Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > tendolinv | Structured version Visualization version GIF version |
Description: Left multiplicative inverse for endomorphism. (Contributed by NM, 10-Apr-2014.) (Revised by Mario Carneiro, 23-Jun-2014.) |
Ref | Expression |
---|---|
tendoinv.b | ⊢ 𝐵 = (Base‘𝐾) |
tendoinv.h | ⊢ 𝐻 = (LHyp‘𝐾) |
tendoinv.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
tendoinv.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
tendoinv.o | ⊢ 𝑂 = (ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
tendoinv.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
tendoinv.f | ⊢ 𝐹 = (Scalar‘𝑈) |
tendoinv.n | ⊢ 𝑁 = (invr‘𝐹) |
Ref | Expression |
---|---|
tendolinv | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑆 ≠ 𝑂) → ((𝑁‘𝑆) ∘ 𝑆) = ( I ↾ 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1138 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑆 ≠ 𝑂) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
2 | tendoinv.h | . . . . . 6 ⊢ 𝐻 = (LHyp‘𝐾) | |
3 | eqid 2738 | . . . . . 6 ⊢ ((EDRing‘𝐾)‘𝑊) = ((EDRing‘𝐾)‘𝑊) | |
4 | tendoinv.u | . . . . . 6 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
5 | tendoinv.f | . . . . . 6 ⊢ 𝐹 = (Scalar‘𝑈) | |
6 | 2, 3, 4, 5 | dvhsca 38860 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐹 = ((EDRing‘𝐾)‘𝑊)) |
7 | 1, 6 | syl 17 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑆 ≠ 𝑂) → 𝐹 = ((EDRing‘𝐾)‘𝑊)) |
8 | 2, 3 | erngdv 38771 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ((EDRing‘𝐾)‘𝑊) ∈ DivRing) |
9 | 1, 8 | syl 17 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑆 ≠ 𝑂) → ((EDRing‘𝐾)‘𝑊) ∈ DivRing) |
10 | 7, 9 | eqeltrd 2839 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑆 ≠ 𝑂) → 𝐹 ∈ DivRing) |
11 | simp2 1139 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑆 ≠ 𝑂) → 𝑆 ∈ 𝐸) | |
12 | tendoinv.e | . . . . . 6 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
13 | eqid 2738 | . . . . . 6 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
14 | 2, 12, 4, 5, 13 | dvhbase 38861 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (Base‘𝐹) = 𝐸) |
15 | 1, 14 | syl 17 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑆 ≠ 𝑂) → (Base‘𝐹) = 𝐸) |
16 | 11, 15 | eleqtrrd 2842 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑆 ≠ 𝑂) → 𝑆 ∈ (Base‘𝐹)) |
17 | simp3 1140 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑆 ≠ 𝑂) → 𝑆 ≠ 𝑂) | |
18 | 6 | fveq2d 6740 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (0g‘𝐹) = (0g‘((EDRing‘𝐾)‘𝑊))) |
19 | tendoinv.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐾) | |
20 | tendoinv.t | . . . . . . 7 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
21 | tendoinv.o | . . . . . . 7 ⊢ 𝑂 = (ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
22 | eqid 2738 | . . . . . . 7 ⊢ (0g‘((EDRing‘𝐾)‘𝑊)) = (0g‘((EDRing‘𝐾)‘𝑊)) | |
23 | 19, 2, 20, 3, 21, 22 | erng0g 38772 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (0g‘((EDRing‘𝐾)‘𝑊)) = 𝑂) |
24 | 18, 23 | eqtrd 2778 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (0g‘𝐹) = 𝑂) |
25 | 1, 24 | syl 17 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑆 ≠ 𝑂) → (0g‘𝐹) = 𝑂) |
26 | 17, 25 | neeqtrrd 3016 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑆 ≠ 𝑂) → 𝑆 ≠ (0g‘𝐹)) |
27 | eqid 2738 | . . . 4 ⊢ (0g‘𝐹) = (0g‘𝐹) | |
28 | eqid 2738 | . . . 4 ⊢ (.r‘𝐹) = (.r‘𝐹) | |
29 | eqid 2738 | . . . 4 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
30 | tendoinv.n | . . . 4 ⊢ 𝑁 = (invr‘𝐹) | |
31 | 13, 27, 28, 29, 30 | drnginvrl 19811 | . . 3 ⊢ ((𝐹 ∈ DivRing ∧ 𝑆 ∈ (Base‘𝐹) ∧ 𝑆 ≠ (0g‘𝐹)) → ((𝑁‘𝑆)(.r‘𝐹)𝑆) = (1r‘𝐹)) |
32 | 10, 16, 26, 31 | syl3anc 1373 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑆 ≠ 𝑂) → ((𝑁‘𝑆)(.r‘𝐹)𝑆) = (1r‘𝐹)) |
33 | 19, 2, 20, 12, 21, 4, 5, 30 | tendoinvcl 38882 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑆 ≠ 𝑂) → ((𝑁‘𝑆) ∈ 𝐸 ∧ (𝑁‘𝑆) ≠ 𝑂)) |
34 | 33 | simpld 498 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑆 ≠ 𝑂) → (𝑁‘𝑆) ∈ 𝐸) |
35 | 2, 20, 12, 4, 5, 28 | dvhmulr 38864 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑁‘𝑆) ∈ 𝐸 ∧ 𝑆 ∈ 𝐸)) → ((𝑁‘𝑆)(.r‘𝐹)𝑆) = ((𝑁‘𝑆) ∘ 𝑆)) |
36 | 1, 34, 11, 35 | syl12anc 837 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑆 ≠ 𝑂) → ((𝑁‘𝑆)(.r‘𝐹)𝑆) = ((𝑁‘𝑆) ∘ 𝑆)) |
37 | 6 | fveq2d 6740 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (1r‘𝐹) = (1r‘((EDRing‘𝐾)‘𝑊))) |
38 | eqid 2738 | . . . . 5 ⊢ (1r‘((EDRing‘𝐾)‘𝑊)) = (1r‘((EDRing‘𝐾)‘𝑊)) | |
39 | 2, 20, 3, 38 | erng1r 38773 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (1r‘((EDRing‘𝐾)‘𝑊)) = ( I ↾ 𝑇)) |
40 | 37, 39 | eqtrd 2778 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (1r‘𝐹) = ( I ↾ 𝑇)) |
41 | 1, 40 | syl 17 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑆 ≠ 𝑂) → (1r‘𝐹) = ( I ↾ 𝑇)) |
42 | 32, 36, 41 | 3eqtr3d 2786 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑆 ≠ 𝑂) → ((𝑁‘𝑆) ∘ 𝑆) = ( I ↾ 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2111 ≠ wne 2941 ↦ cmpt 5150 I cid 5469 ↾ cres 5568 ∘ ccom 5570 ‘cfv 6398 (class class class)co 7232 Basecbs 16785 .rcmulr 16828 Scalarcsca 16830 0gc0g 16969 1rcur 19541 invrcinvr 19714 DivRingcdr 19792 HLchlt 37128 LHypclh 37762 LTrncltrn 37879 TEndoctendo 38530 EDRingcedring 38531 DVecHcdvh 38856 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 ax-rep 5194 ax-sep 5207 ax-nul 5214 ax-pow 5273 ax-pr 5337 ax-un 7542 ax-cnex 10810 ax-resscn 10811 ax-1cn 10812 ax-icn 10813 ax-addcl 10814 ax-addrcl 10815 ax-mulcl 10816 ax-mulrcl 10817 ax-mulcom 10818 ax-addass 10819 ax-mulass 10820 ax-distr 10821 ax-i2m1 10822 ax-1ne0 10823 ax-1rid 10824 ax-rnegex 10825 ax-rrecex 10826 ax-cnre 10827 ax-pre-lttri 10828 ax-pre-lttrn 10829 ax-pre-ltadd 10830 ax-pre-mulgt0 10831 ax-riotaBAD 36731 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2072 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3067 df-rex 3068 df-reu 3069 df-rmo 3070 df-rab 3071 df-v 3423 df-sbc 3710 df-csb 3827 df-dif 3884 df-un 3886 df-in 3888 df-ss 3898 df-pss 3900 df-nul 4253 df-if 4455 df-pw 4530 df-sn 4557 df-pr 4559 df-tp 4561 df-op 4563 df-uni 4835 df-iun 4921 df-iin 4922 df-br 5069 df-opab 5131 df-mpt 5151 df-tr 5177 df-id 5470 df-eprel 5475 df-po 5483 df-so 5484 df-fr 5524 df-we 5526 df-xp 5572 df-rel 5573 df-cnv 5574 df-co 5575 df-dm 5576 df-rn 5577 df-res 5578 df-ima 5579 df-pred 6176 df-ord 6234 df-on 6235 df-lim 6236 df-suc 6237 df-iota 6356 df-fun 6400 df-fn 6401 df-f 6402 df-f1 6403 df-fo 6404 df-f1o 6405 df-fv 6406 df-riota 7189 df-ov 7235 df-oprab 7236 df-mpo 7237 df-om 7664 df-1st 7780 df-2nd 7781 df-tpos 7989 df-undef 8036 df-wrecs 8068 df-recs 8129 df-rdg 8167 df-1o 8223 df-er 8412 df-map 8531 df-en 8648 df-dom 8649 df-sdom 8650 df-fin 8651 df-pnf 10894 df-mnf 10895 df-xr 10896 df-ltxr 10897 df-le 10898 df-sub 11089 df-neg 11090 df-nn 11856 df-2 11918 df-3 11919 df-4 11920 df-5 11921 df-6 11922 df-n0 12116 df-z 12202 df-uz 12464 df-fz 13121 df-struct 16725 df-sets 16742 df-slot 16760 df-ndx 16770 df-base 16786 df-ress 16810 df-plusg 16840 df-mulr 16841 df-sca 16843 df-vsca 16844 df-0g 16971 df-proset 17827 df-poset 17845 df-plt 17861 df-lub 17877 df-glb 17878 df-join 17879 df-meet 17880 df-p0 17956 df-p1 17957 df-lat 17963 df-clat 18030 df-mgm 18139 df-sgrp 18188 df-mnd 18199 df-grp 18393 df-minusg 18394 df-mgp 19530 df-ur 19542 df-ring 19589 df-oppr 19666 df-dvdsr 19684 df-unit 19685 df-invr 19715 df-dvr 19726 df-drng 19794 df-oposet 36954 df-ol 36956 df-oml 36957 df-covers 37044 df-ats 37045 df-atl 37076 df-cvlat 37100 df-hlat 37129 df-llines 37276 df-lplanes 37277 df-lvols 37278 df-lines 37279 df-psubsp 37281 df-pmap 37282 df-padd 37574 df-lhyp 37766 df-laut 37767 df-ldil 37882 df-ltrn 37883 df-trl 37937 df-tendo 38533 df-edring 38535 df-dvech 38857 |
This theorem is referenced by: dih1dimatlem0 39106 |
Copyright terms: Public domain | W3C validator |