| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > erng1r | Structured version Visualization version GIF version | ||
| Description: The division ring unity of an endomorphism ring. (Contributed by NM, 5-Nov-2013.) (Revised by Mario Carneiro, 23-Jun-2014.) |
| Ref | Expression |
|---|---|
| erng1r.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| erng1r.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| erng1r.d | ⊢ 𝐷 = ((EDRing‘𝐾)‘𝑊) |
| erng1r.r | ⊢ 1 = (1r‘𝐷) |
| Ref | Expression |
|---|---|
| erng1r | ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 1 = ( I ↾ 𝑇)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | erng1r.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 2 | erng1r.t | . . . . 5 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 3 | eqid 2736 | . . . . 5 ⊢ ((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊) | |
| 4 | 1, 2, 3 | tendoidcl 40772 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( I ↾ 𝑇) ∈ ((TEndo‘𝐾)‘𝑊)) |
| 5 | erng1r.d | . . . . 5 ⊢ 𝐷 = ((EDRing‘𝐾)‘𝑊) | |
| 6 | eqid 2736 | . . . . 5 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
| 7 | 1, 2, 3, 5, 6 | erngbase 40804 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (Base‘𝐷) = ((TEndo‘𝐾)‘𝑊)) |
| 8 | 4, 7 | eleqtrrd 2843 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( I ↾ 𝑇) ∈ (Base‘𝐷)) |
| 9 | eqid 2736 | . . . . 5 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 10 | eqid 2736 | . . . . 5 ⊢ (𝑓 ∈ 𝑇 ↦ ( I ↾ (Base‘𝐾))) = (𝑓 ∈ 𝑇 ↦ ( I ↾ (Base‘𝐾))) | |
| 11 | 9, 1, 2, 3, 10 | tendo1ne0 40831 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( I ↾ 𝑇) ≠ (𝑓 ∈ 𝑇 ↦ ( I ↾ (Base‘𝐾)))) |
| 12 | eqid 2736 | . . . . 5 ⊢ (0g‘𝐷) = (0g‘𝐷) | |
| 13 | 9, 1, 2, 5, 10, 12 | erng0g 40997 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (0g‘𝐷) = (𝑓 ∈ 𝑇 ↦ ( I ↾ (Base‘𝐾)))) |
| 14 | 11, 13 | neeqtrrd 3014 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( I ↾ 𝑇) ≠ (0g‘𝐷)) |
| 15 | id 22 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 16 | eqid 2736 | . . . . . 6 ⊢ (.r‘𝐷) = (.r‘𝐷) | |
| 17 | 1, 2, 3, 5, 16 | erngmul 40809 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (( I ↾ 𝑇) ∈ ((TEndo‘𝐾)‘𝑊) ∧ ( I ↾ 𝑇) ∈ ((TEndo‘𝐾)‘𝑊))) → (( I ↾ 𝑇)(.r‘𝐷)( I ↾ 𝑇)) = (( I ↾ 𝑇) ∘ ( I ↾ 𝑇))) |
| 18 | 15, 4, 4, 17 | syl12anc 836 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (( I ↾ 𝑇)(.r‘𝐷)( I ↾ 𝑇)) = (( I ↾ 𝑇) ∘ ( I ↾ 𝑇))) |
| 19 | f1oi 6885 | . . . . 5 ⊢ ( I ↾ 𝑇):𝑇–1-1-onto→𝑇 | |
| 20 | f1of 6847 | . . . . 5 ⊢ (( I ↾ 𝑇):𝑇–1-1-onto→𝑇 → ( I ↾ 𝑇):𝑇⟶𝑇) | |
| 21 | fcoi2 6782 | . . . . 5 ⊢ (( I ↾ 𝑇):𝑇⟶𝑇 → (( I ↾ 𝑇) ∘ ( I ↾ 𝑇)) = ( I ↾ 𝑇)) | |
| 22 | 19, 20, 21 | mp2b 10 | . . . 4 ⊢ (( I ↾ 𝑇) ∘ ( I ↾ 𝑇)) = ( I ↾ 𝑇) |
| 23 | 18, 22 | eqtrdi 2792 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (( I ↾ 𝑇)(.r‘𝐷)( I ↾ 𝑇)) = ( I ↾ 𝑇)) |
| 24 | 8, 14, 23 | 3jca 1128 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (( I ↾ 𝑇) ∈ (Base‘𝐷) ∧ ( I ↾ 𝑇) ≠ (0g‘𝐷) ∧ (( I ↾ 𝑇)(.r‘𝐷)( I ↾ 𝑇)) = ( I ↾ 𝑇))) |
| 25 | 1, 5 | erngdv 40996 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐷 ∈ DivRing) |
| 26 | erng1r.r | . . . 4 ⊢ 1 = (1r‘𝐷) | |
| 27 | 6, 16, 12, 26 | drngid2 20753 | . . 3 ⊢ (𝐷 ∈ DivRing → ((( I ↾ 𝑇) ∈ (Base‘𝐷) ∧ ( I ↾ 𝑇) ≠ (0g‘𝐷) ∧ (( I ↾ 𝑇)(.r‘𝐷)( I ↾ 𝑇)) = ( I ↾ 𝑇)) ↔ 1 = ( I ↾ 𝑇))) |
| 28 | 25, 27 | syl 17 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ((( I ↾ 𝑇) ∈ (Base‘𝐷) ∧ ( I ↾ 𝑇) ≠ (0g‘𝐷) ∧ (( I ↾ 𝑇)(.r‘𝐷)( I ↾ 𝑇)) = ( I ↾ 𝑇)) ↔ 1 = ( I ↾ 𝑇))) |
| 29 | 24, 28 | mpbid 232 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 1 = ( I ↾ 𝑇)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ≠ wne 2939 ↦ cmpt 5224 I cid 5576 ↾ cres 5686 ∘ ccom 5688 ⟶wf 6556 –1-1-onto→wf1o 6559 ‘cfv 6560 (class class class)co 7432 Basecbs 17248 .rcmulr 17299 0gc0g 17485 1rcur 20179 DivRingcdr 20730 HLchlt 39352 LHypclh 39987 LTrncltrn 40104 TEndoctendo 40755 EDRingcedring 40756 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 ax-riotaBAD 38955 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-uni 4907 df-iun 4992 df-iin 4993 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-1st 8015 df-2nd 8016 df-tpos 8252 df-undef 8299 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-er 8746 df-map 8869 df-en 8987 df-dom 8988 df-sdom 8989 df-fin 8990 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-nn 12268 df-2 12330 df-3 12331 df-n0 12529 df-z 12616 df-uz 12880 df-fz 13549 df-struct 17185 df-sets 17202 df-slot 17220 df-ndx 17232 df-base 17249 df-ress 17276 df-plusg 17311 df-mulr 17312 df-0g 17487 df-proset 18341 df-poset 18360 df-plt 18376 df-lub 18392 df-glb 18393 df-join 18394 df-meet 18395 df-p0 18471 df-p1 18472 df-lat 18478 df-clat 18545 df-mgm 18654 df-sgrp 18733 df-mnd 18749 df-grp 18955 df-minusg 18956 df-cmn 19801 df-abl 19802 df-mgp 20139 df-rng 20151 df-ur 20180 df-ring 20233 df-oppr 20335 df-dvdsr 20358 df-unit 20359 df-invr 20389 df-dvr 20402 df-drng 20732 df-oposet 39178 df-ol 39180 df-oml 39181 df-covers 39268 df-ats 39269 df-atl 39300 df-cvlat 39324 df-hlat 39353 df-llines 39501 df-lplanes 39502 df-lvols 39503 df-lines 39504 df-psubsp 39506 df-pmap 39507 df-padd 39799 df-lhyp 39991 df-laut 39992 df-ldil 40107 df-ltrn 40108 df-trl 40162 df-tendo 40758 df-edring 40760 |
| This theorem is referenced by: tendolinv 41108 tendorinv 41109 dvhlveclem 41111 |
| Copyright terms: Public domain | W3C validator |