Proof of Theorem expnprm
Step | Hyp | Ref
| Expression |
1 | | eluz2b3 12591 |
. . . 4
⊢ (𝑁 ∈
(ℤ≥‘2) ↔ (𝑁 ∈ ℕ ∧ 𝑁 ≠ 1)) |
2 | 1 | simprbi 496 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘2) → 𝑁 ≠ 1) |
3 | 2 | adantl 481 |
. 2
⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈
(ℤ≥‘2)) → 𝑁 ≠ 1) |
4 | | eluzelz 12521 |
. . . . . . . 8
⊢ (𝑁 ∈
(ℤ≥‘2) → 𝑁 ∈ ℤ) |
5 | 4 | ad2antlr 723 |
. . . . . . 7
⊢ (((𝐴 ∈ ℚ ∧ 𝑁 ∈
(ℤ≥‘2)) ∧ (𝐴↑𝑁) ∈ ℙ) → 𝑁 ∈ ℤ) |
6 | | simpr 484 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℚ ∧ 𝑁 ∈
(ℤ≥‘2)) ∧ (𝐴↑𝑁) ∈ ℙ) → (𝐴↑𝑁) ∈ ℙ) |
7 | | simpll 763 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℚ ∧ 𝑁 ∈
(ℤ≥‘2)) ∧ (𝐴↑𝑁) ∈ ℙ) → 𝐴 ∈ ℚ) |
8 | | prmnn 16307 |
. . . . . . . . . . . 12
⊢ ((𝐴↑𝑁) ∈ ℙ → (𝐴↑𝑁) ∈ ℕ) |
9 | 8 | adantl 481 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℚ ∧ 𝑁 ∈
(ℤ≥‘2)) ∧ (𝐴↑𝑁) ∈ ℙ) → (𝐴↑𝑁) ∈ ℕ) |
10 | 9 | nnne0d 11953 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℚ ∧ 𝑁 ∈
(ℤ≥‘2)) ∧ (𝐴↑𝑁) ∈ ℙ) → (𝐴↑𝑁) ≠ 0) |
11 | | eluz2nn 12553 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈
(ℤ≥‘2) → 𝑁 ∈ ℕ) |
12 | 11 | ad2antlr 723 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℚ ∧ 𝑁 ∈
(ℤ≥‘2)) ∧ (𝐴↑𝑁) ∈ ℙ) → 𝑁 ∈ ℕ) |
13 | 12 | 0expd 13785 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℚ ∧ 𝑁 ∈
(ℤ≥‘2)) ∧ (𝐴↑𝑁) ∈ ℙ) → (0↑𝑁) = 0) |
14 | 10, 13 | neeqtrrd 3017 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℚ ∧ 𝑁 ∈
(ℤ≥‘2)) ∧ (𝐴↑𝑁) ∈ ℙ) → (𝐴↑𝑁) ≠ (0↑𝑁)) |
15 | | oveq1 7262 |
. . . . . . . . . 10
⊢ (𝐴 = 0 → (𝐴↑𝑁) = (0↑𝑁)) |
16 | 15 | necon3i 2975 |
. . . . . . . . 9
⊢ ((𝐴↑𝑁) ≠ (0↑𝑁) → 𝐴 ≠ 0) |
17 | 14, 16 | syl 17 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℚ ∧ 𝑁 ∈
(ℤ≥‘2)) ∧ (𝐴↑𝑁) ∈ ℙ) → 𝐴 ≠ 0) |
18 | | pcqcl 16485 |
. . . . . . . 8
⊢ (((𝐴↑𝑁) ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → ((𝐴↑𝑁) pCnt 𝐴) ∈ ℤ) |
19 | 6, 7, 17, 18 | syl12anc 833 |
. . . . . . 7
⊢ (((𝐴 ∈ ℚ ∧ 𝑁 ∈
(ℤ≥‘2)) ∧ (𝐴↑𝑁) ∈ ℙ) → ((𝐴↑𝑁) pCnt 𝐴) ∈ ℤ) |
20 | | dvdsmul1 15915 |
. . . . . . 7
⊢ ((𝑁 ∈ ℤ ∧ ((𝐴↑𝑁) pCnt 𝐴) ∈ ℤ) → 𝑁 ∥ (𝑁 · ((𝐴↑𝑁) pCnt 𝐴))) |
21 | 5, 19, 20 | syl2anc 583 |
. . . . . 6
⊢ (((𝐴 ∈ ℚ ∧ 𝑁 ∈
(ℤ≥‘2)) ∧ (𝐴↑𝑁) ∈ ℙ) → 𝑁 ∥ (𝑁 · ((𝐴↑𝑁) pCnt 𝐴))) |
22 | 9 | nncnd 11919 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℚ ∧ 𝑁 ∈
(ℤ≥‘2)) ∧ (𝐴↑𝑁) ∈ ℙ) → (𝐴↑𝑁) ∈ ℂ) |
23 | 22 | exp1d 13787 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℚ ∧ 𝑁 ∈
(ℤ≥‘2)) ∧ (𝐴↑𝑁) ∈ ℙ) → ((𝐴↑𝑁)↑1) = (𝐴↑𝑁)) |
24 | 23 | oveq2d 7271 |
. . . . . . 7
⊢ (((𝐴 ∈ ℚ ∧ 𝑁 ∈
(ℤ≥‘2)) ∧ (𝐴↑𝑁) ∈ ℙ) → ((𝐴↑𝑁) pCnt ((𝐴↑𝑁)↑1)) = ((𝐴↑𝑁) pCnt (𝐴↑𝑁))) |
25 | | 1z 12280 |
. . . . . . . 8
⊢ 1 ∈
ℤ |
26 | | pcid 16502 |
. . . . . . . 8
⊢ (((𝐴↑𝑁) ∈ ℙ ∧ 1 ∈ ℤ)
→ ((𝐴↑𝑁) pCnt ((𝐴↑𝑁)↑1)) = 1) |
27 | 6, 25, 26 | sylancl 585 |
. . . . . . 7
⊢ (((𝐴 ∈ ℚ ∧ 𝑁 ∈
(ℤ≥‘2)) ∧ (𝐴↑𝑁) ∈ ℙ) → ((𝐴↑𝑁) pCnt ((𝐴↑𝑁)↑1)) = 1) |
28 | | pcexp 16488 |
. . . . . . . 8
⊢ (((𝐴↑𝑁) ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ 𝑁 ∈ ℤ) → ((𝐴↑𝑁) pCnt (𝐴↑𝑁)) = (𝑁 · ((𝐴↑𝑁) pCnt 𝐴))) |
29 | 6, 7, 17, 5, 28 | syl121anc 1373 |
. . . . . . 7
⊢ (((𝐴 ∈ ℚ ∧ 𝑁 ∈
(ℤ≥‘2)) ∧ (𝐴↑𝑁) ∈ ℙ) → ((𝐴↑𝑁) pCnt (𝐴↑𝑁)) = (𝑁 · ((𝐴↑𝑁) pCnt 𝐴))) |
30 | 24, 27, 29 | 3eqtr3rd 2787 |
. . . . . 6
⊢ (((𝐴 ∈ ℚ ∧ 𝑁 ∈
(ℤ≥‘2)) ∧ (𝐴↑𝑁) ∈ ℙ) → (𝑁 · ((𝐴↑𝑁) pCnt 𝐴)) = 1) |
31 | 21, 30 | breqtrd 5096 |
. . . . 5
⊢ (((𝐴 ∈ ℚ ∧ 𝑁 ∈
(ℤ≥‘2)) ∧ (𝐴↑𝑁) ∈ ℙ) → 𝑁 ∥ 1) |
32 | 31 | ex 412 |
. . . 4
⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈
(ℤ≥‘2)) → ((𝐴↑𝑁) ∈ ℙ → 𝑁 ∥ 1)) |
33 | 11 | adantl 481 |
. . . . . 6
⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈
(ℤ≥‘2)) → 𝑁 ∈ ℕ) |
34 | 33 | nnnn0d 12223 |
. . . . 5
⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈
(ℤ≥‘2)) → 𝑁 ∈
ℕ0) |
35 | | dvds1 15956 |
. . . . 5
⊢ (𝑁 ∈ ℕ0
→ (𝑁 ∥ 1 ↔
𝑁 = 1)) |
36 | 34, 35 | syl 17 |
. . . 4
⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈
(ℤ≥‘2)) → (𝑁 ∥ 1 ↔ 𝑁 = 1)) |
37 | 32, 36 | sylibd 238 |
. . 3
⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈
(ℤ≥‘2)) → ((𝐴↑𝑁) ∈ ℙ → 𝑁 = 1)) |
38 | 37 | necon3ad 2955 |
. 2
⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈
(ℤ≥‘2)) → (𝑁 ≠ 1 → ¬ (𝐴↑𝑁) ∈ ℙ)) |
39 | 3, 38 | mpd 15 |
1
⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈
(ℤ≥‘2)) → ¬ (𝐴↑𝑁) ∈ ℙ) |