![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdindp1 | Structured version Visualization version GIF version |
Description: Vector independence lemma. (Contributed by NM, 1-May-2015.) |
Ref | Expression |
---|---|
mapdindp1.v | ⊢ 𝑉 = (Base‘𝑊) |
mapdindp1.p | ⊢ + = (+g‘𝑊) |
mapdindp1.o | ⊢ 0 = (0g‘𝑊) |
mapdindp1.n | ⊢ 𝑁 = (LSpan‘𝑊) |
mapdindp1.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
mapdindp1.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
mapdindp1.y | ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
mapdindp1.z | ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) |
mapdindp1.W | ⊢ (𝜑 → 𝑤 ∈ (𝑉 ∖ { 0 })) |
mapdindp1.e | ⊢ (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑍})) |
mapdindp1.ne | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
mapdindp1.f | ⊢ (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) |
Ref | Expression |
---|---|
mapdindp1 | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{(𝑌 + 𝑍)})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapdindp1.x | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
2 | eldifsni 4799 | . . . . . 6 ⊢ (𝑋 ∈ (𝑉 ∖ { 0 }) → 𝑋 ≠ 0 ) | |
3 | 1, 2 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑋 ≠ 0 ) |
4 | mapdindp1.w | . . . . . . . . . 10 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
5 | lveclmod 21084 | . . . . . . . . . 10 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
6 | 4, 5 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝑊 ∈ LMod) |
7 | mapdindp1.o | . . . . . . . . . 10 ⊢ 0 = (0g‘𝑊) | |
8 | mapdindp1.n | . . . . . . . . . 10 ⊢ 𝑁 = (LSpan‘𝑊) | |
9 | 7, 8 | lspsn0 20985 | . . . . . . . . 9 ⊢ (𝑊 ∈ LMod → (𝑁‘{ 0 }) = { 0 }) |
10 | 6, 9 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (𝑁‘{ 0 }) = { 0 }) |
11 | 10 | eqeq2d 2737 | . . . . . . 7 ⊢ (𝜑 → ((𝑁‘{𝑋}) = (𝑁‘{ 0 }) ↔ (𝑁‘{𝑋}) = { 0 })) |
12 | 1 | eldifad 3959 | . . . . . . . 8 ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
13 | mapdindp1.v | . . . . . . . . 9 ⊢ 𝑉 = (Base‘𝑊) | |
14 | 13, 7, 8 | lspsneq0 20989 | . . . . . . . 8 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ((𝑁‘{𝑋}) = { 0 } ↔ 𝑋 = 0 )) |
15 | 6, 12, 14 | syl2anc 582 | . . . . . . 7 ⊢ (𝜑 → ((𝑁‘{𝑋}) = { 0 } ↔ 𝑋 = 0 )) |
16 | 11, 15 | bitrd 278 | . . . . . 6 ⊢ (𝜑 → ((𝑁‘{𝑋}) = (𝑁‘{ 0 }) ↔ 𝑋 = 0 )) |
17 | 16 | necon3bid 2975 | . . . . 5 ⊢ (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{ 0 }) ↔ 𝑋 ≠ 0 )) |
18 | 3, 17 | mpbird 256 | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{ 0 })) |
19 | 18 | adantr 479 | . . 3 ⊢ ((𝜑 ∧ (𝑌 + 𝑍) = 0 ) → (𝑁‘{𝑋}) ≠ (𝑁‘{ 0 })) |
20 | sneq 4643 | . . . . 5 ⊢ ((𝑌 + 𝑍) = 0 → {(𝑌 + 𝑍)} = { 0 }) | |
21 | 20 | fveq2d 6905 | . . . 4 ⊢ ((𝑌 + 𝑍) = 0 → (𝑁‘{(𝑌 + 𝑍)}) = (𝑁‘{ 0 })) |
22 | 21 | adantl 480 | . . 3 ⊢ ((𝜑 ∧ (𝑌 + 𝑍) = 0 ) → (𝑁‘{(𝑌 + 𝑍)}) = (𝑁‘{ 0 })) |
23 | 19, 22 | neeqtrrd 3005 | . 2 ⊢ ((𝜑 ∧ (𝑌 + 𝑍) = 0 ) → (𝑁‘{𝑋}) ≠ (𝑁‘{(𝑌 + 𝑍)})) |
24 | mapdindp1.ne | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) | |
25 | 24 | adantr 479 | . . 3 ⊢ ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
26 | mapdindp1.p | . . . 4 ⊢ + = (+g‘𝑊) | |
27 | 4 | adantr 479 | . . . 4 ⊢ ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → 𝑊 ∈ LVec) |
28 | 1 | adantr 479 | . . . 4 ⊢ ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → 𝑋 ∈ (𝑉 ∖ { 0 })) |
29 | mapdindp1.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) | |
30 | 29 | adantr 479 | . . . 4 ⊢ ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → 𝑌 ∈ (𝑉 ∖ { 0 })) |
31 | mapdindp1.z | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) | |
32 | 31 | adantr 479 | . . . 4 ⊢ ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → 𝑍 ∈ (𝑉 ∖ { 0 })) |
33 | mapdindp1.W | . . . . 5 ⊢ (𝜑 → 𝑤 ∈ (𝑉 ∖ { 0 })) | |
34 | 33 | adantr 479 | . . . 4 ⊢ ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → 𝑤 ∈ (𝑉 ∖ { 0 })) |
35 | mapdindp1.e | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑍})) | |
36 | 35 | adantr 479 | . . . 4 ⊢ ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → (𝑁‘{𝑌}) = (𝑁‘{𝑍})) |
37 | mapdindp1.f | . . . . 5 ⊢ (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) | |
38 | 37 | adantr 479 | . . . 4 ⊢ ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) |
39 | simpr 483 | . . . 4 ⊢ ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → (𝑌 + 𝑍) ≠ 0 ) | |
40 | 13, 26, 7, 8, 27, 28, 30, 32, 34, 36, 25, 38, 39 | mapdindp0 41418 | . . 3 ⊢ ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → (𝑁‘{(𝑌 + 𝑍)}) = (𝑁‘{𝑌})) |
41 | 25, 40 | neeqtrrd 3005 | . 2 ⊢ ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → (𝑁‘{𝑋}) ≠ (𝑁‘{(𝑌 + 𝑍)})) |
42 | 23, 41 | pm2.61dane 3019 | 1 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{(𝑌 + 𝑍)})) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ≠ wne 2930 ∖ cdif 3944 {csn 4633 {cpr 4635 ‘cfv 6554 (class class class)co 7424 Basecbs 17213 +gcplusg 17266 0gc0g 17454 LModclmod 20836 LSpanclspn 20948 LVecclvec 21080 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-int 4955 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7877 df-1st 8003 df-2nd 8004 df-tpos 8241 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-er 8734 df-en 8975 df-dom 8976 df-sdom 8977 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-nn 12265 df-2 12327 df-3 12328 df-sets 17166 df-slot 17184 df-ndx 17196 df-base 17214 df-ress 17243 df-plusg 17279 df-mulr 17280 df-0g 17456 df-mgm 18633 df-sgrp 18712 df-mnd 18728 df-submnd 18774 df-grp 18931 df-minusg 18932 df-sbg 18933 df-subg 19117 df-cntz 19311 df-lsm 19634 df-cmn 19780 df-abl 19781 df-mgp 20118 df-rng 20136 df-ur 20165 df-ring 20218 df-oppr 20316 df-dvdsr 20339 df-unit 20340 df-invr 20370 df-drng 20709 df-lmod 20838 df-lss 20909 df-lsp 20949 df-lvec 21081 |
This theorem is referenced by: mapdh6dN 41438 mapdh6hN 41442 hdmap1l6d 41512 hdmap1l6h 41516 |
Copyright terms: Public domain | W3C validator |