Proof of Theorem expnprm
| Step | Hyp | Ref
| Expression |
| 1 | | eluz2b3 12964 |
. . . 4
⊢ (𝑁 ∈
(ℤ≥‘2) ↔ (𝑁 ∈ ℕ ∧ 𝑁 ≠ 1)) |
| 2 | 1 | simprbi 496 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘2) → 𝑁 ≠ 1) |
| 3 | 2 | adantl 481 |
. 2
⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈
(ℤ≥‘2)) → 𝑁 ≠ 1) |
| 4 | | eluzelz 12888 |
. . . . . . . 8
⊢ (𝑁 ∈
(ℤ≥‘2) → 𝑁 ∈ ℤ) |
| 5 | 4 | ad2antlr 727 |
. . . . . . 7
⊢ (((𝐴 ∈ ℚ ∧ 𝑁 ∈
(ℤ≥‘2)) ∧ (𝐴↑𝑁) ∈ ℙ) → 𝑁 ∈ ℤ) |
| 6 | | simpr 484 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℚ ∧ 𝑁 ∈
(ℤ≥‘2)) ∧ (𝐴↑𝑁) ∈ ℙ) → (𝐴↑𝑁) ∈ ℙ) |
| 7 | | simpll 767 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℚ ∧ 𝑁 ∈
(ℤ≥‘2)) ∧ (𝐴↑𝑁) ∈ ℙ) → 𝐴 ∈ ℚ) |
| 8 | | prmnn 16711 |
. . . . . . . . . . . 12
⊢ ((𝐴↑𝑁) ∈ ℙ → (𝐴↑𝑁) ∈ ℕ) |
| 9 | 8 | adantl 481 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℚ ∧ 𝑁 ∈
(ℤ≥‘2)) ∧ (𝐴↑𝑁) ∈ ℙ) → (𝐴↑𝑁) ∈ ℕ) |
| 10 | 9 | nnne0d 12316 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℚ ∧ 𝑁 ∈
(ℤ≥‘2)) ∧ (𝐴↑𝑁) ∈ ℙ) → (𝐴↑𝑁) ≠ 0) |
| 11 | | eluz2nn 12924 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈
(ℤ≥‘2) → 𝑁 ∈ ℕ) |
| 12 | 11 | ad2antlr 727 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℚ ∧ 𝑁 ∈
(ℤ≥‘2)) ∧ (𝐴↑𝑁) ∈ ℙ) → 𝑁 ∈ ℕ) |
| 13 | 12 | 0expd 14179 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℚ ∧ 𝑁 ∈
(ℤ≥‘2)) ∧ (𝐴↑𝑁) ∈ ℙ) → (0↑𝑁) = 0) |
| 14 | 10, 13 | neeqtrrd 3015 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℚ ∧ 𝑁 ∈
(ℤ≥‘2)) ∧ (𝐴↑𝑁) ∈ ℙ) → (𝐴↑𝑁) ≠ (0↑𝑁)) |
| 15 | | oveq1 7438 |
. . . . . . . . . 10
⊢ (𝐴 = 0 → (𝐴↑𝑁) = (0↑𝑁)) |
| 16 | 15 | necon3i 2973 |
. . . . . . . . 9
⊢ ((𝐴↑𝑁) ≠ (0↑𝑁) → 𝐴 ≠ 0) |
| 17 | 14, 16 | syl 17 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℚ ∧ 𝑁 ∈
(ℤ≥‘2)) ∧ (𝐴↑𝑁) ∈ ℙ) → 𝐴 ≠ 0) |
| 18 | | pcqcl 16894 |
. . . . . . . 8
⊢ (((𝐴↑𝑁) ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0)) → ((𝐴↑𝑁) pCnt 𝐴) ∈ ℤ) |
| 19 | 6, 7, 17, 18 | syl12anc 837 |
. . . . . . 7
⊢ (((𝐴 ∈ ℚ ∧ 𝑁 ∈
(ℤ≥‘2)) ∧ (𝐴↑𝑁) ∈ ℙ) → ((𝐴↑𝑁) pCnt 𝐴) ∈ ℤ) |
| 20 | | dvdsmul1 16315 |
. . . . . . 7
⊢ ((𝑁 ∈ ℤ ∧ ((𝐴↑𝑁) pCnt 𝐴) ∈ ℤ) → 𝑁 ∥ (𝑁 · ((𝐴↑𝑁) pCnt 𝐴))) |
| 21 | 5, 19, 20 | syl2anc 584 |
. . . . . 6
⊢ (((𝐴 ∈ ℚ ∧ 𝑁 ∈
(ℤ≥‘2)) ∧ (𝐴↑𝑁) ∈ ℙ) → 𝑁 ∥ (𝑁 · ((𝐴↑𝑁) pCnt 𝐴))) |
| 22 | 9 | nncnd 12282 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℚ ∧ 𝑁 ∈
(ℤ≥‘2)) ∧ (𝐴↑𝑁) ∈ ℙ) → (𝐴↑𝑁) ∈ ℂ) |
| 23 | 22 | exp1d 14181 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℚ ∧ 𝑁 ∈
(ℤ≥‘2)) ∧ (𝐴↑𝑁) ∈ ℙ) → ((𝐴↑𝑁)↑1) = (𝐴↑𝑁)) |
| 24 | 23 | oveq2d 7447 |
. . . . . . 7
⊢ (((𝐴 ∈ ℚ ∧ 𝑁 ∈
(ℤ≥‘2)) ∧ (𝐴↑𝑁) ∈ ℙ) → ((𝐴↑𝑁) pCnt ((𝐴↑𝑁)↑1)) = ((𝐴↑𝑁) pCnt (𝐴↑𝑁))) |
| 25 | | 1z 12647 |
. . . . . . . 8
⊢ 1 ∈
ℤ |
| 26 | | pcid 16911 |
. . . . . . . 8
⊢ (((𝐴↑𝑁) ∈ ℙ ∧ 1 ∈ ℤ)
→ ((𝐴↑𝑁) pCnt ((𝐴↑𝑁)↑1)) = 1) |
| 27 | 6, 25, 26 | sylancl 586 |
. . . . . . 7
⊢ (((𝐴 ∈ ℚ ∧ 𝑁 ∈
(ℤ≥‘2)) ∧ (𝐴↑𝑁) ∈ ℙ) → ((𝐴↑𝑁) pCnt ((𝐴↑𝑁)↑1)) = 1) |
| 28 | | pcexp 16897 |
. . . . . . . 8
⊢ (((𝐴↑𝑁) ∈ ℙ ∧ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0) ∧ 𝑁 ∈ ℤ) → ((𝐴↑𝑁) pCnt (𝐴↑𝑁)) = (𝑁 · ((𝐴↑𝑁) pCnt 𝐴))) |
| 29 | 6, 7, 17, 5, 28 | syl121anc 1377 |
. . . . . . 7
⊢ (((𝐴 ∈ ℚ ∧ 𝑁 ∈
(ℤ≥‘2)) ∧ (𝐴↑𝑁) ∈ ℙ) → ((𝐴↑𝑁) pCnt (𝐴↑𝑁)) = (𝑁 · ((𝐴↑𝑁) pCnt 𝐴))) |
| 30 | 24, 27, 29 | 3eqtr3rd 2786 |
. . . . . 6
⊢ (((𝐴 ∈ ℚ ∧ 𝑁 ∈
(ℤ≥‘2)) ∧ (𝐴↑𝑁) ∈ ℙ) → (𝑁 · ((𝐴↑𝑁) pCnt 𝐴)) = 1) |
| 31 | 21, 30 | breqtrd 5169 |
. . . . 5
⊢ (((𝐴 ∈ ℚ ∧ 𝑁 ∈
(ℤ≥‘2)) ∧ (𝐴↑𝑁) ∈ ℙ) → 𝑁 ∥ 1) |
| 32 | 31 | ex 412 |
. . . 4
⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈
(ℤ≥‘2)) → ((𝐴↑𝑁) ∈ ℙ → 𝑁 ∥ 1)) |
| 33 | 11 | adantl 481 |
. . . . . 6
⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈
(ℤ≥‘2)) → 𝑁 ∈ ℕ) |
| 34 | 33 | nnnn0d 12587 |
. . . . 5
⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈
(ℤ≥‘2)) → 𝑁 ∈
ℕ0) |
| 35 | | dvds1 16356 |
. . . . 5
⊢ (𝑁 ∈ ℕ0
→ (𝑁 ∥ 1 ↔
𝑁 = 1)) |
| 36 | 34, 35 | syl 17 |
. . . 4
⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈
(ℤ≥‘2)) → (𝑁 ∥ 1 ↔ 𝑁 = 1)) |
| 37 | 32, 36 | sylibd 239 |
. . 3
⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈
(ℤ≥‘2)) → ((𝐴↑𝑁) ∈ ℙ → 𝑁 = 1)) |
| 38 | 37 | necon3ad 2953 |
. 2
⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈
(ℤ≥‘2)) → (𝑁 ≠ 1 → ¬ (𝐴↑𝑁) ∈ ℙ)) |
| 39 | 3, 38 | mpd 15 |
1
⊢ ((𝐴 ∈ ℚ ∧ 𝑁 ∈
(ℤ≥‘2)) → ¬ (𝐴↑𝑁) ∈ ℙ) |