊢ (𝜑 → ((invr‘𝐴)‘𝑔) ∈ (Base‘(Scalar‘𝐶))) |
| 41 | 22, 29, 34 | drnginvrn0 20678 | . . . . 5 ⊢ ((𝐴 ∈ DivRing ∧ 𝑔 ∈ 𝐵 ∧ 𝑔 ≠ 0 ) → ((invr‘𝐴)‘𝑔) ≠ 0 ) |
| 42 | 10, 11, 33, 41 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → ((invr‘𝐴)‘𝑔) ≠ 0 ) |
| 43 | eqid 2733 | . . . . 5 ⊢ (0g‘(Scalar‘𝐶)) = (0g‘(Scalar‘𝐶)) | |
| 44 | 2, 6, 8, 29, 3, 37, 43, 4 | lcd0 41780 | . . . 4 ⊢ (𝜑 → (0g‘(Scalar‘𝐶)) = 0 ) |
| 45 | 42, 44 | neeqtrrd 3003 | . . 3 ⊢ (𝜑 → ((invr‘𝐴)‘𝑔) ≠ (0g‘(Scalar‘𝐶))) |
| 46 | 2, 12, 6, 13, 14, 15, 3, 4, 16, 17, 18, 19, 20, 21 | mapdpglem2a 41846 | . . 3 ⊢ (𝜑 → 𝑡 ∈ 𝐹) |
| 47 | 20, 37, 23, 38, 43, 19 | lspsnvs 21060 | . . 3 ⊢ ((𝐶 ∈ LVec ∧ (((invr‘𝐴)‘𝑔) ∈ (Base‘(Scalar‘𝐶)) ∧ ((invr‘𝐴)‘𝑔) ≠ (0g‘(Scalar‘𝐶))) ∧ 𝑡 ∈ 𝐹) → (𝐽‘{(((invr‘𝐴)‘𝑔) · 𝑡)}) = (𝐽‘{𝑡})) |
| 48 | 5, 40, 45, 46, 47 | syl121anc 1377 | . 2 ⊢ (𝜑 → (𝐽‘{(((invr‘𝐴)‘𝑔) · 𝑡)}) = (𝐽‘{𝑡})) |
| 49 | mapdpglem12.yn | . . . . 5 ⊢ (𝜑 → 𝑌 ≠ 𝑄) | |
| 50 | mapdpglem17.ep | . . . . 5 ⊢ 𝐸 = (((invr‘𝐴)‘𝑔) · 𝑧) | |
| 51 | 2, 12, 6, 13, 14, 15, 3, 4, 16, 17, 18, 19, 20, 21, 8, 22, 23, 24, 25, 26, 27, 28, 1, 29, 11, 30, 31, 32, 49, 50 | mapdpglem21 41864 | . . . 4 ⊢ (𝜑 → (((invr‘𝐴)‘𝑔) · 𝑡) = (𝐺𝑅𝐸)) |
| 52 | 51 | sneqd 4589 | . . 3 ⊢ (𝜑 → {(((invr‘𝐴)‘𝑔) · 𝑡)} = {(𝐺𝑅𝐸)}) |
| 53 | 52 | fveq2d 6835 | . 2 ⊢ (𝜑 → (𝐽‘{(((invr‘𝐴)‘𝑔) · 𝑡)}) = (𝐽‘{(𝐺𝑅𝐸)})) |
| 54 | 1, 48, 53 | 3eqtr2d 2774 | 1 ⊢ (𝜑 → (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅𝐸)})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 {csn 4577 ‘cfv 6489 (class class class)co 7355 Basecbs 17127 Scalarcsca 17171 ·𝑠 cvsca 17172 0gc0g 17350 -gcsg 18856 LSSumclsm 19554 invrcinvr 20314 DivRingcdr 20653 LSpanclspn 20913 LVecclvec 21045 HLchlt 39522 LHypclh 40156 DVecHcdvh 41250 LCDualclcd 41758 mapdcmpd 41796 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 ax-riotaBAD 39125 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-iin 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-of 7619 df-om 7806 df-1st 7930 df-2nd 7931 df-tpos 8165 df-undef 8212 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-2o 8395 df-er 8631 df-map 8761 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-2 12199 df-3 12200 df-4 12201 df-5 12202 df-6 12203 df-n0 12393 df-z 12480 df-uz 12743 df-fz 13415 df-struct 17065 df-sets 17082 df-slot 17100 df-ndx 17112 df-base 17128 df-ress 17149 df-plusg 17181 df-mulr 17182 df-sca 17184 df-vsca 17185 df-0g 17352 df-mre 17496 df-mrc 17497 df-acs 17499 df-proset 18208 df-poset 18227 df-plt 18242 df-lub 18258 df-glb 18259 df-join 18260 df-meet 18261 df-p0 18337 df-p1 18338 df-lat 18346 df-clat 18413 df-mgm 18556 df-sgrp 18635 df-mnd 18651 df-submnd 18700 df-grp 18857 df-minusg 18858 df-sbg 18859 df-subg 19044 df-cntz 19237 df-oppg 19266 df-lsm 19556 df-cmn 19702 df-abl 19703 df-mgp 20067 df-rng 20079 df-ur 20108 df-ring 20161 df-oppr 20264 df-dvdsr 20284 df-unit 20285 df-invr 20315 df-dvr 20328 df-nzr 20437 df-rlreg 20618 df-domn 20619 df-drng 20655 df-lmod 20804 df-lss 20874 df-lsp 20914 df-lvec 21046 df-lsatoms 39148 df-lshyp 39149 df-lcv 39191 df-lfl 39230 df-lkr 39258 df-ldual 39296 df-oposet 39348 df-ol 39350 df-oml 39351 df-covers 39438 df-ats 39439 df-atl 39470 df-cvlat 39494 df-hlat 39523 df-llines 39670 df-lplanes 39671 df-lvols 39672 df-lines 39673 df-psubsp 39675 df-pmap 39676 df-padd 39968 df-lhyp 40160 df-laut 40161 df-ldil 40276 df-ltrn 40277 df-trl 40331 df-tgrp 40915 df-tendo 40927 df-edring 40929 df-dveca 41175 df-disoa 41201 df-dvech 41251 df-dib 41311 df-dic 41345 df-dih 41401 df-doch 41520 df-djh 41567 df-lcdual 41759 df-mapd 41797 |
| This theorem is referenced by: mapdpglem23 41866 |
| Copyright terms: Public domain | W3C validator |