MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expnprm Structured version   Visualization version   GIF version

Theorem expnprm 16940
Description: A second or higher power of a rational number is not a prime number. Or by contraposition, the n-th root of a prime number is irrational. Suggested by Norm Megill. (Contributed by Mario Carneiro, 10-Aug-2015.)
Assertion
Ref Expression
expnprm ((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) → ¬ (𝐴𝑁) ∈ ℙ)

Proof of Theorem expnprm
StepHypRef Expression
1 eluz2b3 12964 . . . 4 (𝑁 ∈ (ℤ‘2) ↔ (𝑁 ∈ ℕ ∧ 𝑁 ≠ 1))
21simprbi 496 . . 3 (𝑁 ∈ (ℤ‘2) → 𝑁 ≠ 1)
32adantl 481 . 2 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) → 𝑁 ≠ 1)
4 eluzelz 12888 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℤ)
54ad2antlr 727 . . . . . . 7 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝐴𝑁) ∈ ℙ) → 𝑁 ∈ ℤ)
6 simpr 484 . . . . . . . 8 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝐴𝑁) ∈ ℙ) → (𝐴𝑁) ∈ ℙ)
7 simpll 767 . . . . . . . 8 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝐴𝑁) ∈ ℙ) → 𝐴 ∈ ℚ)
8 prmnn 16711 . . . . . . . . . . . 12 ((𝐴𝑁) ∈ ℙ → (𝐴𝑁) ∈ ℕ)
98adantl 481 . . . . . . . . . . 11 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝐴𝑁) ∈ ℙ) → (𝐴𝑁) ∈ ℕ)
109nnne0d 12316 . . . . . . . . . 10 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝐴𝑁) ∈ ℙ) → (𝐴𝑁) ≠ 0)
11 eluz2nn 12924 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ)
1211ad2antlr 727 . . . . . . . . . . 11 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝐴𝑁) ∈ ℙ) → 𝑁 ∈ ℕ)
13120expd 14179 . . . . . . . . . 10 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝐴𝑁) ∈ ℙ) → (0↑𝑁) = 0)
1410, 13neeqtrrd 3015 . . . . . . . . 9 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝐴𝑁) ∈ ℙ) → (𝐴𝑁) ≠ (0↑𝑁))
15 oveq1 7438 . . . . . . . . . 10 (𝐴 = 0 → (𝐴𝑁) = (0↑𝑁))
1615necon3i 2973 . . . . . . . . 9 ((𝐴𝑁) ≠ (0↑𝑁) → 𝐴 ≠ 0)
1714, 16syl 17 . . . . . . . 8 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝐴𝑁) ∈ ℙ) → 𝐴 ≠ 0)
18 pcqcl 16894 . . . . . . . 8 (((𝐴𝑁) ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → ((𝐴𝑁) pCnt 𝐴) ∈ ℤ)
196, 7, 17, 18syl12anc 837 . . . . . . 7 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝐴𝑁) ∈ ℙ) → ((𝐴𝑁) pCnt 𝐴) ∈ ℤ)
20 dvdsmul1 16315 . . . . . . 7 ((𝑁 ∈ ℤ ∧ ((𝐴𝑁) pCnt 𝐴) ∈ ℤ) → 𝑁 ∥ (𝑁 · ((𝐴𝑁) pCnt 𝐴)))
215, 19, 20syl2anc 584 . . . . . 6 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝐴𝑁) ∈ ℙ) → 𝑁 ∥ (𝑁 · ((𝐴𝑁) pCnt 𝐴)))
229nncnd 12282 . . . . . . . . 9 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝐴𝑁) ∈ ℙ) → (𝐴𝑁) ∈ ℂ)
2322exp1d 14181 . . . . . . . 8 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝐴𝑁) ∈ ℙ) → ((𝐴𝑁)↑1) = (𝐴𝑁))
2423oveq2d 7447 . . . . . . 7 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝐴𝑁) ∈ ℙ) → ((𝐴𝑁) pCnt ((𝐴𝑁)↑1)) = ((𝐴𝑁) pCnt (𝐴𝑁)))
25 1z 12647 . . . . . . . 8 1 ∈ ℤ
26 pcid 16911 . . . . . . . 8 (((𝐴𝑁) ∈ ℙ ∧ 1 ∈ ℤ) → ((𝐴𝑁) pCnt ((𝐴𝑁)↑1)) = 1)
276, 25, 26sylancl 586 . . . . . . 7 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝐴𝑁) ∈ ℙ) → ((𝐴𝑁) pCnt ((𝐴𝑁)↑1)) = 1)
28 pcexp 16897 . . . . . . . 8 (((𝐴𝑁) ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ 𝑁 ∈ ℤ) → ((𝐴𝑁) pCnt (𝐴𝑁)) = (𝑁 · ((𝐴𝑁) pCnt 𝐴)))
296, 7, 17, 5, 28syl121anc 1377 . . . . . . 7 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝐴𝑁) ∈ ℙ) → ((𝐴𝑁) pCnt (𝐴𝑁)) = (𝑁 · ((𝐴𝑁) pCnt 𝐴)))
3024, 27, 293eqtr3rd 2786 . . . . . 6 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝐴𝑁) ∈ ℙ) → (𝑁 · ((𝐴𝑁) pCnt 𝐴)) = 1)
3121, 30breqtrd 5169 . . . . 5 (((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) ∧ (𝐴𝑁) ∈ ℙ) → 𝑁 ∥ 1)
3231ex 412 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) → ((𝐴𝑁) ∈ ℙ → 𝑁 ∥ 1))
3311adantl 481 . . . . . 6 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) → 𝑁 ∈ ℕ)
3433nnnn0d 12587 . . . . 5 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) → 𝑁 ∈ ℕ0)
35 dvds1 16356 . . . . 5 (𝑁 ∈ ℕ0 → (𝑁 ∥ 1 ↔ 𝑁 = 1))
3634, 35syl 17 . . . 4 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) → (𝑁 ∥ 1 ↔ 𝑁 = 1))
3732, 36sylibd 239 . . 3 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) → ((𝐴𝑁) ∈ ℙ → 𝑁 = 1))
3837necon3ad 2953 . 2 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) → (𝑁 ≠ 1 → ¬ (𝐴𝑁) ∈ ℙ))
393, 38mpd 15 1 ((𝐴 ∈ ℚ ∧ 𝑁 ∈ (ℤ‘2)) → ¬ (𝐴𝑁) ∈ ℙ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2940   class class class wbr 5143  cfv 6561  (class class class)co 7431  0cc0 11155  1c1 11156   · cmul 11160  cn 12266  2c2 12321  0cn0 12526  cz 12613  cuz 12878  cq 12990  cexp 14102  cdvds 16290  cprime 16708   pCnt cpc 16874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-q 12991  df-rp 13035  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-dvds 16291  df-gcd 16532  df-prm 16709  df-pc 16875
This theorem is referenced by:  rplogsumlem2  27529
  Copyright terms: Public domain W3C validator