Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > erng1r | Structured version Visualization version GIF version |
Description: The division ring unity of an endomorphism ring. (Contributed by NM, 5-Nov-2013.) (Revised by Mario Carneiro, 23-Jun-2014.) |
Ref | Expression |
---|---|
erng1r.h | ⊢ 𝐻 = (LHyp‘𝐾) |
erng1r.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
erng1r.d | ⊢ 𝐷 = ((EDRing‘𝐾)‘𝑊) |
erng1r.r | ⊢ 1 = (1r‘𝐷) |
Ref | Expression |
---|---|
erng1r | ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 1 = ( I ↾ 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | erng1r.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | erng1r.t | . . . . 5 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
3 | eqid 2737 | . . . . 5 ⊢ ((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊) | |
4 | 1, 2, 3 | tendoidcl 39086 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( I ↾ 𝑇) ∈ ((TEndo‘𝐾)‘𝑊)) |
5 | erng1r.d | . . . . 5 ⊢ 𝐷 = ((EDRing‘𝐾)‘𝑊) | |
6 | eqid 2737 | . . . . 5 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
7 | 1, 2, 3, 5, 6 | erngbase 39118 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (Base‘𝐷) = ((TEndo‘𝐾)‘𝑊)) |
8 | 4, 7 | eleqtrrd 2841 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( I ↾ 𝑇) ∈ (Base‘𝐷)) |
9 | eqid 2737 | . . . . 5 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
10 | eqid 2737 | . . . . 5 ⊢ (𝑓 ∈ 𝑇 ↦ ( I ↾ (Base‘𝐾))) = (𝑓 ∈ 𝑇 ↦ ( I ↾ (Base‘𝐾))) | |
11 | 9, 1, 2, 3, 10 | tendo1ne0 39145 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( I ↾ 𝑇) ≠ (𝑓 ∈ 𝑇 ↦ ( I ↾ (Base‘𝐾)))) |
12 | eqid 2737 | . . . . 5 ⊢ (0g‘𝐷) = (0g‘𝐷) | |
13 | 9, 1, 2, 5, 10, 12 | erng0g 39311 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (0g‘𝐷) = (𝑓 ∈ 𝑇 ↦ ( I ↾ (Base‘𝐾)))) |
14 | 11, 13 | neeqtrrd 3016 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( I ↾ 𝑇) ≠ (0g‘𝐷)) |
15 | id 22 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
16 | eqid 2737 | . . . . . 6 ⊢ (.r‘𝐷) = (.r‘𝐷) | |
17 | 1, 2, 3, 5, 16 | erngmul 39123 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (( I ↾ 𝑇) ∈ ((TEndo‘𝐾)‘𝑊) ∧ ( I ↾ 𝑇) ∈ ((TEndo‘𝐾)‘𝑊))) → (( I ↾ 𝑇)(.r‘𝐷)( I ↾ 𝑇)) = (( I ↾ 𝑇) ∘ ( I ↾ 𝑇))) |
18 | 15, 4, 4, 17 | syl12anc 835 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (( I ↾ 𝑇)(.r‘𝐷)( I ↾ 𝑇)) = (( I ↾ 𝑇) ∘ ( I ↾ 𝑇))) |
19 | f1oi 6810 | . . . . 5 ⊢ ( I ↾ 𝑇):𝑇–1-1-onto→𝑇 | |
20 | f1of 6772 | . . . . 5 ⊢ (( I ↾ 𝑇):𝑇–1-1-onto→𝑇 → ( I ↾ 𝑇):𝑇⟶𝑇) | |
21 | fcoi2 6705 | . . . . 5 ⊢ (( I ↾ 𝑇):𝑇⟶𝑇 → (( I ↾ 𝑇) ∘ ( I ↾ 𝑇)) = ( I ↾ 𝑇)) | |
22 | 19, 20, 21 | mp2b 10 | . . . 4 ⊢ (( I ↾ 𝑇) ∘ ( I ↾ 𝑇)) = ( I ↾ 𝑇) |
23 | 18, 22 | eqtrdi 2793 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (( I ↾ 𝑇)(.r‘𝐷)( I ↾ 𝑇)) = ( I ↾ 𝑇)) |
24 | 8, 14, 23 | 3jca 1128 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (( I ↾ 𝑇) ∈ (Base‘𝐷) ∧ ( I ↾ 𝑇) ≠ (0g‘𝐷) ∧ (( I ↾ 𝑇)(.r‘𝐷)( I ↾ 𝑇)) = ( I ↾ 𝑇))) |
25 | 1, 5 | erngdv 39310 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐷 ∈ DivRing) |
26 | erng1r.r | . . . 4 ⊢ 1 = (1r‘𝐷) | |
27 | 6, 16, 12, 26 | drngid2 20112 | . . 3 ⊢ (𝐷 ∈ DivRing → ((( I ↾ 𝑇) ∈ (Base‘𝐷) ∧ ( I ↾ 𝑇) ≠ (0g‘𝐷) ∧ (( I ↾ 𝑇)(.r‘𝐷)( I ↾ 𝑇)) = ( I ↾ 𝑇)) ↔ 1 = ( I ↾ 𝑇))) |
28 | 25, 27 | syl 17 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ((( I ↾ 𝑇) ∈ (Base‘𝐷) ∧ ( I ↾ 𝑇) ≠ (0g‘𝐷) ∧ (( I ↾ 𝑇)(.r‘𝐷)( I ↾ 𝑇)) = ( I ↾ 𝑇)) ↔ 1 = ( I ↾ 𝑇))) |
29 | 24, 28 | mpbid 231 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 1 = ( I ↾ 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ≠ wne 2941 ↦ cmpt 5180 I cid 5522 ↾ cres 5627 ∘ ccom 5629 ⟶wf 6480 –1-1-onto→wf1o 6483 ‘cfv 6484 (class class class)co 7342 Basecbs 17010 .rcmulr 17061 0gc0g 17248 1rcur 19832 DivRingcdr 20093 HLchlt 37666 LHypclh 38301 LTrncltrn 38418 TEndoctendo 39069 EDRingcedring 39070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5234 ax-sep 5248 ax-nul 5255 ax-pow 5313 ax-pr 5377 ax-un 7655 ax-cnex 11033 ax-resscn 11034 ax-1cn 11035 ax-icn 11036 ax-addcl 11037 ax-addrcl 11038 ax-mulcl 11039 ax-mulrcl 11040 ax-mulcom 11041 ax-addass 11042 ax-mulass 11043 ax-distr 11044 ax-i2m1 11045 ax-1ne0 11046 ax-1rid 11047 ax-rnegex 11048 ax-rrecex 11049 ax-cnre 11050 ax-pre-lttri 11051 ax-pre-lttrn 11052 ax-pre-ltadd 11053 ax-pre-mulgt0 11054 ax-riotaBAD 37269 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3732 df-csb 3848 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3921 df-nul 4275 df-if 4479 df-pw 4554 df-sn 4579 df-pr 4581 df-tp 4583 df-op 4585 df-uni 4858 df-iun 4948 df-iin 4949 df-br 5098 df-opab 5160 df-mpt 5181 df-tr 5215 df-id 5523 df-eprel 5529 df-po 5537 df-so 5538 df-fr 5580 df-we 5582 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-rn 5636 df-res 5637 df-ima 5638 df-pred 6243 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6436 df-fun 6486 df-fn 6487 df-f 6488 df-f1 6489 df-fo 6490 df-f1o 6491 df-fv 6492 df-riota 7298 df-ov 7345 df-oprab 7346 df-mpo 7347 df-om 7786 df-1st 7904 df-2nd 7905 df-tpos 8117 df-undef 8164 df-frecs 8172 df-wrecs 8203 df-recs 8277 df-rdg 8316 df-1o 8372 df-er 8574 df-map 8693 df-en 8810 df-dom 8811 df-sdom 8812 df-fin 8813 df-pnf 11117 df-mnf 11118 df-xr 11119 df-ltxr 11120 df-le 11121 df-sub 11313 df-neg 11314 df-nn 12080 df-2 12142 df-3 12143 df-n0 12340 df-z 12426 df-uz 12689 df-fz 13346 df-struct 16946 df-sets 16963 df-slot 16981 df-ndx 16993 df-base 17011 df-ress 17040 df-plusg 17073 df-mulr 17074 df-0g 17250 df-proset 18111 df-poset 18129 df-plt 18146 df-lub 18162 df-glb 18163 df-join 18164 df-meet 18165 df-p0 18241 df-p1 18242 df-lat 18248 df-clat 18315 df-mgm 18424 df-sgrp 18473 df-mnd 18484 df-grp 18677 df-minusg 18678 df-mgp 19816 df-ur 19833 df-ring 19880 df-oppr 19957 df-dvdsr 19978 df-unit 19979 df-invr 20009 df-dvr 20020 df-drng 20095 df-oposet 37492 df-ol 37494 df-oml 37495 df-covers 37582 df-ats 37583 df-atl 37614 df-cvlat 37638 df-hlat 37667 df-llines 37815 df-lplanes 37816 df-lvols 37817 df-lines 37818 df-psubsp 37820 df-pmap 37821 df-padd 38113 df-lhyp 38305 df-laut 38306 df-ldil 38421 df-ltrn 38422 df-trl 38476 df-tendo 39072 df-edring 39074 |
This theorem is referenced by: tendolinv 39422 tendorinv 39423 dvhlveclem 39425 |
Copyright terms: Public domain | W3C validator |