Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdindp1 Structured version   Visualization version   GIF version

Theorem mapdindp1 39009
Description: Vector independence lemma. (Contributed by NM, 1-May-2015.)
Hypotheses
Ref Expression
mapdindp1.v 𝑉 = (Base‘𝑊)
mapdindp1.p + = (+g𝑊)
mapdindp1.o 0 = (0g𝑊)
mapdindp1.n 𝑁 = (LSpan‘𝑊)
mapdindp1.w (𝜑𝑊 ∈ LVec)
mapdindp1.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
mapdindp1.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
mapdindp1.z (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
mapdindp1.W (𝜑𝑤 ∈ (𝑉 ∖ { 0 }))
mapdindp1.e (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑍}))
mapdindp1.ne (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
mapdindp1.f (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))
Assertion
Ref Expression
mapdindp1 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{(𝑌 + 𝑍)}))

Proof of Theorem mapdindp1
StepHypRef Expression
1 mapdindp1.x . . . . . 6 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
2 eldifsni 4686 . . . . . 6 (𝑋 ∈ (𝑉 ∖ { 0 }) → 𝑋0 )
31, 2syl 17 . . . . 5 (𝜑𝑋0 )
4 mapdindp1.w . . . . . . . . . 10 (𝜑𝑊 ∈ LVec)
5 lveclmod 19874 . . . . . . . . . 10 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
64, 5syl 17 . . . . . . . . 9 (𝜑𝑊 ∈ LMod)
7 mapdindp1.o . . . . . . . . . 10 0 = (0g𝑊)
8 mapdindp1.n . . . . . . . . . 10 𝑁 = (LSpan‘𝑊)
97, 8lspsn0 19776 . . . . . . . . 9 (𝑊 ∈ LMod → (𝑁‘{ 0 }) = { 0 })
106, 9syl 17 . . . . . . . 8 (𝜑 → (𝑁‘{ 0 }) = { 0 })
1110eqeq2d 2812 . . . . . . 7 (𝜑 → ((𝑁‘{𝑋}) = (𝑁‘{ 0 }) ↔ (𝑁‘{𝑋}) = { 0 }))
121eldifad 3896 . . . . . . . 8 (𝜑𝑋𝑉)
13 mapdindp1.v . . . . . . . . 9 𝑉 = (Base‘𝑊)
1413, 7, 8lspsneq0 19780 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((𝑁‘{𝑋}) = { 0 } ↔ 𝑋 = 0 ))
156, 12, 14syl2anc 587 . . . . . . 7 (𝜑 → ((𝑁‘{𝑋}) = { 0 } ↔ 𝑋 = 0 ))
1611, 15bitrd 282 . . . . . 6 (𝜑 → ((𝑁‘{𝑋}) = (𝑁‘{ 0 }) ↔ 𝑋 = 0 ))
1716necon3bid 3034 . . . . 5 (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{ 0 }) ↔ 𝑋0 ))
183, 17mpbird 260 . . . 4 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{ 0 }))
1918adantr 484 . . 3 ((𝜑 ∧ (𝑌 + 𝑍) = 0 ) → (𝑁‘{𝑋}) ≠ (𝑁‘{ 0 }))
20 sneq 4538 . . . . 5 ((𝑌 + 𝑍) = 0 → {(𝑌 + 𝑍)} = { 0 })
2120fveq2d 6653 . . . 4 ((𝑌 + 𝑍) = 0 → (𝑁‘{(𝑌 + 𝑍)}) = (𝑁‘{ 0 }))
2221adantl 485 . . 3 ((𝜑 ∧ (𝑌 + 𝑍) = 0 ) → (𝑁‘{(𝑌 + 𝑍)}) = (𝑁‘{ 0 }))
2319, 22neeqtrrd 3064 . 2 ((𝜑 ∧ (𝑌 + 𝑍) = 0 ) → (𝑁‘{𝑋}) ≠ (𝑁‘{(𝑌 + 𝑍)}))
24 mapdindp1.ne . . . 4 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
2524adantr 484 . . 3 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
26 mapdindp1.p . . . 4 + = (+g𝑊)
274adantr 484 . . . 4 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → 𝑊 ∈ LVec)
281adantr 484 . . . 4 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → 𝑋 ∈ (𝑉 ∖ { 0 }))
29 mapdindp1.y . . . . 5 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
3029adantr 484 . . . 4 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → 𝑌 ∈ (𝑉 ∖ { 0 }))
31 mapdindp1.z . . . . 5 (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
3231adantr 484 . . . 4 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → 𝑍 ∈ (𝑉 ∖ { 0 }))
33 mapdindp1.W . . . . 5 (𝜑𝑤 ∈ (𝑉 ∖ { 0 }))
3433adantr 484 . . . 4 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → 𝑤 ∈ (𝑉 ∖ { 0 }))
35 mapdindp1.e . . . . 5 (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑍}))
3635adantr 484 . . . 4 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → (𝑁‘{𝑌}) = (𝑁‘{𝑍}))
37 mapdindp1.f . . . . 5 (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))
3837adantr 484 . . . 4 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))
39 simpr 488 . . . 4 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → (𝑌 + 𝑍) ≠ 0 )
4013, 26, 7, 8, 27, 28, 30, 32, 34, 36, 25, 38, 39mapdindp0 39008 . . 3 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → (𝑁‘{(𝑌 + 𝑍)}) = (𝑁‘{𝑌}))
4125, 40neeqtrrd 3064 . 2 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → (𝑁‘{𝑋}) ≠ (𝑁‘{(𝑌 + 𝑍)}))
4223, 41pm2.61dane 3077 1 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{(𝑌 + 𝑍)}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1538  wcel 2112  wne 2990  cdif 3881  {csn 4528  {cpr 4530  cfv 6328  (class class class)co 7139  Basecbs 16478  +gcplusg 16560  0gc0g 16708  LModclmod 19630  LSpanclspn 19739  LVecclvec 19870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-tpos 7879  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-2 11692  df-3 11693  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-plusg 16573  df-mulr 16574  df-0g 16710  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-submnd 17952  df-grp 18101  df-minusg 18102  df-sbg 18103  df-subg 18271  df-cntz 18442  df-lsm 18756  df-cmn 18903  df-abl 18904  df-mgp 19236  df-ur 19248  df-ring 19295  df-oppr 19372  df-dvdsr 19390  df-unit 19391  df-invr 19421  df-drng 19500  df-lmod 19632  df-lss 19700  df-lsp 19740  df-lvec 19871
This theorem is referenced by:  mapdh6dN  39028  mapdh6hN  39032  hdmap1l6d  39102  hdmap1l6h  39106
  Copyright terms: Public domain W3C validator