![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdindp1 | Structured version Visualization version GIF version |
Description: Vector independence lemma. (Contributed by NM, 1-May-2015.) |
Ref | Expression |
---|---|
mapdindp1.v | ⊢ 𝑉 = (Base‘𝑊) |
mapdindp1.p | ⊢ + = (+g‘𝑊) |
mapdindp1.o | ⊢ 0 = (0g‘𝑊) |
mapdindp1.n | ⊢ 𝑁 = (LSpan‘𝑊) |
mapdindp1.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
mapdindp1.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
mapdindp1.y | ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
mapdindp1.z | ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) |
mapdindp1.W | ⊢ (𝜑 → 𝑤 ∈ (𝑉 ∖ { 0 })) |
mapdindp1.e | ⊢ (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑍})) |
mapdindp1.ne | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
mapdindp1.f | ⊢ (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) |
Ref | Expression |
---|---|
mapdindp1 | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{(𝑌 + 𝑍)})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapdindp1.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
2 | eldifsni 4590 | . . . . . 6 ⊢ (𝑋 ∈ (𝑉 ∖ { 0 }) → 𝑋 ≠ 0 ) | |
3 | 1, 2 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑋 ≠ 0 ) |
4 | mapdindp1.w | . . . . . . . . . 10 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
5 | lveclmod 19590 | . . . . . . . . . 10 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
6 | 4, 5 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝑊 ∈ LMod) |
7 | mapdindp1.o | . . . . . . . . . 10 ⊢ 0 = (0g‘𝑊) | |
8 | mapdindp1.n | . . . . . . . . . 10 ⊢ 𝑁 = (LSpan‘𝑊) | |
9 | 7, 8 | lspsn0 19492 | . . . . . . . . 9 ⊢ (𝑊 ∈ LMod → (𝑁‘{ 0 }) = { 0 }) |
10 | 6, 9 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (𝑁‘{ 0 }) = { 0 }) |
11 | 10 | eqeq2d 2782 | . . . . . . 7 ⊢ (𝜑 → ((𝑁‘{𝑋}) = (𝑁‘{ 0 }) ↔ (𝑁‘{𝑋}) = { 0 })) |
12 | 1 | eldifad 3837 | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
13 | mapdindp1.v | . . . . . . . . 9 ⊢ 𝑉 = (Base‘𝑊) | |
14 | 13, 7, 8 | lspsneq0 19496 | . . . . . . . 8 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ((𝑁‘{𝑋}) = { 0 } ↔ 𝑋 = 0 )) |
15 | 6, 12, 14 | syl2anc 576 | . . . . . . 7 ⊢ (𝜑 → ((𝑁‘{𝑋}) = { 0 } ↔ 𝑋 = 0 )) |
16 | 11, 15 | bitrd 271 | . . . . . 6 ⊢ (𝜑 → ((𝑁‘{𝑋}) = (𝑁‘{ 0 }) ↔ 𝑋 = 0 )) |
17 | 16 | necon3bid 3005 | . . . . 5 ⊢ (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{ 0 }) ↔ 𝑋 ≠ 0 )) |
18 | 3, 17 | mpbird 249 | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{ 0 })) |
19 | 18 | adantr 473 | . . 3 ⊢ ((𝜑 ∧ (𝑌 + 𝑍) = 0 ) → (𝑁‘{𝑋}) ≠ (𝑁‘{ 0 })) |
20 | sneq 4445 | . . . . 5 ⊢ ((𝑌 + 𝑍) = 0 → {(𝑌 + 𝑍)} = { 0 }) | |
21 | 20 | fveq2d 6497 | . . . 4 ⊢ ((𝑌 + 𝑍) = 0 → (𝑁‘{(𝑌 + 𝑍)}) = (𝑁‘{ 0 })) |
22 | 21 | adantl 474 | . . 3 ⊢ ((𝜑 ∧ (𝑌 + 𝑍) = 0 ) → (𝑁‘{(𝑌 + 𝑍)}) = (𝑁‘{ 0 })) |
23 | 19, 22 | neeqtrrd 3035 | . 2 ⊢ ((𝜑 ∧ (𝑌 + 𝑍) = 0 ) → (𝑁‘{𝑋}) ≠ (𝑁‘{(𝑌 + 𝑍)})) |
24 | mapdindp1.ne | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) | |
25 | 24 | adantr 473 | . . 3 ⊢ ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
26 | mapdindp1.p | . . . 4 ⊢ + = (+g‘𝑊) | |
27 | 4 | adantr 473 | . . . 4 ⊢ ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → 𝑊 ∈ LVec) |
28 | 1 | adantr 473 | . . . 4 ⊢ ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → 𝑋 ∈ (𝑉 ∖ { 0 })) |
29 | mapdindp1.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) | |
30 | 29 | adantr 473 | . . . 4 ⊢ ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → 𝑌 ∈ (𝑉 ∖ { 0 })) |
31 | mapdindp1.z | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) | |
32 | 31 | adantr 473 | . . . 4 ⊢ ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → 𝑍 ∈ (𝑉 ∖ { 0 })) |
33 | mapdindp1.W | . . . . 5 ⊢ (𝜑 → 𝑤 ∈ (𝑉 ∖ { 0 })) | |
34 | 33 | adantr 473 | . . . 4 ⊢ ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → 𝑤 ∈ (𝑉 ∖ { 0 })) |
35 | mapdindp1.e | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑍})) | |
36 | 35 | adantr 473 | . . . 4 ⊢ ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → (𝑁‘{𝑌}) = (𝑁‘{𝑍})) |
37 | mapdindp1.f | . . . . 5 ⊢ (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) | |
38 | 37 | adantr 473 | . . . 4 ⊢ ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) |
39 | simpr 477 | . . . 4 ⊢ ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → (𝑌 + 𝑍) ≠ 0 ) | |
40 | 13, 26, 7, 8, 27, 28, 30, 32, 34, 36, 25, 38, 39 | mapdindp0 38248 | . . 3 ⊢ ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → (𝑁‘{(𝑌 + 𝑍)}) = (𝑁‘{𝑌})) |
41 | 25, 40 | neeqtrrd 3035 | . 2 ⊢ ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → (𝑁‘{𝑋}) ≠ (𝑁‘{(𝑌 + 𝑍)})) |
42 | 23, 41 | pm2.61dane 3049 | 1 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{(𝑌 + 𝑍)})) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 387 = wceq 1507 ∈ wcel 2048 ≠ wne 2961 ∖ cdif 3822 {csn 4435 {cpr 4437 ‘cfv 6182 (class class class)co 6970 Basecbs 16329 +gcplusg 16411 0gc0g 16559 LModclmod 19346 LSpanclspn 19455 LVecclvec 19586 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2745 ax-rep 5043 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 ax-cnex 10383 ax-resscn 10384 ax-1cn 10385 ax-icn 10386 ax-addcl 10387 ax-addrcl 10388 ax-mulcl 10389 ax-mulrcl 10390 ax-mulcom 10391 ax-addass 10392 ax-mulass 10393 ax-distr 10394 ax-i2m1 10395 ax-1ne0 10396 ax-1rid 10397 ax-rnegex 10398 ax-rrecex 10399 ax-cnre 10400 ax-pre-lttri 10401 ax-pre-lttrn 10402 ax-pre-ltadd 10403 ax-pre-mulgt0 10404 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-nel 3068 df-ral 3087 df-rex 3088 df-reu 3089 df-rmo 3090 df-rab 3091 df-v 3411 df-sbc 3678 df-csb 3783 df-dif 3828 df-un 3830 df-in 3832 df-ss 3839 df-pss 3841 df-nul 4174 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4707 df-int 4744 df-iun 4788 df-br 4924 df-opab 4986 df-mpt 5003 df-tr 5025 df-id 5305 df-eprel 5310 df-po 5319 df-so 5320 df-fr 5359 df-we 5361 df-xp 5406 df-rel 5407 df-cnv 5408 df-co 5409 df-dm 5410 df-rn 5411 df-res 5412 df-ima 5413 df-pred 5980 df-ord 6026 df-on 6027 df-lim 6028 df-suc 6029 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-riota 6931 df-ov 6973 df-oprab 6974 df-mpo 6975 df-om 7391 df-1st 7494 df-2nd 7495 df-tpos 7688 df-wrecs 7743 df-recs 7805 df-rdg 7843 df-er 8081 df-en 8299 df-dom 8300 df-sdom 8301 df-pnf 10468 df-mnf 10469 df-xr 10470 df-ltxr 10471 df-le 10472 df-sub 10664 df-neg 10665 df-nn 11432 df-2 11496 df-3 11497 df-ndx 16332 df-slot 16333 df-base 16335 df-sets 16336 df-ress 16337 df-plusg 16424 df-mulr 16425 df-0g 16561 df-mgm 17700 df-sgrp 17742 df-mnd 17753 df-submnd 17794 df-grp 17884 df-minusg 17885 df-sbg 17886 df-subg 18050 df-cntz 18208 df-lsm 18512 df-cmn 18658 df-abl 18659 df-mgp 18953 df-ur 18965 df-ring 19012 df-oppr 19086 df-dvdsr 19104 df-unit 19105 df-invr 19135 df-drng 19217 df-lmod 19348 df-lss 19416 df-lsp 19456 df-lvec 19587 |
This theorem is referenced by: mapdh6dN 38268 mapdh6hN 38272 hdmap1l6d 38342 hdmap1l6h 38346 |
Copyright terms: Public domain | W3C validator |