MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  atandmtan Structured version   Visualization version   GIF version

Theorem atandmtan 25214
Description: The tangent function has range contained in the domain of the arctangent. (Contributed by Mario Carneiro, 31-Mar-2015.)
Assertion
Ref Expression
atandmtan ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘𝐴) ∈ dom arctan)

Proof of Theorem atandmtan
StepHypRef Expression
1 tancl 15340 . 2 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘𝐴) ∈ ℂ)
2 tanval 15339 . . . . 5 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘𝐴) = ((sin‘𝐴) / (cos‘𝐴)))
32oveq1d 6989 . . . 4 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((tan‘𝐴)↑2) = (((sin‘𝐴) / (cos‘𝐴))↑2))
4 sincl 15337 . . . . . 6 (𝐴 ∈ ℂ → (sin‘𝐴) ∈ ℂ)
54adantr 473 . . . . 5 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (sin‘𝐴) ∈ ℂ)
6 coscl 15338 . . . . . 6 (𝐴 ∈ ℂ → (cos‘𝐴) ∈ ℂ)
76adantr 473 . . . . 5 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (cos‘𝐴) ∈ ℂ)
8 simpr 477 . . . . 5 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (cos‘𝐴) ≠ 0)
95, 7, 8sqdivd 13336 . . . 4 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (((sin‘𝐴) / (cos‘𝐴))↑2) = (((sin‘𝐴)↑2) / ((cos‘𝐴)↑2)))
103, 9eqtrd 2807 . . 3 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((tan‘𝐴)↑2) = (((sin‘𝐴)↑2) / ((cos‘𝐴)↑2)))
115sqcld 13321 . . . . . 6 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((sin‘𝐴)↑2) ∈ ℂ)
127sqcld 13321 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((cos‘𝐴)↑2) ∈ ℂ)
1312negcld 10783 . . . . . 6 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → -((cos‘𝐴)↑2) ∈ ℂ)
1411, 12subnegd 10803 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (((sin‘𝐴)↑2) − -((cos‘𝐴)↑2)) = (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)))
15 sincossq 15387 . . . . . . . . 9 (𝐴 ∈ ℂ → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = 1)
1615adantr 473 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = 1)
1714, 16eqtrd 2807 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (((sin‘𝐴)↑2) − -((cos‘𝐴)↑2)) = 1)
18 ax-1ne0 10402 . . . . . . . 8 1 ≠ 0
1918a1i 11 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → 1 ≠ 0)
2017, 19eqnetrd 3027 . . . . . 6 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (((sin‘𝐴)↑2) − -((cos‘𝐴)↑2)) ≠ 0)
2111, 13, 20subne0ad 10807 . . . . 5 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((sin‘𝐴)↑2) ≠ -((cos‘𝐴)↑2))
2212mulm1d 10891 . . . . 5 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (-1 · ((cos‘𝐴)↑2)) = -((cos‘𝐴)↑2))
2321, 22neeqtrrd 3034 . . . 4 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((sin‘𝐴)↑2) ≠ (-1 · ((cos‘𝐴)↑2)))
24 neg1cn 11559 . . . . . . 7 -1 ∈ ℂ
2524a1i 11 . . . . . 6 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → -1 ∈ ℂ)
26 sqne0 13302 . . . . . . . 8 ((cos‘𝐴) ∈ ℂ → (((cos‘𝐴)↑2) ≠ 0 ↔ (cos‘𝐴) ≠ 0))
276, 26syl 17 . . . . . . 7 (𝐴 ∈ ℂ → (((cos‘𝐴)↑2) ≠ 0 ↔ (cos‘𝐴) ≠ 0))
2827biimpar 470 . . . . . 6 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((cos‘𝐴)↑2) ≠ 0)
2911, 25, 12, 28divmul3d 11249 . . . . 5 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((((sin‘𝐴)↑2) / ((cos‘𝐴)↑2)) = -1 ↔ ((sin‘𝐴)↑2) = (-1 · ((cos‘𝐴)↑2))))
3029necon3bid 3004 . . . 4 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((((sin‘𝐴)↑2) / ((cos‘𝐴)↑2)) ≠ -1 ↔ ((sin‘𝐴)↑2) ≠ (-1 · ((cos‘𝐴)↑2))))
3123, 30mpbird 249 . . 3 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (((sin‘𝐴)↑2) / ((cos‘𝐴)↑2)) ≠ -1)
3210, 31eqnetrd 3027 . 2 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((tan‘𝐴)↑2) ≠ -1)
33 atandm3 25172 . 2 ((tan‘𝐴) ∈ dom arctan ↔ ((tan‘𝐴) ∈ ℂ ∧ ((tan‘𝐴)↑2) ≠ -1))
341, 32, 33sylanbrc 575 1 ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘𝐴) ∈ dom arctan)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387   = wceq 1508  wcel 2051  wne 2960  dom cdm 5403  cfv 6185  (class class class)co 6974  cc 10331  0cc0 10333  1c1 10334   + caddc 10336   · cmul 10338  cmin 10668  -cneg 10669   / cdiv 11096  2c2 11493  cexp 13242  sincsin 15275  cosccos 15276  tanctan 15277  arctancatan 25158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2743  ax-rep 5045  ax-sep 5056  ax-nul 5063  ax-pow 5115  ax-pr 5182  ax-un 7277  ax-inf2 8896  ax-cnex 10389  ax-resscn 10390  ax-1cn 10391  ax-icn 10392  ax-addcl 10393  ax-addrcl 10394  ax-mulcl 10395  ax-mulrcl 10396  ax-mulcom 10397  ax-addass 10398  ax-mulass 10399  ax-distr 10400  ax-i2m1 10401  ax-1ne0 10402  ax-1rid 10403  ax-rnegex 10404  ax-rrecex 10405  ax-cnre 10406  ax-pre-lttri 10407  ax-pre-lttrn 10408  ax-pre-ltadd 10409  ax-pre-mulgt0 10410  ax-pre-sup 10411  ax-addf 10412  ax-mulf 10413
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-fal 1521  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2752  df-cleq 2764  df-clel 2839  df-nfc 2911  df-ne 2961  df-nel 3067  df-ral 3086  df-rex 3087  df-reu 3088  df-rmo 3089  df-rab 3090  df-v 3410  df-sbc 3675  df-csb 3780  df-dif 3825  df-un 3827  df-in 3829  df-ss 3836  df-pss 3838  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4709  df-int 4746  df-iun 4790  df-br 4926  df-opab 4988  df-mpt 5005  df-tr 5027  df-id 5308  df-eprel 5313  df-po 5322  df-so 5323  df-fr 5362  df-se 5363  df-we 5364  df-xp 5409  df-rel 5410  df-cnv 5411  df-co 5412  df-dm 5413  df-rn 5414  df-res 5415  df-ima 5416  df-pred 5983  df-ord 6029  df-on 6030  df-lim 6031  df-suc 6032  df-iota 6149  df-fun 6187  df-fn 6188  df-f 6189  df-f1 6190  df-fo 6191  df-f1o 6192  df-fv 6193  df-isom 6194  df-riota 6935  df-ov 6977  df-oprab 6978  df-mpo 6979  df-om 7395  df-1st 7499  df-2nd 7500  df-wrecs 7748  df-recs 7810  df-rdg 7848  df-1o 7903  df-oadd 7907  df-er 8087  df-pm 8207  df-en 8305  df-dom 8306  df-sdom 8307  df-fin 8308  df-sup 8699  df-inf 8700  df-oi 8767  df-card 9160  df-pnf 10474  df-mnf 10475  df-xr 10476  df-ltxr 10477  df-le 10478  df-sub 10670  df-neg 10671  df-div 11097  df-nn 11438  df-2 11501  df-3 11502  df-n0 11706  df-z 11792  df-uz 12057  df-rp 12203  df-ico 12558  df-fz 12707  df-fzo 12848  df-fl 12975  df-seq 13183  df-exp 13243  df-fac 13447  df-bc 13476  df-hash 13504  df-shft 14285  df-cj 14317  df-re 14318  df-im 14319  df-sqrt 14453  df-abs 14454  df-limsup 14687  df-clim 14704  df-rlim 14705  df-sum 14902  df-ef 15279  df-sin 15281  df-cos 15282  df-tan 15283  df-atan 25161
This theorem is referenced by:  atantan  25217
  Copyright terms: Public domain W3C validator