![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > erng1r | Structured version Visualization version GIF version |
Description: The division ring unity of an endomorphism ring. (Contributed by NM, 5-Nov-2013.) (Revised by Mario Carneiro, 23-Jun-2014.) |
Ref | Expression |
---|---|
erng1r.h | β’ π» = (LHypβπΎ) |
erng1r.t | β’ π = ((LTrnβπΎ)βπ) |
erng1r.d | β’ π· = ((EDRingβπΎ)βπ) |
erng1r.r | β’ 1 = (1rβπ·) |
Ref | Expression |
---|---|
erng1r | β’ ((πΎ β HL β§ π β π») β 1 = ( I βΎ π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | erng1r.h | . . . . 5 β’ π» = (LHypβπΎ) | |
2 | erng1r.t | . . . . 5 β’ π = ((LTrnβπΎ)βπ) | |
3 | eqid 2733 | . . . . 5 β’ ((TEndoβπΎ)βπ) = ((TEndoβπΎ)βπ) | |
4 | 1, 2, 3 | tendoidcl 39282 | . . . 4 β’ ((πΎ β HL β§ π β π») β ( I βΎ π) β ((TEndoβπΎ)βπ)) |
5 | erng1r.d | . . . . 5 β’ π· = ((EDRingβπΎ)βπ) | |
6 | eqid 2733 | . . . . 5 β’ (Baseβπ·) = (Baseβπ·) | |
7 | 1, 2, 3, 5, 6 | erngbase 39314 | . . . 4 β’ ((πΎ β HL β§ π β π») β (Baseβπ·) = ((TEndoβπΎ)βπ)) |
8 | 4, 7 | eleqtrrd 2837 | . . 3 β’ ((πΎ β HL β§ π β π») β ( I βΎ π) β (Baseβπ·)) |
9 | eqid 2733 | . . . . 5 β’ (BaseβπΎ) = (BaseβπΎ) | |
10 | eqid 2733 | . . . . 5 β’ (π β π β¦ ( I βΎ (BaseβπΎ))) = (π β π β¦ ( I βΎ (BaseβπΎ))) | |
11 | 9, 1, 2, 3, 10 | tendo1ne0 39341 | . . . 4 β’ ((πΎ β HL β§ π β π») β ( I βΎ π) β (π β π β¦ ( I βΎ (BaseβπΎ)))) |
12 | eqid 2733 | . . . . 5 β’ (0gβπ·) = (0gβπ·) | |
13 | 9, 1, 2, 5, 10, 12 | erng0g 39507 | . . . 4 β’ ((πΎ β HL β§ π β π») β (0gβπ·) = (π β π β¦ ( I βΎ (BaseβπΎ)))) |
14 | 11, 13 | neeqtrrd 3015 | . . 3 β’ ((πΎ β HL β§ π β π») β ( I βΎ π) β (0gβπ·)) |
15 | id 22 | . . . . 5 β’ ((πΎ β HL β§ π β π») β (πΎ β HL β§ π β π»)) | |
16 | eqid 2733 | . . . . . 6 β’ (.rβπ·) = (.rβπ·) | |
17 | 1, 2, 3, 5, 16 | erngmul 39319 | . . . . 5 β’ (((πΎ β HL β§ π β π») β§ (( I βΎ π) β ((TEndoβπΎ)βπ) β§ ( I βΎ π) β ((TEndoβπΎ)βπ))) β (( I βΎ π)(.rβπ·)( I βΎ π)) = (( I βΎ π) β ( I βΎ π))) |
18 | 15, 4, 4, 17 | syl12anc 836 | . . . 4 β’ ((πΎ β HL β§ π β π») β (( I βΎ π)(.rβπ·)( I βΎ π)) = (( I βΎ π) β ( I βΎ π))) |
19 | f1oi 6826 | . . . . 5 β’ ( I βΎ π):πβ1-1-ontoβπ | |
20 | f1of 6788 | . . . . 5 β’ (( I βΎ π):πβ1-1-ontoβπ β ( I βΎ π):πβΆπ) | |
21 | fcoi2 6721 | . . . . 5 β’ (( I βΎ π):πβΆπ β (( I βΎ π) β ( I βΎ π)) = ( I βΎ π)) | |
22 | 19, 20, 21 | mp2b 10 | . . . 4 β’ (( I βΎ π) β ( I βΎ π)) = ( I βΎ π) |
23 | 18, 22 | eqtrdi 2789 | . . 3 β’ ((πΎ β HL β§ π β π») β (( I βΎ π)(.rβπ·)( I βΎ π)) = ( I βΎ π)) |
24 | 8, 14, 23 | 3jca 1129 | . 2 β’ ((πΎ β HL β§ π β π») β (( I βΎ π) β (Baseβπ·) β§ ( I βΎ π) β (0gβπ·) β§ (( I βΎ π)(.rβπ·)( I βΎ π)) = ( I βΎ π))) |
25 | 1, 5 | erngdv 39506 | . . 3 β’ ((πΎ β HL β§ π β π») β π· β DivRing) |
26 | erng1r.r | . . . 4 β’ 1 = (1rβπ·) | |
27 | 6, 16, 12, 26 | drngid2 20239 | . . 3 β’ (π· β DivRing β ((( I βΎ π) β (Baseβπ·) β§ ( I βΎ π) β (0gβπ·) β§ (( I βΎ π)(.rβπ·)( I βΎ π)) = ( I βΎ π)) β 1 = ( I βΎ π))) |
28 | 25, 27 | syl 17 | . 2 β’ ((πΎ β HL β§ π β π») β ((( I βΎ π) β (Baseβπ·) β§ ( I βΎ π) β (0gβπ·) β§ (( I βΎ π)(.rβπ·)( I βΎ π)) = ( I βΎ π)) β 1 = ( I βΎ π))) |
29 | 24, 28 | mpbid 231 | 1 β’ ((πΎ β HL β§ π β π») β 1 = ( I βΎ π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 397 β§ w3a 1088 = wceq 1542 β wcel 2107 β wne 2940 β¦ cmpt 5192 I cid 5534 βΎ cres 5639 β ccom 5641 βΆwf 6496 β1-1-ontoβwf1o 6499 βcfv 6500 (class class class)co 7361 Basecbs 17091 .rcmulr 17142 0gc0g 17329 1rcur 19921 DivRingcdr 20219 HLchlt 37862 LHypclh 38497 LTrncltrn 38614 TEndoctendo 39265 EDRingcedring 39266 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5246 ax-sep 5260 ax-nul 5267 ax-pow 5324 ax-pr 5388 ax-un 7676 ax-cnex 11115 ax-resscn 11116 ax-1cn 11117 ax-icn 11118 ax-addcl 11119 ax-addrcl 11120 ax-mulcl 11121 ax-mulrcl 11122 ax-mulcom 11123 ax-addass 11124 ax-mulass 11125 ax-distr 11126 ax-i2m1 11127 ax-1ne0 11128 ax-1rid 11129 ax-rnegex 11130 ax-rrecex 11131 ax-cnre 11132 ax-pre-lttri 11133 ax-pre-lttrn 11134 ax-pre-ltadd 11135 ax-pre-mulgt0 11136 ax-riotaBAD 37465 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3352 df-reu 3353 df-rab 3407 df-v 3449 df-sbc 3744 df-csb 3860 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3933 df-nul 4287 df-if 4491 df-pw 4566 df-sn 4591 df-pr 4593 df-tp 4595 df-op 4597 df-uni 4870 df-iun 4960 df-iin 4961 df-br 5110 df-opab 5172 df-mpt 5193 df-tr 5227 df-id 5535 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5592 df-we 5594 df-xp 5643 df-rel 5644 df-cnv 5645 df-co 5646 df-dm 5647 df-rn 5648 df-res 5649 df-ima 5650 df-pred 6257 df-ord 6324 df-on 6325 df-lim 6326 df-suc 6327 df-iota 6452 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-riota 7317 df-ov 7364 df-oprab 7365 df-mpo 7366 df-om 7807 df-1st 7925 df-2nd 7926 df-tpos 8161 df-undef 8208 df-frecs 8216 df-wrecs 8247 df-recs 8321 df-rdg 8360 df-1o 8416 df-er 8654 df-map 8773 df-en 8890 df-dom 8891 df-sdom 8892 df-fin 8893 df-pnf 11199 df-mnf 11200 df-xr 11201 df-ltxr 11202 df-le 11203 df-sub 11395 df-neg 11396 df-nn 12162 df-2 12224 df-3 12225 df-n0 12422 df-z 12508 df-uz 12772 df-fz 13434 df-struct 17027 df-sets 17044 df-slot 17062 df-ndx 17074 df-base 17092 df-ress 17121 df-plusg 17154 df-mulr 17155 df-0g 17331 df-proset 18192 df-poset 18210 df-plt 18227 df-lub 18243 df-glb 18244 df-join 18245 df-meet 18246 df-p0 18322 df-p1 18323 df-lat 18329 df-clat 18396 df-mgm 18505 df-sgrp 18554 df-mnd 18565 df-grp 18759 df-minusg 18760 df-mgp 19905 df-ur 19922 df-ring 19974 df-oppr 20057 df-dvdsr 20078 df-unit 20079 df-invr 20109 df-dvr 20120 df-drng 20221 df-oposet 37688 df-ol 37690 df-oml 37691 df-covers 37778 df-ats 37779 df-atl 37810 df-cvlat 37834 df-hlat 37863 df-llines 38011 df-lplanes 38012 df-lvols 38013 df-lines 38014 df-psubsp 38016 df-pmap 38017 df-padd 38309 df-lhyp 38501 df-laut 38502 df-ldil 38617 df-ltrn 38618 df-trl 38672 df-tendo 39268 df-edring 39270 |
This theorem is referenced by: tendolinv 39618 tendorinv 39619 dvhlveclem 39621 |
Copyright terms: Public domain | W3C validator |