Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdindp1 Structured version   Visualization version   GIF version

Theorem mapdindp1 38249
Description: Vector independence lemma. (Contributed by NM, 1-May-2015.)
Hypotheses
Ref Expression
mapdindp1.v 𝑉 = (Base‘𝑊)
mapdindp1.p + = (+g𝑊)
mapdindp1.o 0 = (0g𝑊)
mapdindp1.n 𝑁 = (LSpan‘𝑊)
mapdindp1.w (𝜑𝑊 ∈ LVec)
mapdindp1.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
mapdindp1.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
mapdindp1.z (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
mapdindp1.W (𝜑𝑤 ∈ (𝑉 ∖ { 0 }))
mapdindp1.e (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑍}))
mapdindp1.ne (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
mapdindp1.f (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))
Assertion
Ref Expression
mapdindp1 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{(𝑌 + 𝑍)}))

Proof of Theorem mapdindp1
StepHypRef Expression
1 mapdindp1.x . . . . . 6 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
2 eldifsni 4590 . . . . . 6 (𝑋 ∈ (𝑉 ∖ { 0 }) → 𝑋0 )
31, 2syl 17 . . . . 5 (𝜑𝑋0 )
4 mapdindp1.w . . . . . . . . . 10 (𝜑𝑊 ∈ LVec)
5 lveclmod 19590 . . . . . . . . . 10 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
64, 5syl 17 . . . . . . . . 9 (𝜑𝑊 ∈ LMod)
7 mapdindp1.o . . . . . . . . . 10 0 = (0g𝑊)
8 mapdindp1.n . . . . . . . . . 10 𝑁 = (LSpan‘𝑊)
97, 8lspsn0 19492 . . . . . . . . 9 (𝑊 ∈ LMod → (𝑁‘{ 0 }) = { 0 })
106, 9syl 17 . . . . . . . 8 (𝜑 → (𝑁‘{ 0 }) = { 0 })
1110eqeq2d 2782 . . . . . . 7 (𝜑 → ((𝑁‘{𝑋}) = (𝑁‘{ 0 }) ↔ (𝑁‘{𝑋}) = { 0 }))
121eldifad 3837 . . . . . . . 8 (𝜑𝑋𝑉)
13 mapdindp1.v . . . . . . . . 9 𝑉 = (Base‘𝑊)
1413, 7, 8lspsneq0 19496 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((𝑁‘{𝑋}) = { 0 } ↔ 𝑋 = 0 ))
156, 12, 14syl2anc 576 . . . . . . 7 (𝜑 → ((𝑁‘{𝑋}) = { 0 } ↔ 𝑋 = 0 ))
1611, 15bitrd 271 . . . . . 6 (𝜑 → ((𝑁‘{𝑋}) = (𝑁‘{ 0 }) ↔ 𝑋 = 0 ))
1716necon3bid 3005 . . . . 5 (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{ 0 }) ↔ 𝑋0 ))
183, 17mpbird 249 . . . 4 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{ 0 }))
1918adantr 473 . . 3 ((𝜑 ∧ (𝑌 + 𝑍) = 0 ) → (𝑁‘{𝑋}) ≠ (𝑁‘{ 0 }))
20 sneq 4445 . . . . 5 ((𝑌 + 𝑍) = 0 → {(𝑌 + 𝑍)} = { 0 })
2120fveq2d 6497 . . . 4 ((𝑌 + 𝑍) = 0 → (𝑁‘{(𝑌 + 𝑍)}) = (𝑁‘{ 0 }))
2221adantl 474 . . 3 ((𝜑 ∧ (𝑌 + 𝑍) = 0 ) → (𝑁‘{(𝑌 + 𝑍)}) = (𝑁‘{ 0 }))
2319, 22neeqtrrd 3035 . 2 ((𝜑 ∧ (𝑌 + 𝑍) = 0 ) → (𝑁‘{𝑋}) ≠ (𝑁‘{(𝑌 + 𝑍)}))
24 mapdindp1.ne . . . 4 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
2524adantr 473 . . 3 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
26 mapdindp1.p . . . 4 + = (+g𝑊)
274adantr 473 . . . 4 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → 𝑊 ∈ LVec)
281adantr 473 . . . 4 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → 𝑋 ∈ (𝑉 ∖ { 0 }))
29 mapdindp1.y . . . . 5 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
3029adantr 473 . . . 4 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → 𝑌 ∈ (𝑉 ∖ { 0 }))
31 mapdindp1.z . . . . 5 (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
3231adantr 473 . . . 4 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → 𝑍 ∈ (𝑉 ∖ { 0 }))
33 mapdindp1.W . . . . 5 (𝜑𝑤 ∈ (𝑉 ∖ { 0 }))
3433adantr 473 . . . 4 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → 𝑤 ∈ (𝑉 ∖ { 0 }))
35 mapdindp1.e . . . . 5 (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑍}))
3635adantr 473 . . . 4 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → (𝑁‘{𝑌}) = (𝑁‘{𝑍}))
37 mapdindp1.f . . . . 5 (𝜑 → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))
3837adantr 473 . . . 4 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))
39 simpr 477 . . . 4 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → (𝑌 + 𝑍) ≠ 0 )
4013, 26, 7, 8, 27, 28, 30, 32, 34, 36, 25, 38, 39mapdindp0 38248 . . 3 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → (𝑁‘{(𝑌 + 𝑍)}) = (𝑁‘{𝑌}))
4125, 40neeqtrrd 3035 . 2 ((𝜑 ∧ (𝑌 + 𝑍) ≠ 0 ) → (𝑁‘{𝑋}) ≠ (𝑁‘{(𝑌 + 𝑍)}))
4223, 41pm2.61dane 3049 1 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{(𝑌 + 𝑍)}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 387   = wceq 1507  wcel 2048  wne 2961  cdif 3822  {csn 4435  {cpr 4437  cfv 6182  (class class class)co 6970  Basecbs 16329  +gcplusg 16411  0gc0g 16559  LModclmod 19346  LSpanclspn 19455  LVecclvec 19586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2745  ax-rep 5043  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-cnex 10383  ax-resscn 10384  ax-1cn 10385  ax-icn 10386  ax-addcl 10387  ax-addrcl 10388  ax-mulcl 10389  ax-mulrcl 10390  ax-mulcom 10391  ax-addass 10392  ax-mulass 10393  ax-distr 10394  ax-i2m1 10395  ax-1ne0 10396  ax-1rid 10397  ax-rnegex 10398  ax-rrecex 10399  ax-cnre 10400  ax-pre-lttri 10401  ax-pre-lttrn 10402  ax-pre-ltadd 10403  ax-pre-mulgt0 10404
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2754  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rmo 3090  df-rab 3091  df-v 3411  df-sbc 3678  df-csb 3783  df-dif 3828  df-un 3830  df-in 3832  df-ss 3839  df-pss 3841  df-nul 4174  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4707  df-int 4744  df-iun 4788  df-br 4924  df-opab 4986  df-mpt 5003  df-tr 5025  df-id 5305  df-eprel 5310  df-po 5319  df-so 5320  df-fr 5359  df-we 5361  df-xp 5406  df-rel 5407  df-cnv 5408  df-co 5409  df-dm 5410  df-rn 5411  df-res 5412  df-ima 5413  df-pred 5980  df-ord 6026  df-on 6027  df-lim 6028  df-suc 6029  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-riota 6931  df-ov 6973  df-oprab 6974  df-mpo 6975  df-om 7391  df-1st 7494  df-2nd 7495  df-tpos 7688  df-wrecs 7743  df-recs 7805  df-rdg 7843  df-er 8081  df-en 8299  df-dom 8300  df-sdom 8301  df-pnf 10468  df-mnf 10469  df-xr 10470  df-ltxr 10471  df-le 10472  df-sub 10664  df-neg 10665  df-nn 11432  df-2 11496  df-3 11497  df-ndx 16332  df-slot 16333  df-base 16335  df-sets 16336  df-ress 16337  df-plusg 16424  df-mulr 16425  df-0g 16561  df-mgm 17700  df-sgrp 17742  df-mnd 17753  df-submnd 17794  df-grp 17884  df-minusg 17885  df-sbg 17886  df-subg 18050  df-cntz 18208  df-lsm 18512  df-cmn 18658  df-abl 18659  df-mgp 18953  df-ur 18965  df-ring 19012  df-oppr 19086  df-dvdsr 19104  df-unit 19105  df-invr 19135  df-drng 19217  df-lmod 19348  df-lss 19416  df-lsp 19456  df-lvec 19587
This theorem is referenced by:  mapdh6dN  38268  mapdh6hN  38272  hdmap1l6d  38342  hdmap1l6h  38346
  Copyright terms: Public domain W3C validator