![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > tendorinv | Structured version Visualization version GIF version |
Description: Right multiplicative inverse for endomorphism. (Contributed by NM, 10-Apr-2014.) (Revised by Mario Carneiro, 23-Jun-2014.) |
Ref | Expression |
---|---|
tendoinv.b | ⊢ 𝐵 = (Base‘𝐾) |
tendoinv.h | ⊢ 𝐻 = (LHyp‘𝐾) |
tendoinv.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
tendoinv.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
tendoinv.o | ⊢ 𝑂 = (ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
tendoinv.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
tendoinv.f | ⊢ 𝐹 = (Scalar‘𝑈) |
tendoinv.n | ⊢ 𝑁 = (invr‘𝐹) |
Ref | Expression |
---|---|
tendorinv | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑆 ≠ 𝑂) → (𝑆 ∘ (𝑁‘𝑆)) = ( I ↾ 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1133 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑆 ≠ 𝑂) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
2 | tendoinv.h | . . . . . 6 ⊢ 𝐻 = (LHyp‘𝐾) | |
3 | eqid 2726 | . . . . . 6 ⊢ ((EDRing‘𝐾)‘𝑊) = ((EDRing‘𝐾)‘𝑊) | |
4 | tendoinv.u | . . . . . 6 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
5 | tendoinv.f | . . . . . 6 ⊢ 𝐹 = (Scalar‘𝑈) | |
6 | 2, 3, 4, 5 | dvhsca 40792 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐹 = ((EDRing‘𝐾)‘𝑊)) |
7 | 1, 6 | syl 17 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑆 ≠ 𝑂) → 𝐹 = ((EDRing‘𝐾)‘𝑊)) |
8 | 2, 3 | erngdv 40703 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ((EDRing‘𝐾)‘𝑊) ∈ DivRing) |
9 | 1, 8 | syl 17 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑆 ≠ 𝑂) → ((EDRing‘𝐾)‘𝑊) ∈ DivRing) |
10 | 7, 9 | eqeltrd 2826 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑆 ≠ 𝑂) → 𝐹 ∈ DivRing) |
11 | simp2 1134 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑆 ≠ 𝑂) → 𝑆 ∈ 𝐸) | |
12 | tendoinv.e | . . . . . 6 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
13 | eqid 2726 | . . . . . 6 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
14 | 2, 12, 4, 5, 13 | dvhbase 40793 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (Base‘𝐹) = 𝐸) |
15 | 1, 14 | syl 17 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑆 ≠ 𝑂) → (Base‘𝐹) = 𝐸) |
16 | 11, 15 | eleqtrrd 2829 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑆 ≠ 𝑂) → 𝑆 ∈ (Base‘𝐹)) |
17 | simp3 1135 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑆 ≠ 𝑂) → 𝑆 ≠ 𝑂) | |
18 | 6 | fveq2d 6895 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (0g‘𝐹) = (0g‘((EDRing‘𝐾)‘𝑊))) |
19 | tendoinv.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐾) | |
20 | tendoinv.t | . . . . . . 7 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
21 | tendoinv.o | . . . . . . 7 ⊢ 𝑂 = (ℎ ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
22 | eqid 2726 | . . . . . . 7 ⊢ (0g‘((EDRing‘𝐾)‘𝑊)) = (0g‘((EDRing‘𝐾)‘𝑊)) | |
23 | 19, 2, 20, 3, 21, 22 | erng0g 40704 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (0g‘((EDRing‘𝐾)‘𝑊)) = 𝑂) |
24 | 18, 23 | eqtrd 2766 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (0g‘𝐹) = 𝑂) |
25 | 1, 24 | syl 17 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑆 ≠ 𝑂) → (0g‘𝐹) = 𝑂) |
26 | 17, 25 | neeqtrrd 3005 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑆 ≠ 𝑂) → 𝑆 ≠ (0g‘𝐹)) |
27 | eqid 2726 | . . . 4 ⊢ (0g‘𝐹) = (0g‘𝐹) | |
28 | eqid 2726 | . . . 4 ⊢ (.r‘𝐹) = (.r‘𝐹) | |
29 | eqid 2726 | . . . 4 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
30 | tendoinv.n | . . . 4 ⊢ 𝑁 = (invr‘𝐹) | |
31 | 13, 27, 28, 29, 30 | drnginvrr 20729 | . . 3 ⊢ ((𝐹 ∈ DivRing ∧ 𝑆 ∈ (Base‘𝐹) ∧ 𝑆 ≠ (0g‘𝐹)) → (𝑆(.r‘𝐹)(𝑁‘𝑆)) = (1r‘𝐹)) |
32 | 10, 16, 26, 31 | syl3anc 1368 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑆 ≠ 𝑂) → (𝑆(.r‘𝐹)(𝑁‘𝑆)) = (1r‘𝐹)) |
33 | 19, 2, 20, 12, 21, 4, 5, 30 | tendoinvcl 40814 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑆 ≠ 𝑂) → ((𝑁‘𝑆) ∈ 𝐸 ∧ (𝑁‘𝑆) ≠ 𝑂)) |
34 | 33 | simpld 493 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑆 ≠ 𝑂) → (𝑁‘𝑆) ∈ 𝐸) |
35 | 2, 20, 12, 4, 5, 28 | dvhmulr 40796 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ∈ 𝐸 ∧ (𝑁‘𝑆) ∈ 𝐸)) → (𝑆(.r‘𝐹)(𝑁‘𝑆)) = (𝑆 ∘ (𝑁‘𝑆))) |
36 | 1, 11, 34, 35 | syl12anc 835 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑆 ≠ 𝑂) → (𝑆(.r‘𝐹)(𝑁‘𝑆)) = (𝑆 ∘ (𝑁‘𝑆))) |
37 | 6 | fveq2d 6895 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (1r‘𝐹) = (1r‘((EDRing‘𝐾)‘𝑊))) |
38 | eqid 2726 | . . . . 5 ⊢ (1r‘((EDRing‘𝐾)‘𝑊)) = (1r‘((EDRing‘𝐾)‘𝑊)) | |
39 | 2, 20, 3, 38 | erng1r 40705 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (1r‘((EDRing‘𝐾)‘𝑊)) = ( I ↾ 𝑇)) |
40 | 37, 39 | eqtrd 2766 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (1r‘𝐹) = ( I ↾ 𝑇)) |
41 | 1, 40 | syl 17 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑆 ≠ 𝑂) → (1r‘𝐹) = ( I ↾ 𝑇)) |
42 | 32, 36, 41 | 3eqtr3d 2774 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑆 ≠ 𝑂) → (𝑆 ∘ (𝑁‘𝑆)) = ( I ↾ 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1534 ∈ wcel 2099 ≠ wne 2930 ↦ cmpt 5227 I cid 5570 ↾ cres 5675 ∘ ccom 5677 ‘cfv 6544 (class class class)co 7414 Basecbs 17206 .rcmulr 17260 Scalarcsca 17262 0gc0g 17447 1rcur 20158 invrcinvr 20363 DivRingcdr 20701 HLchlt 39059 LHypclh 39694 LTrncltrn 39811 TEndoctendo 40462 EDRingcedring 40463 DVecHcdvh 40788 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 ax-un 7736 ax-cnex 11203 ax-resscn 11204 ax-1cn 11205 ax-icn 11206 ax-addcl 11207 ax-addrcl 11208 ax-mulcl 11209 ax-mulrcl 11210 ax-mulcom 11211 ax-addass 11212 ax-mulass 11213 ax-distr 11214 ax-i2m1 11215 ax-1ne0 11216 ax-1rid 11217 ax-rnegex 11218 ax-rrecex 11219 ax-cnre 11220 ax-pre-lttri 11221 ax-pre-lttrn 11222 ax-pre-ltadd 11223 ax-pre-mulgt0 11224 ax-riotaBAD 38662 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3365 df-reu 3366 df-rab 3421 df-v 3465 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4324 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4907 df-iun 4996 df-iin 4997 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6303 df-ord 6369 df-on 6370 df-lim 6371 df-suc 6372 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7867 df-1st 7993 df-2nd 7994 df-tpos 8231 df-undef 8278 df-frecs 8286 df-wrecs 8317 df-recs 8391 df-rdg 8430 df-1o 8486 df-er 8724 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-pnf 11289 df-mnf 11290 df-xr 11291 df-ltxr 11292 df-le 11293 df-sub 11485 df-neg 11486 df-nn 12257 df-2 12319 df-3 12320 df-4 12321 df-5 12322 df-6 12323 df-n0 12517 df-z 12603 df-uz 12867 df-fz 13531 df-struct 17142 df-sets 17159 df-slot 17177 df-ndx 17189 df-base 17207 df-ress 17236 df-plusg 17272 df-mulr 17273 df-sca 17275 df-vsca 17276 df-0g 17449 df-proset 18313 df-poset 18331 df-plt 18348 df-lub 18364 df-glb 18365 df-join 18366 df-meet 18367 df-p0 18443 df-p1 18444 df-lat 18450 df-clat 18517 df-mgm 18626 df-sgrp 18705 df-mnd 18721 df-grp 18924 df-minusg 18925 df-cmn 19774 df-abl 19775 df-mgp 20112 df-rng 20130 df-ur 20159 df-ring 20212 df-oppr 20310 df-dvdsr 20333 df-unit 20334 df-invr 20364 df-dvr 20377 df-drng 20703 df-oposet 38885 df-ol 38887 df-oml 38888 df-covers 38975 df-ats 38976 df-atl 39007 df-cvlat 39031 df-hlat 39060 df-llines 39208 df-lplanes 39209 df-lvols 39210 df-lines 39211 df-psubsp 39213 df-pmap 39214 df-padd 39506 df-lhyp 39698 df-laut 39699 df-ldil 39814 df-ltrn 39815 df-trl 39869 df-tendo 40465 df-edring 40467 df-dvech 40789 |
This theorem is referenced by: dih1dimatlem0 41038 |
Copyright terms: Public domain | W3C validator |