| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > atandmtan | Structured version Visualization version GIF version | ||
| Description: The tangent function has range contained in the domain of the arctangent. (Contributed by Mario Carneiro, 31-Mar-2015.) |
| Ref | Expression |
|---|---|
| atandmtan | ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘𝐴) ∈ dom arctan) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tancl 16104 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘𝐴) ∈ ℂ) | |
| 2 | tanval 16103 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘𝐴) = ((sin‘𝐴) / (cos‘𝐴))) | |
| 3 | 2 | oveq1d 7405 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((tan‘𝐴)↑2) = (((sin‘𝐴) / (cos‘𝐴))↑2)) |
| 4 | sincl 16101 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (sin‘𝐴) ∈ ℂ) | |
| 5 | 4 | adantr 480 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (sin‘𝐴) ∈ ℂ) |
| 6 | coscl 16102 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (cos‘𝐴) ∈ ℂ) | |
| 7 | 6 | adantr 480 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (cos‘𝐴) ∈ ℂ) |
| 8 | simpr 484 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (cos‘𝐴) ≠ 0) | |
| 9 | 5, 7, 8 | sqdivd 14131 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (((sin‘𝐴) / (cos‘𝐴))↑2) = (((sin‘𝐴)↑2) / ((cos‘𝐴)↑2))) |
| 10 | 3, 9 | eqtrd 2765 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((tan‘𝐴)↑2) = (((sin‘𝐴)↑2) / ((cos‘𝐴)↑2))) |
| 11 | 5 | sqcld 14116 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((sin‘𝐴)↑2) ∈ ℂ) |
| 12 | 7 | sqcld 14116 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((cos‘𝐴)↑2) ∈ ℂ) |
| 13 | 12 | negcld 11527 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → -((cos‘𝐴)↑2) ∈ ℂ) |
| 14 | 11, 12 | subnegd 11547 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (((sin‘𝐴)↑2) − -((cos‘𝐴)↑2)) = (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2))) |
| 15 | sincossq 16151 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℂ → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = 1) | |
| 16 | 15 | adantr 480 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = 1) |
| 17 | 14, 16 | eqtrd 2765 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (((sin‘𝐴)↑2) − -((cos‘𝐴)↑2)) = 1) |
| 18 | ax-1ne0 11144 | . . . . . . . 8 ⊢ 1 ≠ 0 | |
| 19 | 18 | a1i 11 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → 1 ≠ 0) |
| 20 | 17, 19 | eqnetrd 2993 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (((sin‘𝐴)↑2) − -((cos‘𝐴)↑2)) ≠ 0) |
| 21 | 11, 13, 20 | subne0ad 11551 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((sin‘𝐴)↑2) ≠ -((cos‘𝐴)↑2)) |
| 22 | 12 | mulm1d 11637 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (-1 · ((cos‘𝐴)↑2)) = -((cos‘𝐴)↑2)) |
| 23 | 21, 22 | neeqtrrd 3000 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((sin‘𝐴)↑2) ≠ (-1 · ((cos‘𝐴)↑2))) |
| 24 | neg1cn 12178 | . . . . . . 7 ⊢ -1 ∈ ℂ | |
| 25 | 24 | a1i 11 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → -1 ∈ ℂ) |
| 26 | sqne0 14095 | . . . . . . . 8 ⊢ ((cos‘𝐴) ∈ ℂ → (((cos‘𝐴)↑2) ≠ 0 ↔ (cos‘𝐴) ≠ 0)) | |
| 27 | 6, 26 | syl 17 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (((cos‘𝐴)↑2) ≠ 0 ↔ (cos‘𝐴) ≠ 0)) |
| 28 | 27 | biimpar 477 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((cos‘𝐴)↑2) ≠ 0) |
| 29 | 11, 25, 12, 28 | divmul3d 11999 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((((sin‘𝐴)↑2) / ((cos‘𝐴)↑2)) = -1 ↔ ((sin‘𝐴)↑2) = (-1 · ((cos‘𝐴)↑2)))) |
| 30 | 29 | necon3bid 2970 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((((sin‘𝐴)↑2) / ((cos‘𝐴)↑2)) ≠ -1 ↔ ((sin‘𝐴)↑2) ≠ (-1 · ((cos‘𝐴)↑2)))) |
| 31 | 23, 30 | mpbird 257 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (((sin‘𝐴)↑2) / ((cos‘𝐴)↑2)) ≠ -1) |
| 32 | 10, 31 | eqnetrd 2993 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((tan‘𝐴)↑2) ≠ -1) |
| 33 | atandm3 26795 | . 2 ⊢ ((tan‘𝐴) ∈ dom arctan ↔ ((tan‘𝐴) ∈ ℂ ∧ ((tan‘𝐴)↑2) ≠ -1)) | |
| 34 | 1, 32, 33 | sylanbrc 583 | 1 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘𝐴) ∈ dom arctan) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 dom cdm 5641 ‘cfv 6514 (class class class)co 7390 ℂcc 11073 0cc0 11075 1c1 11076 + caddc 11078 · cmul 11080 − cmin 11412 -cneg 11413 / cdiv 11842 2c2 12248 ↑cexp 14033 sincsin 16036 cosccos 16037 tanctan 16038 arctancatan 26781 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-pm 8805 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-inf 9401 df-oi 9470 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-n0 12450 df-z 12537 df-uz 12801 df-rp 12959 df-ico 13319 df-fz 13476 df-fzo 13623 df-fl 13761 df-seq 13974 df-exp 14034 df-fac 14246 df-bc 14275 df-hash 14303 df-shft 15040 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-limsup 15444 df-clim 15461 df-rlim 15462 df-sum 15660 df-ef 16040 df-sin 16042 df-cos 16043 df-tan 16044 df-atan 26784 |
| This theorem is referenced by: atantan 26840 |
| Copyright terms: Public domain | W3C validator |