Step | Hyp | Ref
| Expression |
1 | | tancl 16068 |
. 2
β’ ((π΄ β β β§
(cosβπ΄) β 0)
β (tanβπ΄) β
β) |
2 | | tanval 16067 |
. . . . 5
β’ ((π΄ β β β§
(cosβπ΄) β 0)
β (tanβπ΄) =
((sinβπ΄) /
(cosβπ΄))) |
3 | 2 | oveq1d 7420 |
. . . 4
β’ ((π΄ β β β§
(cosβπ΄) β 0)
β ((tanβπ΄)β2) = (((sinβπ΄) / (cosβπ΄))β2)) |
4 | | sincl 16065 |
. . . . . 6
β’ (π΄ β β β
(sinβπ΄) β
β) |
5 | 4 | adantr 481 |
. . . . 5
β’ ((π΄ β β β§
(cosβπ΄) β 0)
β (sinβπ΄) β
β) |
6 | | coscl 16066 |
. . . . . 6
β’ (π΄ β β β
(cosβπ΄) β
β) |
7 | 6 | adantr 481 |
. . . . 5
β’ ((π΄ β β β§
(cosβπ΄) β 0)
β (cosβπ΄) β
β) |
8 | | simpr 485 |
. . . . 5
β’ ((π΄ β β β§
(cosβπ΄) β 0)
β (cosβπ΄) β
0) |
9 | 5, 7, 8 | sqdivd 14120 |
. . . 4
β’ ((π΄ β β β§
(cosβπ΄) β 0)
β (((sinβπ΄) /
(cosβπ΄))β2) =
(((sinβπ΄)β2) /
((cosβπ΄)β2))) |
10 | 3, 9 | eqtrd 2772 |
. . 3
β’ ((π΄ β β β§
(cosβπ΄) β 0)
β ((tanβπ΄)β2) = (((sinβπ΄)β2) / ((cosβπ΄)β2))) |
11 | 5 | sqcld 14105 |
. . . . . 6
β’ ((π΄ β β β§
(cosβπ΄) β 0)
β ((sinβπ΄)β2) β β) |
12 | 7 | sqcld 14105 |
. . . . . . 7
β’ ((π΄ β β β§
(cosβπ΄) β 0)
β ((cosβπ΄)β2) β β) |
13 | 12 | negcld 11554 |
. . . . . 6
β’ ((π΄ β β β§
(cosβπ΄) β 0)
β -((cosβπ΄)β2) β β) |
14 | 11, 12 | subnegd 11574 |
. . . . . . . 8
β’ ((π΄ β β β§
(cosβπ΄) β 0)
β (((sinβπ΄)β2) β -((cosβπ΄)β2)) = (((sinβπ΄)β2) + ((cosβπ΄)β2))) |
15 | | sincossq 16115 |
. . . . . . . . 9
β’ (π΄ β β β
(((sinβπ΄)β2) +
((cosβπ΄)β2)) =
1) |
16 | 15 | adantr 481 |
. . . . . . . 8
β’ ((π΄ β β β§
(cosβπ΄) β 0)
β (((sinβπ΄)β2) + ((cosβπ΄)β2)) = 1) |
17 | 14, 16 | eqtrd 2772 |
. . . . . . 7
β’ ((π΄ β β β§
(cosβπ΄) β 0)
β (((sinβπ΄)β2) β -((cosβπ΄)β2)) = 1) |
18 | | ax-1ne0 11175 |
. . . . . . . 8
β’ 1 β
0 |
19 | 18 | a1i 11 |
. . . . . . 7
β’ ((π΄ β β β§
(cosβπ΄) β 0)
β 1 β 0) |
20 | 17, 19 | eqnetrd 3008 |
. . . . . 6
β’ ((π΄ β β β§
(cosβπ΄) β 0)
β (((sinβπ΄)β2) β -((cosβπ΄)β2)) β
0) |
21 | 11, 13, 20 | subne0ad 11578 |
. . . . 5
β’ ((π΄ β β β§
(cosβπ΄) β 0)
β ((sinβπ΄)β2) β -((cosβπ΄)β2)) |
22 | 12 | mulm1d 11662 |
. . . . 5
β’ ((π΄ β β β§
(cosβπ΄) β 0)
β (-1 Β· ((cosβπ΄)β2)) = -((cosβπ΄)β2)) |
23 | 21, 22 | neeqtrrd 3015 |
. . . 4
β’ ((π΄ β β β§
(cosβπ΄) β 0)
β ((sinβπ΄)β2) β (-1 Β·
((cosβπ΄)β2))) |
24 | | neg1cn 12322 |
. . . . . . 7
β’ -1 β
β |
25 | 24 | a1i 11 |
. . . . . 6
β’ ((π΄ β β β§
(cosβπ΄) β 0)
β -1 β β) |
26 | | sqne0 14084 |
. . . . . . . 8
β’
((cosβπ΄)
β β β (((cosβπ΄)β2) β 0 β (cosβπ΄) β 0)) |
27 | 6, 26 | syl 17 |
. . . . . . 7
β’ (π΄ β β β
(((cosβπ΄)β2)
β 0 β (cosβπ΄)
β 0)) |
28 | 27 | biimpar 478 |
. . . . . 6
β’ ((π΄ β β β§
(cosβπ΄) β 0)
β ((cosβπ΄)β2) β 0) |
29 | 11, 25, 12, 28 | divmul3d 12020 |
. . . . 5
β’ ((π΄ β β β§
(cosβπ΄) β 0)
β ((((sinβπ΄)β2) / ((cosβπ΄)β2)) = -1 β ((sinβπ΄)β2) = (-1 Β·
((cosβπ΄)β2)))) |
30 | 29 | necon3bid 2985 |
. . . 4
β’ ((π΄ β β β§
(cosβπ΄) β 0)
β ((((sinβπ΄)β2) / ((cosβπ΄)β2)) β -1 β ((sinβπ΄)β2) β (-1 Β·
((cosβπ΄)β2)))) |
31 | 23, 30 | mpbird 256 |
. . 3
β’ ((π΄ β β β§
(cosβπ΄) β 0)
β (((sinβπ΄)β2) / ((cosβπ΄)β2)) β -1) |
32 | 10, 31 | eqnetrd 3008 |
. 2
β’ ((π΄ β β β§
(cosβπ΄) β 0)
β ((tanβπ΄)β2) β -1) |
33 | | atandm3 26372 |
. 2
β’
((tanβπ΄)
β dom arctan β ((tanβπ΄) β β β§ ((tanβπ΄)β2) β
-1)) |
34 | 1, 32, 33 | sylanbrc 583 |
1
β’ ((π΄ β β β§
(cosβπ΄) β 0)
β (tanβπ΄) β
dom arctan) |