Step | Hyp | Ref
| Expression |
1 | | simp1 1135 |
. . . . 5
β’ (((πΎ β HL β§ π β π») β§ π β πΈ β§ π β π) β (πΎ β HL β§ π β π»)) |
2 | | tendoinv.h |
. . . . . 6
β’ π» = (LHypβπΎ) |
3 | | eqid 2731 |
. . . . . 6
β’
((EDRingβπΎ)βπ) = ((EDRingβπΎ)βπ) |
4 | | tendoinv.u |
. . . . . 6
β’ π = ((DVecHβπΎ)βπ) |
5 | | tendoinv.f |
. . . . . 6
β’ πΉ = (Scalarβπ) |
6 | 2, 3, 4, 5 | dvhsca 40257 |
. . . . 5
β’ ((πΎ β HL β§ π β π») β πΉ = ((EDRingβπΎ)βπ)) |
7 | 1, 6 | syl 17 |
. . . 4
β’ (((πΎ β HL β§ π β π») β§ π β πΈ β§ π β π) β πΉ = ((EDRingβπΎ)βπ)) |
8 | 2, 3 | erngdv 40168 |
. . . . 5
β’ ((πΎ β HL β§ π β π») β ((EDRingβπΎ)βπ) β DivRing) |
9 | 1, 8 | syl 17 |
. . . 4
β’ (((πΎ β HL β§ π β π») β§ π β πΈ β§ π β π) β ((EDRingβπΎ)βπ) β DivRing) |
10 | 7, 9 | eqeltrd 2832 |
. . 3
β’ (((πΎ β HL β§ π β π») β§ π β πΈ β§ π β π) β πΉ β DivRing) |
11 | | simp2 1136 |
. . . 4
β’ (((πΎ β HL β§ π β π») β§ π β πΈ β§ π β π) β π β πΈ) |
12 | | tendoinv.e |
. . . . . 6
β’ πΈ = ((TEndoβπΎ)βπ) |
13 | | eqid 2731 |
. . . . . 6
β’
(BaseβπΉ) =
(BaseβπΉ) |
14 | 2, 12, 4, 5, 13 | dvhbase 40258 |
. . . . 5
β’ ((πΎ β HL β§ π β π») β (BaseβπΉ) = πΈ) |
15 | 1, 14 | syl 17 |
. . . 4
β’ (((πΎ β HL β§ π β π») β§ π β πΈ β§ π β π) β (BaseβπΉ) = πΈ) |
16 | 11, 15 | eleqtrrd 2835 |
. . 3
β’ (((πΎ β HL β§ π β π») β§ π β πΈ β§ π β π) β π β (BaseβπΉ)) |
17 | | simp3 1137 |
. . . 4
β’ (((πΎ β HL β§ π β π») β§ π β πΈ β§ π β π) β π β π) |
18 | 6 | fveq2d 6895 |
. . . . . 6
β’ ((πΎ β HL β§ π β π») β (0gβπΉ) =
(0gβ((EDRingβπΎ)βπ))) |
19 | | tendoinv.b |
. . . . . . 7
β’ π΅ = (BaseβπΎ) |
20 | | tendoinv.t |
. . . . . . 7
β’ π = ((LTrnβπΎ)βπ) |
21 | | tendoinv.o |
. . . . . . 7
β’ π = (β β π β¦ ( I βΎ π΅)) |
22 | | eqid 2731 |
. . . . . . 7
β’
(0gβ((EDRingβπΎ)βπ)) =
(0gβ((EDRingβπΎ)βπ)) |
23 | 19, 2, 20, 3, 21, 22 | erng0g 40169 |
. . . . . 6
β’ ((πΎ β HL β§ π β π») β
(0gβ((EDRingβπΎ)βπ)) = π) |
24 | 18, 23 | eqtrd 2771 |
. . . . 5
β’ ((πΎ β HL β§ π β π») β (0gβπΉ) = π) |
25 | 1, 24 | syl 17 |
. . . 4
β’ (((πΎ β HL β§ π β π») β§ π β πΈ β§ π β π) β (0gβπΉ) = π) |
26 | 17, 25 | neeqtrrd 3014 |
. . 3
β’ (((πΎ β HL β§ π β π») β§ π β πΈ β§ π β π) β π β (0gβπΉ)) |
27 | | eqid 2731 |
. . . 4
β’
(0gβπΉ) = (0gβπΉ) |
28 | | eqid 2731 |
. . . 4
β’
(.rβπΉ) = (.rβπΉ) |
29 | | eqid 2731 |
. . . 4
β’
(1rβπΉ) = (1rβπΉ) |
30 | | tendoinv.n |
. . . 4
β’ π = (invrβπΉ) |
31 | 13, 27, 28, 29, 30 | drnginvrr 20527 |
. . 3
β’ ((πΉ β DivRing β§ π β (BaseβπΉ) β§ π β (0gβπΉ)) β (π(.rβπΉ)(πβπ)) = (1rβπΉ)) |
32 | 10, 16, 26, 31 | syl3anc 1370 |
. 2
β’ (((πΎ β HL β§ π β π») β§ π β πΈ β§ π β π) β (π(.rβπΉ)(πβπ)) = (1rβπΉ)) |
33 | 19, 2, 20, 12, 21, 4, 5, 30 | tendoinvcl 40279 |
. . . 4
β’ (((πΎ β HL β§ π β π») β§ π β πΈ β§ π β π) β ((πβπ) β πΈ β§ (πβπ) β π)) |
34 | 33 | simpld 494 |
. . 3
β’ (((πΎ β HL β§ π β π») β§ π β πΈ β§ π β π) β (πβπ) β πΈ) |
35 | 2, 20, 12, 4, 5, 28 | dvhmulr 40261 |
. . 3
β’ (((πΎ β HL β§ π β π») β§ (π β πΈ β§ (πβπ) β πΈ)) β (π(.rβπΉ)(πβπ)) = (π β (πβπ))) |
36 | 1, 11, 34, 35 | syl12anc 834 |
. 2
β’ (((πΎ β HL β§ π β π») β§ π β πΈ β§ π β π) β (π(.rβπΉ)(πβπ)) = (π β (πβπ))) |
37 | 6 | fveq2d 6895 |
. . . 4
β’ ((πΎ β HL β§ π β π») β (1rβπΉ) =
(1rβ((EDRingβπΎ)βπ))) |
38 | | eqid 2731 |
. . . . 5
β’
(1rβ((EDRingβπΎ)βπ)) =
(1rβ((EDRingβπΎ)βπ)) |
39 | 2, 20, 3, 38 | erng1r 40170 |
. . . 4
β’ ((πΎ β HL β§ π β π») β
(1rβ((EDRingβπΎ)βπ)) = ( I βΎ π)) |
40 | 37, 39 | eqtrd 2771 |
. . 3
β’ ((πΎ β HL β§ π β π») β (1rβπΉ) = ( I βΎ π)) |
41 | 1, 40 | syl 17 |
. 2
β’ (((πΎ β HL β§ π β π») β§ π β πΈ β§ π β π) β (1rβπΉ) = ( I βΎ π)) |
42 | 32, 36, 41 | 3eqtr3d 2779 |
1
β’ (((πΎ β HL β§ π β π») β§ π β πΈ β§ π β π) β (π β (πβπ)) = ( I βΎ π)) |