MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expnprm Structured version   Visualization version   GIF version

Theorem expnprm 16922
Description: A second or higher power of a rational number is not a prime number. Or by contraposition, the n-th root of a prime number is irrational. Suggested by Norm Megill. (Contributed by Mario Carneiro, 10-Aug-2015.)
Assertion
Ref Expression
expnprm ((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) → ¬ (𝐴𝑁) ∈ ℙ)

Proof of Theorem expnprm
StepHypRef Expression
1 eluz2b3 12946 . . . 4 (𝑁 ∈ (ℤ‘2) ↔ (𝑁 ∈ ℕ ∧ 𝑁 ≠ 1))
21simprbi 496 . . 3 (𝑁 ∈ (ℤ‘2) → 𝑁 ≠ 1)
32adantl 481 . 2 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) → 𝑁 ≠ 1)
4 eluzelz 12870 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℤ)
54ad2antlr 727 . . . . . . 7 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝐴𝑁) ∈ ℙ) → 𝑁 ∈ ℤ)
6 simpr 484 . . . . . . . 8 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝐴𝑁) ∈ ℙ) → (𝐴𝑁) ∈ ℙ)
7 simpll 766 . . . . . . . 8 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝐴𝑁) ∈ ℙ) → 𝐴 ∈ ℚ)
8 prmnn 16693 . . . . . . . . . . . 12 ((𝐴𝑁) ∈ ℙ → (𝐴𝑁) ∈ ℕ)
98adantl 481 . . . . . . . . . . 11 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝐴𝑁) ∈ ℙ) → (𝐴𝑁) ∈ ℕ)
109nnne0d 12298 . . . . . . . . . 10 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝐴𝑁) ∈ ℙ) → (𝐴𝑁) ≠ 0)
11 eluz2nn 12906 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ)
1211ad2antlr 727 . . . . . . . . . . 11 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝐴𝑁) ∈ ℙ) → 𝑁 ∈ ℕ)
13120expd 14161 . . . . . . . . . 10 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝐴𝑁) ∈ ℙ) → (0↑𝑁) = 0)
1410, 13neeqtrrd 3005 . . . . . . . . 9 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝐴𝑁) ∈ ℙ) → (𝐴𝑁) ≠ (0↑𝑁))
15 oveq1 7420 . . . . . . . . . 10 (𝐴 = 0 → (𝐴𝑁) = (0↑𝑁))
1615necon3i 2963 . . . . . . . . 9 ((𝐴𝑁) ≠ (0↑𝑁) → 𝐴 ≠ 0)
1714, 16syl 17 . . . . . . . 8 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝐴𝑁) ∈ ℙ) → 𝐴 ≠ 0)
18 pcqcl 16876 . . . . . . . 8 (((𝐴𝑁) ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → ((𝐴𝑁) pCnt 𝐴) ∈ ℤ)
196, 7, 17, 18syl12anc 836 . . . . . . 7 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝐴𝑁) ∈ ℙ) → ((𝐴𝑁) pCnt 𝐴) ∈ ℤ)
20 dvdsmul1 16297 . . . . . . 7 ((𝑁 ∈ ℤ ∧ ((𝐴𝑁) pCnt 𝐴) ∈ ℤ) → 𝑁 ∥ (𝑁 · ((𝐴𝑁) pCnt 𝐴)))
215, 19, 20syl2anc 584 . . . . . 6 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝐴𝑁) ∈ ℙ) → 𝑁 ∥ (𝑁 · ((𝐴𝑁) pCnt 𝐴)))
229nncnd 12264 . . . . . . . . 9 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝐴𝑁) ∈ ℙ) → (𝐴𝑁) ∈ ℂ)
2322exp1d 14163 . . . . . . . 8 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝐴𝑁) ∈ ℙ) → ((𝐴𝑁)↑1) = (𝐴𝑁))
2423oveq2d 7429 . . . . . . 7 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝐴𝑁) ∈ ℙ) → ((𝐴𝑁) pCnt ((𝐴𝑁)↑1)) = ((𝐴𝑁) pCnt (𝐴𝑁)))
25 1z 12630 . . . . . . . 8 1 ∈ ℤ
26 pcid 16893 . . . . . . . 8 (((𝐴𝑁) ∈ ℙ ∧ 1 ∈ ℤ) → ((𝐴𝑁) pCnt ((𝐴𝑁)↑1)) = 1)
276, 25, 26sylancl 586 . . . . . . 7 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝐴𝑁) ∈ ℙ) → ((𝐴𝑁) pCnt ((𝐴𝑁)↑1)) = 1)
28 pcexp 16879 . . . . . . . 8 (((𝐴𝑁) ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ 𝑁 ∈ ℤ) → ((𝐴𝑁) pCnt (𝐴𝑁)) = (𝑁 · ((𝐴𝑁) pCnt 𝐴)))
296, 7, 17, 5, 28syl121anc 1376 . . . . . . 7 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝐴𝑁) ∈ ℙ) → ((𝐴𝑁) pCnt (𝐴𝑁)) = (𝑁 · ((𝐴𝑁) pCnt 𝐴)))
3024, 27, 293eqtr3rd 2778 . . . . . 6 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝐴𝑁) ∈ ℙ) → (𝑁 · ((𝐴𝑁) pCnt 𝐴)) = 1)
3121, 30breqtrd 5149 . . . . 5 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝐴𝑁) ∈ ℙ) → 𝑁 ∥ 1)
3231ex 412 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) → ((𝐴𝑁) ∈ ℙ → 𝑁 ∥ 1))
3311adantl 481 . . . . . 6 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) → 𝑁 ∈ ℕ)
3433nnnn0d 12570 . . . . 5 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) → 𝑁 ∈ ℕ0)
35 dvds1 16338 . . . . 5 (𝑁 ∈ ℕ0 → (𝑁 ∥ 1 ↔ 𝑁 = 1))
3634, 35syl 17 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) → (𝑁 ∥ 1 ↔ 𝑁 = 1))
3732, 36sylibd 239 . . 3 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) → ((𝐴𝑁) ∈ ℙ → 𝑁 = 1))
3837necon3ad 2944 . 2 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) → (𝑁 ≠ 1 → ¬ (𝐴𝑁) ∈ ℙ))
393, 38mpd 15 1 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) → ¬ (𝐴𝑁) ∈ ℙ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wne 2931   class class class wbr 5123  cfv 6541  (class class class)co 7413  0cc0 11137  1c1 11138   · cmul 11142  cn 12248  2c2 12303  0cn0 12509  cz 12596  cuz 12860  cq 12972  cexp 14084  cdvds 16272  cprime 16690   pCnt cpc 16856
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-pre-sup 11215
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-er 8727  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-sup 9464  df-inf 9465  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-div 11903  df-nn 12249  df-2 12311  df-3 12312  df-n0 12510  df-z 12597  df-uz 12861  df-q 12973  df-rp 13017  df-fl 13814  df-mod 13892  df-seq 14025  df-exp 14085  df-cj 15120  df-re 15121  df-im 15122  df-sqrt 15256  df-abs 15257  df-dvds 16273  df-gcd 16514  df-prm 16691  df-pc 16857
This theorem is referenced by:  rplogsumlem2  27465
  Copyright terms: Public domain W3C validator