![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdindp1 | Structured version Visualization version GIF version |
Description: Vector independence lemma. (Contributed by NM, 1-May-2015.) |
Ref | Expression |
---|---|
mapdindp1.v | β’ π = (Baseβπ) |
mapdindp1.p | β’ + = (+gβπ) |
mapdindp1.o | β’ 0 = (0gβπ) |
mapdindp1.n | β’ π = (LSpanβπ) |
mapdindp1.w | β’ (π β π β LVec) |
mapdindp1.x | β’ (π β π β (π β { 0 })) |
mapdindp1.y | β’ (π β π β (π β { 0 })) |
mapdindp1.z | β’ (π β π β (π β { 0 })) |
mapdindp1.W | β’ (π β π€ β (π β { 0 })) |
mapdindp1.e | β’ (π β (πβ{π}) = (πβ{π})) |
mapdindp1.ne | β’ (π β (πβ{π}) β (πβ{π})) |
mapdindp1.f | β’ (π β Β¬ π€ β (πβ{π, π})) |
Ref | Expression |
---|---|
mapdindp1 | β’ (π β (πβ{π}) β (πβ{(π + π)})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapdindp1.x | . . . . . 6 β’ (π β π β (π β { 0 })) | |
2 | eldifsni 4793 | . . . . . 6 β’ (π β (π β { 0 }) β π β 0 ) | |
3 | 1, 2 | syl 17 | . . . . 5 β’ (π β π β 0 ) |
4 | mapdindp1.w | . . . . . . . . . 10 β’ (π β π β LVec) | |
5 | lveclmod 20716 | . . . . . . . . . 10 β’ (π β LVec β π β LMod) | |
6 | 4, 5 | syl 17 | . . . . . . . . 9 β’ (π β π β LMod) |
7 | mapdindp1.o | . . . . . . . . . 10 β’ 0 = (0gβπ) | |
8 | mapdindp1.n | . . . . . . . . . 10 β’ π = (LSpanβπ) | |
9 | 7, 8 | lspsn0 20618 | . . . . . . . . 9 β’ (π β LMod β (πβ{ 0 }) = { 0 }) |
10 | 6, 9 | syl 17 | . . . . . . . 8 β’ (π β (πβ{ 0 }) = { 0 }) |
11 | 10 | eqeq2d 2743 | . . . . . . 7 β’ (π β ((πβ{π}) = (πβ{ 0 }) β (πβ{π}) = { 0 })) |
12 | 1 | eldifad 3960 | . . . . . . . 8 β’ (π β π β π) |
13 | mapdindp1.v | . . . . . . . . 9 β’ π = (Baseβπ) | |
14 | 13, 7, 8 | lspsneq0 20622 | . . . . . . . 8 β’ ((π β LMod β§ π β π) β ((πβ{π}) = { 0 } β π = 0 )) |
15 | 6, 12, 14 | syl2anc 584 | . . . . . . 7 β’ (π β ((πβ{π}) = { 0 } β π = 0 )) |
16 | 11, 15 | bitrd 278 | . . . . . 6 β’ (π β ((πβ{π}) = (πβ{ 0 }) β π = 0 )) |
17 | 16 | necon3bid 2985 | . . . . 5 β’ (π β ((πβ{π}) β (πβ{ 0 }) β π β 0 )) |
18 | 3, 17 | mpbird 256 | . . . 4 β’ (π β (πβ{π}) β (πβ{ 0 })) |
19 | 18 | adantr 481 | . . 3 β’ ((π β§ (π + π) = 0 ) β (πβ{π}) β (πβ{ 0 })) |
20 | sneq 4638 | . . . . 5 β’ ((π + π) = 0 β {(π + π)} = { 0 }) | |
21 | 20 | fveq2d 6895 | . . . 4 β’ ((π + π) = 0 β (πβ{(π + π)}) = (πβ{ 0 })) |
22 | 21 | adantl 482 | . . 3 β’ ((π β§ (π + π) = 0 ) β (πβ{(π + π)}) = (πβ{ 0 })) |
23 | 19, 22 | neeqtrrd 3015 | . 2 β’ ((π β§ (π + π) = 0 ) β (πβ{π}) β (πβ{(π + π)})) |
24 | mapdindp1.ne | . . . 4 β’ (π β (πβ{π}) β (πβ{π})) | |
25 | 24 | adantr 481 | . . 3 β’ ((π β§ (π + π) β 0 ) β (πβ{π}) β (πβ{π})) |
26 | mapdindp1.p | . . . 4 β’ + = (+gβπ) | |
27 | 4 | adantr 481 | . . . 4 β’ ((π β§ (π + π) β 0 ) β π β LVec) |
28 | 1 | adantr 481 | . . . 4 β’ ((π β§ (π + π) β 0 ) β π β (π β { 0 })) |
29 | mapdindp1.y | . . . . 5 β’ (π β π β (π β { 0 })) | |
30 | 29 | adantr 481 | . . . 4 β’ ((π β§ (π + π) β 0 ) β π β (π β { 0 })) |
31 | mapdindp1.z | . . . . 5 β’ (π β π β (π β { 0 })) | |
32 | 31 | adantr 481 | . . . 4 β’ ((π β§ (π + π) β 0 ) β π β (π β { 0 })) |
33 | mapdindp1.W | . . . . 5 β’ (π β π€ β (π β { 0 })) | |
34 | 33 | adantr 481 | . . . 4 β’ ((π β§ (π + π) β 0 ) β π€ β (π β { 0 })) |
35 | mapdindp1.e | . . . . 5 β’ (π β (πβ{π}) = (πβ{π})) | |
36 | 35 | adantr 481 | . . . 4 β’ ((π β§ (π + π) β 0 ) β (πβ{π}) = (πβ{π})) |
37 | mapdindp1.f | . . . . 5 β’ (π β Β¬ π€ β (πβ{π, π})) | |
38 | 37 | adantr 481 | . . . 4 β’ ((π β§ (π + π) β 0 ) β Β¬ π€ β (πβ{π, π})) |
39 | simpr 485 | . . . 4 β’ ((π β§ (π + π) β 0 ) β (π + π) β 0 ) | |
40 | 13, 26, 7, 8, 27, 28, 30, 32, 34, 36, 25, 38, 39 | mapdindp0 40585 | . . 3 β’ ((π β§ (π + π) β 0 ) β (πβ{(π + π)}) = (πβ{π})) |
41 | 25, 40 | neeqtrrd 3015 | . 2 β’ ((π β§ (π + π) β 0 ) β (πβ{π}) β (πβ{(π + π)})) |
42 | 23, 41 | pm2.61dane 3029 | 1 β’ (π β (πβ{π}) β (πβ{(π + π)})) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β wb 205 β§ wa 396 = wceq 1541 β wcel 2106 β wne 2940 β cdif 3945 {csn 4628 {cpr 4630 βcfv 6543 (class class class)co 7408 Basecbs 17143 +gcplusg 17196 0gc0g 17384 LModclmod 20470 LSpanclspn 20581 LVecclvec 20712 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-tpos 8210 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-2 12274 df-3 12275 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-ress 17173 df-plusg 17209 df-mulr 17210 df-0g 17386 df-mgm 18560 df-sgrp 18609 df-mnd 18625 df-submnd 18671 df-grp 18821 df-minusg 18822 df-sbg 18823 df-subg 19002 df-cntz 19180 df-lsm 19503 df-cmn 19649 df-abl 19650 df-mgp 19987 df-ur 20004 df-ring 20057 df-oppr 20149 df-dvdsr 20170 df-unit 20171 df-invr 20201 df-drng 20358 df-lmod 20472 df-lss 20542 df-lsp 20582 df-lvec 20713 |
This theorem is referenced by: mapdh6dN 40605 mapdh6hN 40609 hdmap1l6d 40679 hdmap1l6h 40683 |
Copyright terms: Public domain | W3C validator |